Petition for Consideration and Clarification
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
The Science of Television. Television and Its Importance for the History of Health and Medicine Jessica Borge, Tricia Close-Koenig, Sandra Schnädelbach
Introduction: The Science of Television. Television and its Importance for the History of Health and Medicine Jessica Borge, Tricia Close-Koenig, Sandra Schnädelbach To cite this version: Jessica Borge, Tricia Close-Koenig, Sandra Schnädelbach. Introduction: The Science of Television. Television and its Importance for the History of Health and Medicine. Gesnerus, Schwabe Verlag Basel, 2019, 76 (2), pp.153-171. 10.24894/Gesn-en.2019.76008. hal-02885722 HAL Id: hal-02885722 https://hal.archives-ouvertes.fr/hal-02885722 Submitted on 30 Jun 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Gesnerus 76/2 (2019) 153–171, DOI: 10.24894/Gesn-en.2019.76008 Introduction. The Science of Television: Television and its Importance for the History of Health and Medicine Jessica Borge, Tricia Close-Koenig, Sandra Schnädelbach* From the live transmission of daunting surgical operations and accounts of scandals about medicines in the 1950s and 1960s to participatory aerobic workouts and militant AIDS documentaries in the 1980s the interrelation- ship of the history of bodies and health on television and the history of tele- vision can be witnessed. A telling example of this is the US born aerobics movement as it was brought to TV in Europe, with shows such as Gym Tonic (from 1982) in France, Enorm in Form (from 1983) in Germany or the Green Goddess on BBC Breakfast Time (from 1983) in Great Britain. -
Fax, Modem, and Text Support Over IP Configuration Guide, Cisco IOS Release 15M&T
Fax, Modem, and Text Support over IP Configuration Guide, Cisco IOS Release 15M&T Last Modified: 2015-07-31 Americas Headquarters Cisco Systems, Inc. 170 West Tasman Drive San Jose, CA 95134-1706 USA http://www.cisco.com Tel: 408 526-4000 800 553-NETS (6387) Fax: 408 527-0883 THE SPECIFICATIONS AND INFORMATION REGARDING THE PRODUCTS IN THIS MANUAL ARE SUBJECT TO CHANGE WITHOUT NOTICE. ALL STATEMENTS, INFORMATION, AND RECOMMENDATIONS IN THIS MANUAL ARE BELIEVED TO BE ACCURATE BUT ARE PRESENTED WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED. USERS MUST TAKE FULL RESPONSIBILITY FOR THEIR APPLICATION OF ANY PRODUCTS. THE SOFTWARE LICENSE AND LIMITED WARRANTY FOR THE ACCOMPANYING PRODUCT ARE SET FORTH IN THE INFORMATION PACKET THAT SHIPPED WITH THE PRODUCT AND ARE INCORPORATED HEREIN BY THIS REFERENCE. IF YOU ARE UNABLE TO LOCATE THE SOFTWARE LICENSE OR LIMITED WARRANTY, CONTACT YOUR CISCO REPRESENTATIVE FOR A COPY. The Cisco implementation of TCP header compression is an adaptation of a program developed by the University of California, Berkeley (UCB) as part of UCB's public domain version of the UNIX operating system. All rights reserved. Copyright © 1981, Regents of the University of California. NOTWITHSTANDING ANY OTHER WARRANTY HEREIN, ALL DOCUMENT FILES AND SOFTWARE OF THESE SUPPLIERS ARE PROVIDED “AS IS" WITH ALL FAULTS. CISCO AND THE ABOVE-NAMED SUPPLIERS DISCLAIM ALL WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING, WITHOUT LIMITATION, THOSE OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OR ARISING FROM A COURSE OF DEALING, USAGE, OR TRADE PRACTICE. IN NO EVENT SHALL CISCO OR ITS SUPPLIERS BE LIABLE FOR ANY INDIRECT, SPECIAL, CONSEQUENTIAL, OR INCIDENTAL DAMAGES, INCLUDING, WITHOUT LIMITATION, LOST PROFITS OR LOSS OR DAMAGE TO DATA ARISING OUT OF THE USE OR INABILITY TO USE THIS MANUAL, EVEN IF CISCO OR ITS SUPPLIERS HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. -
Fast Detection of Forgery Image Using Discrete Cosine Transform Four Step Search Algorithm
Journal of Korea Multimedia Society Vol. 22, No. 5, May 2019(pp. 527-534) https://doi.org/10.9717/kmms.2019.22.5.527 Fast Detection of Forgery Image using Discrete Cosine Transform Four Step Search Algorithm Yong-Dal Shin†, Yong-Suk Cho†† ABSTRACT Recently, Photo editing softwares such as digital cameras, Paintshop Pro, and Photoshop digital can create counterfeit images easily. Various techniques for detection of tamper images or forgery images have been proposed in the literature. A form of digital forgery is copy-move image forgery. Copy-move is one of the forgeries and is used wherever you need to cover a part of the image to add or remove information. Copy-move image forgery refers to copying a specific area of an image itself and pasting it into another area of the same image. The purpose of copy-move image forgery detection is to detect the same or very similar region image within the original image. In this paper, we proposed fast detection of forgery image using four step search based on discrete cosine transform and a four step search algorithm using discrete cosine transform (FSSDCT). The computational complexity of our algorithm reduced 34.23 % than conventional DCT three step search algorithm (DCTTSS). Key words: Duplicated Forgery Image, Discrete Cosine Transform, Four Step Search Algorithm 1. INTRODUCTION and Fig. 1(b) shows an original image and a copy- moved forged image respectively. Digital cameras and smart phones, and digital J. Fridrich [1] proposed an exacting match image processing software such as Photoshop, method for the forged image detection of a copy- Paintshop Pro, you can duplicate digital counterfeit move forged image. -
Cruising the Information Highway: Online Services and Electronic Mail for Physicians and Families John G
Technology Review Cruising the Information Highway: Online Services and Electronic Mail for Physicians and Families John G. Faughnan, MD; David J. Doukas, MD; Mark H. Ebell, MD; and Gary N. Fox, MD Minneapolis, Minnesota; Ann Arbor and Detroit, Michigan; and Toledo, Ohio Commercial online service providers, bulletin board ser indirectly through America Online or directly through vices, and the Internet make up the rapidly expanding specialized access providers. Today’s online services are “information highway.” Physicians and their families destined to evolve into a National Information Infra can use these services for professional and personal com structure that will change the way we work and play. munication, for recreation and commerce, and to obtain Key words. Computers; education; information services; reference information and computer software. Com m er communication; online systems; Internet. cial providers include America Online, CompuServe, GEnie, and MCIMail. Internet access can be obtained ( JFam Pract 1994; 39:365-371) During past year, there has been a deluge of articles information), computer-based communications, and en about the “information highway.” Although they have tertainment. Visionaries imagine this collection becoming included a great deal of exaggeration, there are some the marketplace and the workplace of the nation. In this services of real interest to physicians and their families. article we focus on the latter interpretation of the infor This paper, which is based on the personal experience mation highway. of clinicians who have played and worked with com There are practical medical and nonmedical reasons puter communications for the past several years, pre to explore the online world. America Online (AOL) is one sents the services of current interest, indicates where of the services described in detail. -
Fast Cosine Transform to Increase Speed-Up and Efficiency of Karhunen-Loève Transform for Lossy Image Compression
Fast Cosine Transform to increase speed-up and efficiency of Karhunen-Loève Transform for lossy image compression Mario Mastriani, and Juliana Gambini Several authors have tried to combine the DCT with the Abstract —In this work, we present a comparison between two KLT but with questionable success [1], with particular interest techniques of image compression. In the first case, the image is to multispectral imagery [30, 32, 34]. divided in blocks which are collected according to zig-zag scan. In In all cases, the KLT is used to decorrelate in the spectral the second one, we apply the Fast Cosine Transform to the image, domain. All images are first decomposed into blocks, and each and then the transformed image is divided in blocks which are collected according to zig-zag scan too. Later, in both cases, the block uses its own KLT instead of one single matrix for the Karhunen-Loève transform is applied to mentioned blocks. On the whole image. In this paper, we use the KLT for a decorrelation other hand, we present three new metrics based on eigenvalues for a between sub-blocks resulting of the applications of a DCT better comparative evaluation of the techniques. Simulations show with zig-zag scan, that is to say, in the spectral domain. that the combined version is the best, with minor Mean Absolute We introduce in this paper an appropriate sequence, Error (MAE) and Mean Squared Error (MSE), higher Peak Signal to decorrelating first the data in the spatial domain using the DCT Noise Ratio (PSNR) and better image quality. -
Networking and the Internet
Networking and Today’s lecture the Internet History of the Internet How the Internet works Lecture 4 – COMPSCI111/111G S2 2018 Network protocols The telephone WWII and the Cold War 1876: first successful bi-directional Computer technology played an important role transmission of clear speech in code-breaking during WW2 by Alexander Bell and Thomas Watson Cold War between US and USSR led to a technology and arms race Peaked with the launch of Sputnik in 1957 1958: Advanced Research Projects Agency (ARPA) 1940: first successful transmission established of digital data through over telegraph wires by George Stibitz April 1969: construction of ARPANET begins, a packet-switching network Circuit-switching network Packet-switching network Nodes are connected physically via a central Data is broken into packets, which are then sent node on the best route in the network Used by the telephone network Each node on the route sends the packet onto its next destination, avoiding congested or broken Originally, switchboard operators had to nodes manually connect phone calls, today this is done electronically B A ARPANET ARPANET in 1977 October 1969: ARPANET is completed with four nodes 1973: Norway connects to ARPANET via satellite, followed by London via a terrestrial link ARPANET ARPANET to the Internet 1983: TCP/IP implemented in ARPANET Networks similar to ARPANET sprang up around the USA and in other countries 1990: ARPANET is formally decommissioned 1984: domain name system (DNS) implemented 1985: NSFNET was established 1989: Waikato University connects to NSFNET 1991: World Wide Web (WWW) created at CERN (European Organization for Nuclear Research) by Tim Berners-Lee 1995: NSFNET is retired WWW vs Internet Internet growth The Internet is a global system of interconnected computer networks. -
Trojans and Malware on the Internet an Update
Attitude Adjustment: Trojans and Malware on the Internet An Update Sarah Gordon and David Chess IBM Thomas J. Watson Research Center Yorktown Heights, NY Abstract This paper continues our examination of Trojan horses on the Internet; their prevalence, technical structure and impact. It explores the type and scope of threats encountered on the Internet - throughout history until today. It examines user attitudes and considers ways in which those attitudes can actively affect your organization’s vulnerability to Trojanizations of various types. It discusses the status of hostile active content on the Internet, including threats from Java and ActiveX, and re-examines the impact of these types of threats to Internet users in the real world. Observations related to the role of the antivirus industry in solving the problem are considered. Throughout the paper, technical and policy based strategies for minimizing the risk of damage from various types of Trojan horses on the Internet are presented This paper represents an update and summary of our research from Where There's Smoke There's Mirrors: The Truth About Trojan Horses on the Internet, presented at the Eighth International Virus Bulletin Conference in Munich Germany, October 1998, and Attitude Adjustment: Trojans and Malware on the Internet, presented at the European Institute for Computer Antivirus Research in Aalborg, Denmark, March 1999. Significant portions of those works are included here in original form. Descriptors: fidonet, internet, password stealing trojan, trojanized system, trojanized application, user behavior, java, activex, security policy, trojan horse, computer virus Attitude Adjustment: Trojans and Malware on the Internet Trojans On the Internet… Ever since the city of Troy was sacked by way of the apparently innocuous but ultimately deadly Trojan horse, the term has been used to talk about something that appears to be beneficial, but which hides an attack within. -
The New Routing Algorithm for the ARPANET
IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. COM-28, NO. 5, MAY 1980 71 1 The New Routing Algorithmfor the ARPANET JOHN M. McQUILLAN,MEMBER, IEEE. IRA RICHER,MEMBER. IEEE. AND ERIC C. ROSEN Absrracr-The new ARPANET routingalgorithm is animprovement test results. This paper is a summary of our conclusions only; over theold procedurein that it uses fewer network resources, operates on for more complete descriptions of our research findings, see more realistic estimates of network conditions, reacts faster to important our internai reportson this project [3] -[5]. network changes, and does not suffer from long-term loopsor oscillations. In the new procedure, each node in the network maintainsa database 11. PROBLEMS WITH THE ORIGINAL ALGORITHM describing the complete network topology and the delays on all lines, and uses the databasedescribing the network to generate a tree representing the me original ARPANET routing algorithm and the new ver- minimum delay pathsfrom a given root node to every other network node.sion both attempt to route packets along paths of least delay. Becausethe traffic in thenetwork can be quite variable, each node The total path is not determined in advance; rather, each node periodically measures the delays along its outgoing lines and forwards this information to all other nodes. The delay information propagates quickly decides which line to use in forwarding the packet to the next through the network so thatall nodes can update their databases and node. In the original approach, each node maintained a table continue to route traffic in a consistent and efficient manner. of estimated delay to each other node, and sent itstable to all An extensive series of tests were conducted on the ARPANET, showing adjacent nodes every 128 ms. -
An 8 X 8 Discrete Cosine Transform on the Starcore SC140/SC1400 Cores
Freescale Semiconductor AN2124 Application Note Rev. 1, 11/2004 An 8 × 8 Discrete Cosine Transform on the StarCore™ SC140/SC1400 Cores By Kim-chyan Gan The 8x8 discrete cosine transform (DCT) is widely used in CONTENTS image compression algorithm because of its energy compaction 1 Discrete Cosine Transform Basics ......................2 for correlated image pixels. The basis function for the DCT is 2 8 × 8 DCT on StarCore-Based DSPs ..................4 the cosine, a real function that is easy to compute. The DCT is a 2.1 Data Memory ......................................................4 unitary transform, and the sum of the energy in the transform 2.2 Software Optimization ........................................4 and spatial domains is the same. 2.2.1 Transposed Data .................................................4 2.2.2 Coefficient Scaling .............................................4 Special, fast algorithms for the DCT have been developed to 2.2.3 Collapsing Two Passes Into a DO Loop............. 5 2.2.4 Pointer Usage ......................................................5 accommodate the many arithmetic operations involved in 2.2.5 Pipelining ............................................................5 implementing the DCT directly. This application note presents 2.2.6 Circular Buffer ....................................................6 an implementation of a fast DCT algorithm for Freescale 2.3 DCT Code ...........................................................6 StarCore™-based DSPs. 2.3.1 Initialization ........................................................6 -
IP FAX Expansion Kit User's Guide
IP FAX Expansion Kit User's Guide Please read this guide before operating this product. After you finish reading this guide, store it in a safe place for future reference. ENG How This Manual Is Organized Chapter 1 Before You Start Using IP Fax Chapter 2 Sending IP Faxes Chapter 3 Changing the Settings of the IP Fax Chapter 4 Troubleshooting Chapter 5 Appendix * Considerable effort has been made to ensure that this manual is free of inaccuracies and omissions. However, as we are constantly improving our products, if you need an exact specification, please contact Canon. * The CD-ROM/DVD-ROM provided for this product may include manuals in PDF format. If you do not have access to Adobe Reader to view the manuals in PDF format, try other programs such as PDF Preview developed by Vivid Document Imaging Technologies. i Contents How This Manual Is Organized ...................................................................................... i Preface........................................................................................................................... iv How To Use This Manual .....................................................................................................................iv Chapter 1 Before You Start Using IP Fax What Is IP Fax? ............................................................................................................1-2 IP Fax Features ....................................................................................................................................1-2 Comparison -
Considerations for Using T.38 Versus G.711 for Fax Over IP (Foip
White Paper Considerations for Using T.38 versus G.711 for Fax over IP Considerations for Using T.38 versus G.711 for Fax over IP White Paper Executive Summary Businesses migrating to Voice over IP (VoIP) often find it desirable to move their fax traffic onto the IP network as well. However, VoIP networks are, as the name implies, optimized for voice traffic; and businesses implementing a Fax over IP (FoIP) solution as part of their fax system can benefit from understanding their options for FoIP transport methods. This white paper compares the performance of the two principal options for sending faxes over an IP network: T.38 fax relay and G.711 fax pass-through. The V.17 and V.34 modem standards are briefly discussed and also used for comparison when used with T.38 and G.711 for performance against IP network impairments, such as latency, packet loss, and jitter. The impact of these network impairments on call control, fax control, and image data are described, as well as the impact of the frequency of these impairments. General considerations for network performance are also covered, as are sections describing how metrics within the Dialogic® Brooktrout® Bfv API can be used to detect IP network impairments. 2 Considerations for Using T.38 versus G.711 for Fax over IP White Paper Table of Contents Introduction . 4 FoIP Transport Methods . 4 T .38 versus G .711 . 4 V .17 versus V .34 . 5 Redundancy . 5 ECM . 5 Typical IP Network Impairments . 5 Latency . 5 Packet Loss . 6 Jitter . -
NAB's Guide to Careers in Television
NAB’s Guide to Careers in Television Second Edition by Liz Chuday TABLE OF CONTENTS Table of Contents…………………………………..……………………......... 1-3 Introduction………………………………………………………………... ......... 4 Acknowledgements…………………………………………………………....... 6 A Word About Station Ownership………………..…………… ..................…7 The General Administration Department…………………. ...................... 8-9 General Manager……………..……………….……………… ..................... 8 Station Manager……..…………………………………………….. .............. 8 Human Resources…………………………..………………........................ 8 Executive Assistant…………………………..…………………… ............... 9 Business Manager/Controller…………………………… ........................... 9 The Sales and Marketing Department………………………….............. 10-11 Director of Sales…………………..………………………….. ................... 10 General Sales Manager…………………………………………................ 10 National Sales Manager……...……………………..……......................... 10 Marketing Director or Director of Non-Traditional Revenue……….……………...................... 10 Local Sales Manager..……………………………………………. ............. 11 Account Executive..……………………….………………………............. .11 Sales Assistant..………………………….…………………………............ 11 The Traffic Department………………..…………………………................... 12 Operations Manager…………………………………………..................... 12 Traffic Manager…………………………………….………………. ............ 12 Traffic Supervisor………………………………….……………….............. 12 Traffic Assistant…………………………………………….………............. 12 Order Entry Coordinator/Log Editors………………………. .................... 12 The Research Department……………………………………….