Solar Radiation Data Manual for Buildings

Total Page:16

File Type:pdf, Size:1020Kb

Solar Radiation Data Manual for Buildings NOTICE This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefuleness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply iots endorsement, recommendation, or favoring by the United States government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States government or any agency thereof. Authors: William Marion and Stephen Wilcox Artists: Jon Leedholm and Dean Armstrong Cover photographs: Warren Gretz Editor: Mary Anne Dunlap ii For use by architects and engineers, the Solar Radiation The authors acknowledge Doug Balcomb and Ron Data Manual for Buildings provides solar resource in­ Judkofffrom NREL's Buildings and Energy Systems formation for common window orientations for the Division. Their efforts were instrumental in establishing United States and its territories. This information was the content of the data manual. The authors also ac­ modeled using solar radiation and meteorological data knowledge the contributions and reviews of Steve gathered from 1961 to 1990 and will permit quick evalu­ Ternoey (Lightforms); Richard Perez (State University ations of passive solar and daylighting features for of New York); and NREL staff members Scott Crowder, buildings. Gene Maxwell, Steve Slazak, and Tom Stoffel. This manual was produced by the National Renewable Energy Laboratory's (NREL's) Analytic Studies Division under the Resource Assessment Program, which is funded and monitored by the U.S. Department of Energy's Office of Solar Energy Conversion. Approved for the National Renewable Energy Laboratory Thomas D. Bath, Director Dave Renne, Manager Analytic Studies Division Resource Assessment Program iii Preface ........................................... " ..................... " ...... .iii Introduction .................................................................... 1 Technical Background ................................................... .2 Interpreting the Data Tables ............................................ 3 Station Description .................................................... 3 Solar Radiation .......................................................... 3 Solar Radiation Graph .............................................. .4 Climatic Conditions .................................................. .4 Illuminance ............................................................... .5 Electronic Data ...............................................................6 Data Tables .....................................................................7 Appendix - Methodology .......................................... .247 Calculating Incident Solar Radiation ................... .248 Calculating Transmitted Solar Radiation ............. .249 Calculating Incident Illuminance ......................... .250 Averaging Solar Radiation and Illuminance ......... .251 Estimating Solar Radiation and Illuminance Data Uncertainty ................................................... .251 Deriving Climatic Data ........................................ .253 References .............................................................. 254 Unit Conversion Factors ............................................ 255 iv Architects and engineers use solar resource information In addition to the solar radiation and illuminance data, to help design passive solar and day lighting features for this manual contains tables listing climatic conditions bUildings. Solar resource information includes data on such as average temperature, average daily minimum how much solar radiation and illuminance are available and maximum temperature, record minimum and maxi­ for different window orientations, and how they vary. mum temperature, average heating and cooling degree days, average humidity ratio, average wind speed, and This manual provides solar radiation and illuminance average clearness index. values for a horizontal window and four vertical win­ dows (facing north, east, south, and west) for 239 sta­ The solar radiation, illuminance, and climatic data are tions in the United States and its territories. The solar presented in tables. Data for each station are presented radiation values are monthly and yearly averages for the on a single page, and the pages are arranged alphabeti­ period of 1961-1990. Included are values showing the cally by the state or territory two-letter abbreviation. solar radiation incident on the window and the amount Within a state or territory, the pages are arranged alpha­ transmitted into the living space, with and without exterior betically by city or island. shading of the window. Illuminance values are presented for average diurnal profiles for 4 months of the year. Map showing the location of the 239 stations in the National Solar Radiation Data Base from which data were used to calculate values for this manual 1 The solar radiation and illuminance data in this manual Results of a comparison of the NSRDB with the were modeled using data from the National Solar SOLMET/ERSATZ data base provide the incentive to Radiation Data Base (NSRDB) Version 1.1, which was develop new solar radiation resource products, such as completed in March 1994 by the National Renewable this data manual. On an annual basis, 40% of the Energy Laboratory (NREL). The NSRDB contains NSRDB and SOLMET/ERSATZ station values are in hourly values of measured or modeled solar radiation disagreement for global horizontal radiation by more and meteorological data for 239 stations for the 30-year than 5%; some station values show disagreement of up period from 1961-1990. A complete description of the to 18% (Marion and Myers 1992). For direct beam radia­ NSRDB and how it was produced is presented in its tion, 60% of the NSRDB and SOLMET/ERSATZ station user's manual (NSRDB-Vol. 11992) and the final tech­ values are in disagreement by more than 5%; some sta­ nical report (NSRDB-Vol. 21995). The original version tions show disagreement of up to 33%. Disagreement of the NSRDB, Version 1.0, was completed in August between the two data bases is even greater when com­ 1992. Version 1.1 corrects two types of minor errors in pared on a monthly basis. Most of the disagreement is Version 1.0 that affected about 10% of the stations attributed to differences in the instruments' calibration (Rymes 1994). procedures and models. There are two types of stations in the NSRDB: primary This manual presents solar radiation and illuminance (denoted by asterisks in the station map) and secondary values to enable quick estimates of the incident solar (denoted by dots in the station map). Primary stations, of energy for common window orientations. The solar which there are 56, measured solar radiation for a part radiation and illuminance values were computed using (from 1 to 27 years) ofthe 30-year period. The remaining models and NSRDB hourly values of direct beam, global 183 stations, designated secondary stations, made no horizontal, and diffuse horizontal solar radiation, and solar radiation measurements. Their data are modeled dew point temperature. Climatic data were obtained solar radiation values derived from meteorological data from the NSRDB and from climatic data sets provided such as cloud cover. Both primary and secondary sta­ by the National Climatic Data Center, Asheville, North tions are National Weather Service stations that collected Carolina. The Appendix describes in more detail how meteorological data for the period 1961-1990. this manual was produced. Succeeding the older 1952-1975 SOLMET/ERSATZ References data base, the NSRDB accounts for any recent climate changes and provides more accurate values of solar radia­ Marion, W.; Myers, D. (1992). A Comparison of Data tion. The NSRDB data are more accurate for several from SOLMETIERSATZ and the National Solar reasons: Radiation Data Base. NRELlTP-463-5118, Golden, CO: National Renewable Energy Laboratory. • More measured data NSRDB- Vol. 1 (1992). User's Manual-National • Better model for estimating values (More than 90% Solar Radiation Data Base (1961-1990). Version 1.0. of the solar radiation data in both data bases are Golden, CO: National Renewable Energy Laboratory modeled.) and Asheville, NC: National Climatic Data Center. • Improved instrument calibration methods NSRDB-Vol. 2 (1995). Final Technical Report: National Solar Radiation Data Base (1961-1990). • Rigorous procedures for assessing quality of data. NRELlTP-463-5784, Golden, CO: National Renewable Energy Laboratory. Rymes, M. (1994). "Beyond the NSRDB Version 1.0." Proceedings of the 1994 Annual American Solar Energy Society Conference; June 25-30,1994, San Jose, CA. 2 For each of the 239 stations, a data page contains a The diffuse radiation data in the tables do not include the . description of the station location; presents average solar direct beam radiation component. Diffuse radiation is the radiation and illuminance values for a horizontal window sum of sky radiation and radiation reflected from the and vertical windows facing north, east, south, and west; ground in
Recommended publications
  • Measurement of Radiation
    CHAPTER CONTENTS Page CHAPTER 7. MEASUREMENT OF RADIATION ........................................ 222 7.1 General ................................................................... 222 7.1.1 Definitions ......................................................... 222 7.1.2 Units and scales ..................................................... 223 7.1.2.1 Units ...................................................... 223 7.1.2.2 Standardization. 223 7.1.3 Meteorological requirements ......................................... 224 7.1.3.1 Data to be reported. 224 7.1.3.2 Uncertainty ................................................ 225 7.1.3.3 Sampling and recording. 225 7.1.3.4 Times of observation. 225 7.1.4 Measurement methods .............................................. 225 7.2 Measurement of direct solar radiation ......................................... 227 7.2.1 Direct solar radiation ................................................ 228 7.2.1.1 Primary standard pyrheliometers .............................. 228 7.2.1.2 Secondary standard pyrheliometers ............................ 229 7.2.1.3 Field and network pyrheliometers ............................. 230 7.2.1.4 Calibration of pyrheliometers ................................. 231 7.2.2 Exposure ........................................................... 232 7.3 Measurement of global and diffuse sky radiation ................................ 232 7.3.1 Calibration of pyranometers .......................................... 232 7.3.1.1 By reference to a standard pyrheliometer and a shaded
    [Show full text]
  • Lessons Learned from Field Evaluation of Six High-Performance Buildings
    Lessons Learned from Field Evaluation of Six High-Performance Buildings Paul A. Torcellini, Michael Deru, Brent Griffith, Nicholas Long, Shanti Pless, and Ron Judkoff, National Renewable Energy Laboratory Drury B. Crawley, U.S. Department of Energy ABSTRACT The energy performance of six high-performance buildings around the United States was monitored in detail. The six buildings include the Visitor Center at Zion National Park; the National Renewable Energy Laboratory Thermal Test Facility, the Chesapeake Bay Foundation Merrill Center, the BigHorn Home Improvement Center; the Cambria DEP Office Building; and the Oberlin College Lewis Center. Evaluations began with extensive monitoring for a minimum of one year, which was used to calibrate energy simulation models. This paper will discuss differences between the design energy targets and actual performance, common mistakes in implementing “state-of-the shelf” building technologies, commissioning experiences, policy implications, and lessons learned for future buildings. Overall, energy performance of the buildings will be compared to each other and to code compliant base-case buildings. The owners and design teams for each building had aggressive energy saving goals ranging from 40% to a net-zero energy performance. Some of the design teams also had ambitious goals regarding other dimensions of sustainability such as water management, building materials selection, or obtaining a high LEED™ score. The focus of this paper is on energy performance. Computer simulations were used for each building during the design process. All buildings used daylighting and good thermal envelopes as part of their high-performance features. Other high-performance features include mechanical and passive evaporative cooling, radiant heating, natural ventilation, mixed-mode ventilation, ground source heat pumps, photovoltaic, and passive solar strategies.
    [Show full text]
  • The Role of Daylight in Achieving Ultra-Low-Energy Buildings
    The Role of Daylight in Achieving Ultra-Low-Energy Buildings May 6, 2011 Neall Digert, Ph.D., MIES Vice President of Product Enterprise Solatube International, Inc. Countries around the globe are experiencing an energy crisis! The World’s enormous design and construction market is focused on energy-efficient retrofit and innovative, ultra-low energy new construction. The desire to halt global warming is creating an awareness and need for sustainable buildings, communities, and societies. Energy Policy is at the forefront of governmental initiatives in nearly every country. China needs to increase its generation capacity by over 1,312 GW between 2006 and 2030. Source: International Energy Agency, “World Energy Outlook 2007 – China and India Insights”, pg. 317 Countries are tackling Global Warming and Climate Change by encouraging renewable & low carbon energy sources. As a result, Government and Code Authorities are Single-mindedly Supporting use of Site-based, building integrated Photovoltaics (PV) as a solution. The Sun: An important element of ultra- low energy sustainable Building design. The use of Daylight and PV need not be mutually exclusive. Energy Codes and GovernmentalDaylight… Incentive Programs are encouraging the use of façade- based PV generation over the use of other key load-avoidance design techniques and technologies. • Architects find themselves with Energy- efficiency technologies that are seemingly at odds with each other. • Energy Code and Incentive Programs are causing Envelope-based PV Systems and Daylighting Fenestration Systems to compete for building surface real estate. Annual % Energy Costs Office Unconditioned Warehouse Daylighting Strategies Side Lighting (Windows) Benefits: . View of the World . Design Feature . Reduce Electrical Lighting Limitations: .
    [Show full text]
  • DSM Pocket Guidebook Volume 1: Residential Technologies DSM Pocket Guidebook Volume 1: Residential Technologies
    IES RE LOG SIDE NO NT CH IA TE L L TE A C I H T N N E O D L I O S G E I R E S R DSML Pocket Guidebook E S A I I D VolumeT 1: Residential Technologies E N N E T D I I A S L E R T E S C E H I N G O O L L O O G N I H E C S E T R E L S A I I D T E N N E T D I I A S L E R T E S C E H I N G O O L Western Area Power Administration August 2007 DSM Pocket Guidebook Volume 1: Residential Technologies DSM Pocket Guidebook Volume 1: Residential Technologies Produced and funded by Western Area Power Administration P.O. Box 281213 Lakewood, CO 80228-8213 Prepared by National Renewable Energy Laboratory 1617 Cole Boulevard Golden, CO 80401 August 2007 Table of Contents List of Tables v List of Figures v Foreword vii Acknowledgements ix Introduction xi Energy Use and Energy Audits 1 Building Structure 9 Insulation 10 Windows, Glass Doors, and Sky lights 14 Air Sealing 18 Passive Solar Design 21 Heating and Cooling 25 Programmable Thermostats 26 Heat Pumps 28 Heat Storage 31 Zoned Heating 32 Duct Thermal Losses 33 Energy-Efficient Air Conditioning 35 Air Conditioning Cycling Control 40 Whole-House and Ceiling Fans 41 Evaporative Cooling 43 Distributed Photovoltaic Systems 45 Water Heating 49 Conventional Water Heating 51 Combination Space and Water Heaters 55 Demand Water Heaters 57 Heat Pump Water Heaters 60 Solar Water Heaters 62 Lighting 67 Incandescent Alternatives 69 Lighting Controls 76 Daylighting 79 Appliances 83 Energy-Efficient Refrigerators and Freezers 89 Energy-Efficient Dishwashers 92 Energy-Efficient Clothes Washers and Dryers 94 Home Offices
    [Show full text]
  • The Challenge for Building Integration of Highly Transparent Photovoltaics and Photoelectrochromic Devices
    energies Review The Challenge for Building Integration of Highly Transparent Photovoltaics and Photoelectrochromic Devices Alessandro Cannavale 1,2,* , Francesco Martellotta 1 , Francesco Fiorito 3 and Ubaldo Ayr 1 1 Department of Sciences in Civil Engineering and Architecture, Polytechnic University of Bari, 70125 Bari, Italy; [email protected] (F.M.); [email protected] (U.A.) 2 Istituto di Nanotecnologia, CNR Nanotec, Via Arnesano 16, 73100 Lecce, Italy 3 Department of Civil, Environmental, Land, Building Engineering and Chemistry, Polytechnic University of Bari, 70125 Bari, Italy; francesco.fi[email protected] * Correspondence: [email protected]; Tel.: +39-080-596-3718 Received: 19 March 2020; Accepted: 10 April 2020; Published: 14 April 2020 Abstract: This paper holds a critical review of current research activities dealing with smart architectural glazing worldwide. Hereafter, the main trends are analyzed and critically reported, with open issues, challenges, and opportunities, providing an accurate description of technological evolution of devices in time. This manuscript deals with some well-known, highly performing technologies, such as semitransparent photovoltaics and novel photoelectrochromic devices, the readiest, probably, to reach the final stage of development, to disclose the manifold advantages of multifunctional, smart glazing. The complex, overall effects of their building integration are also reported, especially regarding energy balance and indoor visual comfort in buildings. Keywords: semi-transparent photovoltaics; photoelectrochromic devices; photovoltachromic devices; building integration of photovoltaics 1. Introduction The progressive exhaustion of fossil fuels and the consequent biosphere alteration are strictly related to the dramatic growth of energy consumption. Global warming witnesses the effects of anthropic activities on the biosphere. In 2015, during the Conference of Paris, representatives of 196 countries agreed on the urgency to reduce the impacts of human activities [1].
    [Show full text]
  • Redefining the Basics: the Translucent Sandwich Panel
    Chico Wildcat Recreation Center | Chico, CA Redefining the Basics: The Translucent Sandwich Panel WHITE PAPER KALWALL.COM | +1 603 627 3861 People need a few fundamentals to survive: oxygen, water, food, sleep and shelter. They also have secondary requirements, one DID YOU KNOW of which is daylight. Is your building keeping people healthy? While it’s good to try Kalwall founder Robert R. Keller invented the original new and exciting things, to meet the fundamental needs of translucent sandwich panel people we need to remember that daylighting is essential to in 1955. wellness. See how the translucent sandwich panel can help you keep daylighting and other healthy building concepts top of mind. Anatomy of a Translucent Sandwich Panel WS WEATHERALE CATIN TECHNL NDLINE SHI’ RID PATTERN SHWN ETERIR TRANSLUCENT RP FACE SHEET TRANSLUCENT THERAL INSULATIN INTERIR TRANSLUCENT RP FACE SHEET THERALLYREN STRUCTURAL RID CRE REDEFINING THE BASICS: THE TRANSLUCENT SANDWICH PANEL 1 BUILDING FOR PEOPLE = Daylighting People have been harvesting daylight for thousands of years. The ancient Egyptians were using windows covered by reed mats in 1500BC. While the principle remains, technology has developed, first by using shutters, then glass and, now, translucent panels, sunpipes and smart glass. What is Daylighting? Daylighting is the art of placing apertures into buildings to control either direct or indirect sunlight that penetrates the space to provide interior lighting. Manhattan Fire Station | Manhattan, KS In architecture, daylighting has gone through a complete 360°. Originally it was one most important aspects of a building design with buildings being planned around movements of the sun to capture the most lighting.
    [Show full text]
  • Solar Radiation Modeling and Measurements for Renewable Energy Applications: Data and Model Quality
    March 2003 • NREL/CP-560-33620 Solar Radiation Modeling and Measurements for Renewable Energy Applications: Data and Model Quality Preprint D.R. Myers To be presented at the International Expert Conference on Mathematical Modeling of Solar Radiation and Daylight—Challenges for the 21st Century Edinburgh, Scotland September 15–16, 2003 National Renewable Energy Laboratory 1617 Cole Boulevard Golden, Colorado 80401-3393 NREL is a U.S. Department of Energy Laboratory Operated by Midwest Research Institute • Battelle • Bechtel Contract No. DE-AC36-99-GO10337 NOTICE The submitted manuscript has been offered by an employee of the Midwest Research Institute (MRI), a contractor of the US Government under Contract No. DE-AC36-99GO10337. Accordingly, the US Government and MRI retain a nonexclusive royalty-free license to publish or reproduce the published form of this contribution, or allow others to do so, for US Government purposes. This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States government or any agency thereof.
    [Show full text]
  • Heat Transfer and Thermal Modelling
    H0B EAT TRANSFER AND THERMAL RADIATION MODELLING HEAT TRANSFER AND THERMAL MODELLING ................................................................................ 2 Thermal modelling approaches ................................................................................................................. 2 Heat transfer modes and the heat equation ............................................................................................... 3 MODELLING THERMAL CONDUCTION ............................................................................................... 5 Thermal conductivities and other thermo-physical properties of materials .............................................. 5 Thermal inertia and energy storage ....................................................................................................... 7 Numerical discretization. Nodal elements ............................................................................................ 7 Thermal conduction averaging .................................................................................................................. 9 Multilayer plate ..................................................................................................................................... 9 Non-uniform thickness ........................................................................................................................ 11 Honeycomb panels .............................................................................................................................
    [Show full text]
  • Cleantech Daylighting Using Smart Glass: a Survey of LEED® Accredited Professionals
    Cleantech Daylighting Using Smart Glass: A Survey of LEED® Accredited Professionals G. M. Sottile Research Frontiers Inc., Woodbury, NY, USA, [email protected] ABSTRACT competitive returns for investors and customers while providing solutions to global challenges” [1]. According to Buildings are an important target of the clean a survey by Ernst & Young, the two primary drivers of the technology movement. According to the U.S. Green clean technology industry over the next five years will be Building Council, buildings now account for nearly forty increasing energy costs and initiatives to raise energy percent of all energy consumed in the United States. Smart efficiency [2]. These drivers have global influence. Rising glass is an emerging category of high-performing glazings energy costs can adversely affect inflation, balances of that can regulate the amount of light, glare and heat passing trade, and the performance of economies. Likewise, efforts through products such as windows, doors and skylights. to raise energy efficiency, whether government-sponsored When used in architectural projects, these glazings offer the or of a grass roots nature, offer direct and indirect benefits potential for two key daylighting benefits – reduced cooling when costs are lowered and the environment is protected. loads and lower electricity consumption for interior illumination. This paper reports the results of a nationwide Investments in clean technology have grown market research survey on the clean technology potential of substantially. Dow Jones VentureSource reports that in daylighting using smart glass. Survey participants are 2007, venture capitalists invested $3 billion in clean LEED® Accredited Professionals whose practice area is technology deals globally, an increase of 43% from 2006.
    [Show full text]
  • An Overview and Issues of the Sky Radiometer Technology and SKYNET
    An overview and issues of the sky radiometer technology and SKYNET Teruyuki Nakajima1, Monica Campanelli2, Huizheng Che3, Victor Estellés2,4, Hitoshi Irie5, Sang-Woo Kim6, Jhoon Kim7, Dong Liu8, Tomoaki Nishizawa9, Govindan Pandithurai10, 5 Vijay Kumar Soni11, Boossarasiri Thana12, Nas-Urt Tugjsurn13, Kazuma Aoki14, Sujung Go7,15, Makiko Hashimoto1, Akiko Higurashi9, Stelios Kazadzis16, Pradeep Khatri17, Natalia Kouremeti16, Rei Kudo18, Franco Marenco19, Masahiro Momoi5,20, Shantikumar S. Ningombam21, Claire L. Ryder22, Akihiro Uchiyama9, Akihiro Yamazaki18. 10 1. Satellite Observation Center, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba 305-8506, Japan 2. Consiglio Nazionale delle Ricerche, Istituto Scienze dell'Atmosfera e del Clima, via Fosso del Cavaliere, 100, 00133 - Roma, Italy 3. Centre for Atmosphere Watch And Services, CMA Chinese Academy of Meteorological 15 Sciences; 46 Zhong-Guan-Cun S. Ave., Beijing 100081, China 4. Dept. Física de la Terra i Termodinàmica, Universitat de València, Burjassot, Valencia, Spain 5. Center for Environmental Remote Sensing, Chiba University, Chiba 263-8522, Japan 6. School of Earth and Environmental Sciences, Seoul National University, Seoul 08826, 20 Republic of Korea 7. Dept. of Atmospheric Sciences, Yonsei University, Seoul 03722, Republic of Korea 8. Center for Atmospheric Optics, Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, China 9. National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, 25 Japan 10. Indian Institute of Tropical Meteorology, Ministry of Earth Sciences, Pune 411 008, India 11. Environment Monitoring & Research Centre, India Meteorological Department, Ministry of Earth Sciences, Mausam Bhawan, Lodi Road, New Delhi-110003, India 12.
    [Show full text]
  • Limitations in Current Day Lighting Related Solar Concentration Devices: a Critical Review
    International Journal of the Physical Sciences Vol. 5(18), pp. 2730-2756, 29 December 2010 Available online at http://www.academicjournals.org/IJPS ISSN 1992 - 1950 ©2010 Academic Journals Review Limitations in current day lighting related solar concentration devices: A critical review Hamzah Abdul-Rahman and Chen Wang* Center of Project and Facilities Management (PFM), Faculty of Built Environment, University of Malaya, Malaysia. Accepted 2 September, 2010 This study introduces the day lighting related solar concentration devices such as light pipes (or tubular daylight guidance systems), optical fibers for light transport, conventional solar concentrators and luminescent solar concentrators (LSC). The principles of study, advantages and disadvantages for application of these day lighting related devices have been explained. Daylight has a disadvantage of not being able to reach deeper areas in a building such as storerooms, basements and corridors and it also brings the heat gain with the light. Light pipes and optical fibers were expected to transfer daylight to unreached areas, but light pipes have their difficulties in wiring and the optical fiber needs a pointolite for the light transportation. Solar concentrators are only sensitive for the beam radiation and they function poorly in overcast sky conditions. Even under a clear sky condition, trackers are always needed for conventional solar concentrators. Static concentrators always come with a poor concentration rate without a tracker and the light concentrated by normal luminescent solar concentrators could not be transported by optical fibers to a remote place since the light produced by LSCs is not a pointolite. Future studies especially cross disciplinary researches on developing new solar concentration devices in mitigating those limitations as discussed in this study are highly recommended.
    [Show full text]
  • Modeling Errors in Diffuse-Sky Radiation: Vector Vs. Scalar Treatment
    GEOPHYSICAL RESEARCH LETTERS, VOL. 25, NO. 2, Pages 135–138, JANUARY 15, 1998 Modeling errors in diffuse-sky radiation: Vector vs. scalar treatment A.A. Lacis, J. Chowdhary1, M.I. Mishchenko2, and B. Cairns1 NASA Goddard Institute for Space Studies, 2880 Broadway, New York, NY 10025 Abstract. Radiative transfer calculations that utilize the This would make the scalar approximation adequate for scalar approximation of light produce intensity errors as most cloud and aerosol radiance calculations. Moreover, large as 10% in the case of pure Rayleigh scattering. This in climate studies, where radiative fluxes and albedos are modeling error, which arises primarily from second order the quantities of interest, the integration over scattering scattering, is greatly reduced for flux and albedo results angle has the fortuitous effect of averaging out radiance because of error cancellation brought about by integration errors to the point where no one has seriously worried over scattering angle. However, polarized light scattered about the adequacy of the scalar approximation. Also, from an underlying ocean surface, or from atmospheric since climate related applications typically rely on relative aerosols, interacts with the pattern of Rayleigh scattered differences and radiative flux ratios, this tends to further polarization to distort the error cancellation and thus incur dilute the significance of potential errors that arise from larger flux and albedo errors. While addition of scattered the scalar approximation. radiation from clouds, aerosols or ground surface into the Recent comparisons of model results and observations Rayleigh atmosphere tends to reduce the magnitude of (e.g., Kato, et al., 1997; Kinne, et al. 1997; Charlock and scalar approximation intensity errors, the scalar errors in Alberta, 1996; Wild, et al.
    [Show full text]