Semialgebraic Geometry

Total Page:16

File Type:pdf, Size:1020Kb

Semialgebraic Geometry Semialgebraic Geometry School of Mathematics and Statistics, University of Sydney A thesis submitted in fulfillment of the requirements for the degree of Master of Philosophy Mark S. Perrin 2020 1 Abstract In this thesis we introduce the preliminary results required to appreciate some key results of classical semialgebraic geometry. Namely, we give a detailed account of Sturm's root counting method, and Hermite's root counting method - both are used to count the number of real solutions of a finite system of polynomial equations in a single variable. After building a foothold in both the theoretical and algorithmic setting of the root counting methods, we extend to systems of polynomial equations and inequations, wherein lies the bridge to the definition of semialgebraic sets as a natural extension to algebraic sets. The main results covered are the cylindrical algebraic decomposition and triangulation of semial- gebraic sets, as well as Hardt's semialgebraic triviality of semialgebraic sets, where we show numerous consequences of each of these. We give the proofs of important concepts with a focus on intuitive exemplification and illustration. In the final section we discuss some improvements to the implementation of the standard conditions of Thom's lemma, 3.4.1, which may have implications on the efficiency of the projection operation used in cylindrical algebraic decomposition. 2 Acknowledgments I want to express my gratitude toward Laurentiu for his persistence and patience as my supervisor throughout my degree and writing of this thesis. I appreciate his diligence as a mentor - leading me with suggestions to seemingly independent personal discoveries and first-hand revelations in new topics in mathematics, and teaching me to always ask questions - which has undoubtedly improved my ability to learn. I also want to thank my family for the support relating to my studies or otherwise. They have always encouraged my pursuits in every way they can, with full faith that I will try my best to succeed, or at least make the most of the cards that might be dealt. Finally, I want to thank Gwen for being so supportive during our time to- gether including my studies, for being understanding in personal times, and for giving me motivation when it is most needed. 3 Contents 1 Counting real roots of polynomials 7 1.1 Sturm's method . .7 1.2 Tarski-Seidenberg - Elimination of a variable . 30 1.3 Hermite's method . 37 2 Semialgebraic sets 39 2.1 Semialgebraic sets - Definitions and examples . 39 2.2 Tarski-Seidenberg - Second form . 41 2.3 Tarski-Seidenberg - Third form . 42 2.4 Semialgebraic functions . 43 3 Decomposing semialgebraic sets 54 3.1 Cylindrical algebraic decomposition . 54 3.2 Constructing a c.a.d. adapted to a finite family of polynomials . 59 3.3 Algorithmic construction of an adapted c.a.d. 78 3.4 Improved cylindrical algebraic decomposition . 79 3.5 Dimension of semialgebraic sets . 101 3.6 Triangulation of semialgebraic sets . 110 4 Hardt's trivialization and consequences 123 4.1 Semialgebraic triviality of semialgebraic sets . 123 4.2 Semialgebraic Sard's theorem and upper bounds on connected components . 136 4.3 Algebraic computation trees and lower bounds on connected com- ponents . 148 5 Implementing the (?) condition 154 5.1 Checking the (?) condition . 154 5.2 Completing a family to satisfy the (?) condition . 161 A Hermite's Method 166 4 Introduction The goal of this thesis is to give a detailed discussion of several key results in semialgebraic geometry, emerging in the 1970's and onward. Of course, much of the underlying theory is older, relying on knowledge of algebraic geometry and analysis. We aim to give the new reader an introduction to the topic, providing rigorous and detailed proofs, complemented by an incremental building of the relevant theory, and illustrated with many worked examples. Following each of the main results (Theorems 3.4.7, 3.4.9, 3.6.1, and 4.1.1), we outline various consequences concerning the dimension, and the number of connected compo- nents of semialgebraic sets. Many of the results (and their proofs) we cover are taken from a preprint of Michel Coste's `Introduction to Semialgebraic Geom- etry' (2002), [1]. The structure of the paper reflects the logical dependence of the results, and hence the order in which the material should be learned. In Section 1 the root counting methods of Sturm and Hermite are introduced, providing a way to count the number of real solutions of a system of finitely many polynomial equations in a single variable. Sturm's method is developed further to count the number of solutions of a system consisting of a polynomial equation and several polynomial inequalities, and Hermite's method is devel- oped to relate the principal subresultant coefficients of two polynomials with the multiplicities of their common factors. This naturally gives a precursor for the definition of semialgebraic sets, as well as providing some powerful tools for their detailed examination. However, the reader may start with semialgebraic sets in Section 2, and return to the referenced material from Section 1 when necessary. The basic properties of semialgebraic sets are introduced in Section 2, particularly stability properties, as well as the tools commonly used to study semialgebraic sets. Semialgebraic sets are, by definition, sets of points in Rn satisfying finite boolean combinations of sign conditions on a family of polyno- mials, and being able to count the solutions of such a system is crucial in the method of cylindrical algebraic decomposition of semialgebraic sets into simpler, well-arranged subsets we call strata, or slightly more generally, cells. The reader will become familiar with taking projections of semialgebraic sets, which is used extensively throughout Section 3 as one of the primary methods used to study semialgebraic sets, and is responsible for some of the main features, including the cylindrical arrangement of cells, in a constructed cylindrical algebraic de- composition. Decomposing semialgebraic sets in this way provides information on the topology and dimension of the sets, and allows for the proof that every semialgebraic set can be triangulated, (Theorem 3.6.1). In Section 4 we intro- duce the notion of semialgebraic triviality in order to present Hardt's theorem as the next main result. We use the triangulation theorem to prove Hardt's the- orem, 4.1.1, on the triviality of semialgebraic sets, which states that the image of a semialgebraic set S by a continuous semialgebraic mapping h can be repre- sented as a finite union of subsets, over which the mapping is semialgebraically trivial, and that this triviality can be refined to be compatible with a finite collection of semialgebraic subsets of S. Hardt's theorem has consequences on the structure, dimension, and number of topological types of semialgebraic sets, 5 and is used to prove the semialgebraic version of Sard's theorem. Throughout, we aim to give illustrations and geometric exemplification of the key concepts in understanding these results. Some of the propositions/corollaries stated and proven throughout this thesis are posed as exercises in [1] (Coste). 6 1 Counting real roots of polynomials In this section we explore two methods for counting the real roots of polyno- mial equations with 1 variable. Namely, we consider Sturm's method, and the method of Hermite. Sturm's method invokes a variation of the Euclidean divi- sion algorithm to produce a sequence of polynomials, from which we are able to infer the number of distinct real roots of a polynomial on an open (not nec- essarily bounded) interval of the real line. We show how to extend this method to count the number of distinct real roots of a system of polynomial equations and inequalities in a single variable, and how to do so algorithmically, which will be used in Section 3 as a foundation for decomposing semialgebraic sets in an effective way. Hermite's method uses Newton sums, and principal minors of a matrix related to the Newton sums, to count the distinct complex roots of a polynomial, and even the distinct real roots of a polynomial. We show how to modify the setup in order to compute the number of solution of a system consist- ing of a polynomial equation and a polynomial inequality in a single variable. This method invokes Galois theory, principal subresultant coefficients, and a theorem of Jacobi on symmetric bilinear forms. We also show how the princi- pal subresultant coefficients of pairs of polynomials relate to common roots of these polynomials, which is an important feature we use in a construction in Section 3. While they are related, (see [2]), the methods of Sturm and Hermite are quite different in their application. Sturm's method requires branching of computation trees based on the signs of certain polynomials in the coefficients we start with, while Hermite's method avoids branching altogether. 1.1 Sturm's method Consider two nonzero polynomials P; Q 2 R[X]. We construct a sequence of polynomials P0;P1;:::;Pk by taking P0 := P , P1 := Q, and for i > 0 we define Pi+1 as the negative of the remainder of the Euclidean division of Pi−1 by Pi. That is, Pi−1 = PiAi + Ri for some Ai;Ri 2 R[X], and we define Pi+1 := −Ri. From this definition we can write Pi−1 = PiAi − Pi+1, or Pi+1 = PiAi − Pi−1 equivalently. We now define the Sturm sequence of P and Q as (P0;P1;:::;Pk), where Pk is the last nonzero polynomial in the sequence. Note that Pk = ± gcd(P; Q), since the process for computing Pk is the Euclidean algorithm up to a sign change. Example 1.
Recommended publications
  • N° 92 Séminaire De Structures Algébriques Ordonnées 2016
    N° 92 Séminaire de Structures Algébriques Ordonnées 2016 -- 2017 F. Delon, M. A. Dickmann, D. Gondard, T. Servi Février 2018 Equipe de Logique Mathématique Prépublications Institut de Mathématiques de Jussieu – Paris Rive Gauche Universités Denis Diderot (Paris 7) et Pierre et Marie Curie (Paris 6) Bâtiment Sophie Germain, 5 rue Thomas Mann – 75205 Paris Cedex 13 Tel. : (33 1) 57 27 91 71 – Fax : (33 1) 57 27 91 78 Les volumes des contributions au Séminaire de Structures Algébriques Ordonnées rendent compte des activités principales du séminaire de l'année indiquée sur chaque volume. Les contributions sont présentées par les auteurs, et publiées avec l'agrément des éditeurs, sans qu'il soit mis en place une procédure de comité de lecture. Ce séminaire est publié dans la série de prépublications de l'Equipe de Logique Mathématique, Institut de Mathématiques de Jussieu–Paris Rive Gauche (CNRS -- Universités Paris 6 et 7). Il s'agit donc d'une édition informelle, et les auteurs ont toute liberté de soumettre leurs articles à la revue de leur choix. Cette publication a pour but de diffuser rapidement des résultats ou leur synthèse, et ainsi de faciliter la communication entre chercheurs. The proceedings of the Séminaire de Structures Algébriques Ordonnées constitute a written report of the main activities of the seminar during the year of publication. Papers are presented by each author, and published with the agreement of the editors, but are not refereed. This seminar is published in the preprint series of the Equipe de Logique Mathématique, Institut de Mathématiques de Jussieu– Paris Rive Gauche (CNRS -- Universités Paris 6 et 7).
    [Show full text]
  • Computing the Homology of Semialgebraic Sets. II: General Formulas Peter Bürgisser, Felipe Cucker, Josué Tonelli-Cueto
    Computing the Homology of Semialgebraic Sets. II: General formulas Peter Bürgisser, Felipe Cucker, Josué Tonelli-Cueto To cite this version: Peter Bürgisser, Felipe Cucker, Josué Tonelli-Cueto. Computing the Homology of Semialgebraic Sets. II: General formulas. Foundations of Computational Mathematics, Springer Verlag, 2021, 10.1007/s10208-020-09483-8. hal-02878370 HAL Id: hal-02878370 https://hal.inria.fr/hal-02878370 Submitted on 23 Jun 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Computing the Homology of Semialgebraic Sets. II: General formulas∗ Peter B¨urgissery Felipe Cuckerz Technische Universit¨atBerlin Dept. of Mathematics Institut f¨urMathematik City University of Hong Kong GERMANY HONG KONG [email protected] [email protected] Josu´eTonelli-Cuetox Inria Paris & IMJ-PRG OURAGAN team Sorbonne Universit´e Paris, FRANCE [email protected] Abstract We describe and analyze a numerical algorithm for computing the homology (Betti numbers and torsion coefficients) of semialgebraic sets given by Boolean formulas. The algorithm works in weak exponential time. This means that outside a subset of data having exponentially small measure, the cost of the algorithm is single exponential in the size of the data.
    [Show full text]
  • On the Total Curvature of Semialgebraic Graphs
    ON THE TOTAL CURVATURE OF SEMIALGEBRAIC GRAPHS LIVIU I. NICOLAESCU 3 RABSTRACT. We define the total curvature of a semialgebraic graph ¡ ½ R as an integral K(¡) = ¡ d¹, where ¹ is a certain Borel measure completely determined by the local extrinsic geometry of ¡. We prove that it satisfies the Chern-Lashof inequality K(¡) ¸ b(¡), where b(¡) = b0(¡) + b1(¡), and we completely characterize those graphs for which we have equality. We also prove the following unknottedness result: if ¡ ½ R3 is homeomorphic to the suspension of an n-point set, and satisfies the inequality K(¡) < 2 + b(¡), then ¡ is unknotted. Moreover, we describe a simple planar graph G such that for any " > 0 there exists a knotted semialgebraic embedding ¡ of G in R3 satisfying K(¡) < " + b(¡). CONTENTS Introduction 1 1. One dimensional stratified Morse theory 3 2. Total curvature 8 3. Tightness 13 4. Knottedness 16 Appendix A. Basics of real semi-algebraic geometry 21 References 25 INTRODUCTION The total curvature of a simple closed C2-curve ¡ in R3 is the quantity Z 1 K(¡) = jk(s) jdsj; ¼ ¡ where k(s) denotes the curvature function of ¡ and jdsj denotes the arc-length along C. In 1929 W. Fenchel [9] proved that for any such curve ¡ we have the inequality K(¡) ¸ 2; (F) with equality if and only if C is a planar convex curve. Two decades later, I. Fary´ [8] and J. Milnor [17] gave probabilistic interpretations of the total curvature. Milnor’s interpretation goes as follows. 3 3 Any unit vector u 2 R defines a linear function hu : R ! R, x 7! (u; x), where (¡; ¡) denotes 3 the inner product in R .
    [Show full text]
  • THE SEMIALGEBRAIC CASE Today's Goal Tarski-Seidenberg Theorem
    17 THE SEMIALGEBRAIC CASE Today’s Goal Tarski-Seidenberg Theorem. For every n =1, 2, 3,...,every Lalg-definable subset of Rn can be defined by a quantifier-free Lalg-formula. n Thus every Lalg-definable subset of R is a finite boolean combination (i.e., finitely many intersections, unions, and comple- ments) of sets of the form n {(x1,...,xn) ∈ R | p(x1,...,xn) > 0} where p(x1,...,xn)isapolynomial with coefficients in R. These are called the semialgebraic sets. A function f: A ⊂ Rn → Rm is semialgebraic if its graph is a semialgebraic subset of Rn × Rm. 18 As for the semilinear sets, every semialgebraic set can be written as a finite union of the intersection of finitely many sets defined by conditions of the form p(x1,...,xn)=0 q(x1,...,xn) > 0 where p(x1,...,xn) and q(x1,...,xn) are polynomials with coefficients in R. Proof Strategy • Prove a geometric structure theorem that shows that any semialgebraic set can be decomposed into finitely many semialgebraic generalized cylinders and graphs. • Deduce quantifier elimination from this. 19 Thom’s Lemma. Let p1(X),...,pk(X) be polynomials in the variable X with R coefficients in such that if pj(X) =0then pj(X) is included among p1,...,pk. Let S ⊂ R have the form S = ∩jpj(X) ∗j 0 where ∗j is one of <, >,or=, then S is either empty, a point, or an open interval. Moreover, the (topological) closure of S is obtained by changing relaxing the sign conditions (changing < to ≤ and > to ≥. Note There are 3k such possible sets, and these form a partition of R.
    [Show full text]
  • Describing Convex Semialgebraic Sets by Linear Matrix Inequalities
    Describing convex semialgebraic sets by linear matrix inequalities Markus Schweighofer Université de Rennes 1 International Symposium on Symbolic and Algebraic Computation Korea Institute for Advanced Study, Seoul July 28-31, 2009 Introduction n n A semialgebraic set in R is a subset of R defined by a boolean combination of polynomial inequalities. In other words, semialgebraic sets are the sets defined by quantifier-free formulas inductively built up from polynomial inequalities by f:; ^; _g. If one allows for formulas combining polynomial inequalities by f:; ^; _; 8x 2 R; 9x 2 Rg, then the defined sets are still semialgebraic. In fact, given a formula ', one can compute a quantifier-free formula defining the same set by Tarski’s real quantifier elimination. If ' has only rational coefficients, then the same can be assured for . Modern algorithms use cylindrical algebraic decomposition. Chris Brown et al., Wednesday, Room B, 14:00 – 15:15 Describing convex semialgebraic sets by linear matrix inequalities n n A semialgebraic set in R is a subset of R defined by a boolean combination of polynomial inequalities. In other words, semialgebraic sets are the sets defined by quantifier-free formulas inductively built up from polynomial inequalities by f:; ^; _g. If one allows for formulas combining polynomial inequalities by f:; ^; _; 8x 2 R; 9x 2 Rg, then the defined sets are still semialgebraic. In fact, given a formula ', one can compute a quantifier-free formula defining the same set by Tarski’s real quantifier elimination. If ' has only rational coefficients, then the same can be assured for . Modern algorithms use cylindrical algebraic decomposition.
    [Show full text]
  • Asymptotic Differential Algebra
    ASYMPTOTIC DIFFERENTIAL ALGEBRA MATTHIAS ASCHENBRENNER AND LOU VAN DEN DRIES Abstract. We believe there is room for a subject named as in the title of this paper. Motivating examples are Hardy fields and fields of transseries. Assuming no previous knowledge of these notions, we introduce both, state some of their basic properties, and explain connections to o-minimal structures. We describe a common algebraic framework for these examples: the category of H-fields. This unified setting leads to a better understanding of Hardy fields and transseries from an algebraic and model-theoretic perspective. Contents Introduction 1 1. Hardy Fields 4 2. The Field of Logarithmic-Exponential Series 14 3. H-Fields and Asymptotic Couples 21 4. Algebraic Differential Equations over H-Fields 28 References 35 Introduction In taking asymptotic expansions `ala Poincar´e we deliberately neglect transfinitely 1 − log x small terms. For example, with f(x) := 1−x−1 + x , we have 1 1 f(x) ∼ 1 + + + ··· (x → +∞), x x2 so we lose any information about the transfinitely small term x− log x in passing to the asymptotic expansion of f in powers of x−1. Hardy fields and transseries both provide a kind of remedy by taking into account orders of growth different from . , x−2, x−1, 1, x, x2,... Hardy fields were preceded by du Bois-Reymond’s Infinit¨arcalc¨ul [9]. Hardy [30] made sense of [9], and focused on logarithmic-exponential functions (LE-functions for short). These are the real-valued functions in one variable defined on neigh- borhoods of +∞ that are obtained from constants and the identity function by algebraic operations, exponentiation and taking logarithms.
    [Show full text]
  • Constructions for the Theorem of Bröcker–Scheiderer
    Universit´e de Rennes I Institut de Recherche Campus de Beaulieu Math´ematique de Rennes 35042 Rennes Cedex Unit´e associ´ee au C.N.R.S. France n◦ 305 Rapport de stage Constructions for the Theorem of Br¨ocker{Scheiderer effectu´e par Andreas Bernig Stage de DEA 1996=97 Soutenu le 24 juin 1997 Sous la responsabilit´e de: a` Rennes Louis Mah´e Remerciements Ce rapport de stage a ´et´e ´ecrit au cours de l'ann´ee universitaire 1996/1997. Je voudrais tout d'abord remercier a` M. Mah´e d'avoir accept´e d'^etre le responsable de ce stage. A tout moment, il a ´et´e pr^et a` m'aider en r´epondant a` mes questions, en m'expliquant les math´ematiques et en me donnant des conseils tr`es utiles. Outre M. Mah´e, plusieures personnes m'ont aid´e pendant ce stage. Je tiens surtout a` remercier M. Becker (Dortmund) qui m'a propos´e ce sujet. M. Coste m'a ´egalement r´epondu a` beaucoup de mes questions. J'ai profit´e des discussions int´eressantes avec M. Monnier sur nos travaux ou` nous avons trouv´e quelques points communs. Pour les corrections soigneuses je veux dire merci a` W. Hildebrand dont les connaissances d'anglais m'ont beaucoup servi. Last but not least, Anne m'a donn´e la joie de vivre, m'a sans cesse motiv´e et encourag´e tout au long de ce travail. Contents Remerciements 2 1 Introduction 3 2 Real Algebra 5 2.1 Ordered fields and real closed fields .
    [Show full text]
  • Real Algebraic Geometry Lecture Notes (11: 24/11/09)
    REAL ALGEBRAIC GEOMETRY LECTURE NOTES (11: 24/11/09) SALMA KUHLMANN Contents 1. Normal form of semialgebraic sets 1 2. Geometric version of Tarski-Seidenberg 3 3. Formulas in the language of real closed fields 4 1. Normal form of semialgebraic sets Let R be a fixed real closed field and n > 1. We consider 3 operations on subsets of Rn: (1) finite unions, (2) finite intersections, (3) complements. Definition 1.1. (i) The class of semialgebraic sets in Rn is defined to be the smallest class of subsets of Rn closed under operations (1), (2), (3), and which contains all sets of the form fx 2 Rn : f(x) ¡ 0g; where f 2 R[x] = R[x1; : : : ; xn] and ¡ 2 f>; >; =; 6=g. (ii) Equivalently a subset S ⊆ Rn is semialgebraic if and only if it is a finite boolean combination of sets of the form fx 2 Rn : f(x) > 0g; where f(x) 2 R[x]. (iii) Consider 8f (x) ¡ 0 > 1 1 < . (∗) S(x) := . :> fk(x) ¡k 0 with fi(x) 2 R[x]; ¡i 2 f>; >; =; 6=g. The set of solutions of S(x) is precisely the semialgebraic set 1 2 SALMA KUHLMANN k \ n S := fx 2 R : fi(x) ¡i 0g: i=1 The solution set S of a system (∗) is called a basic semialgebraic subset of Rn. (iv) Let f1; : : : ; fk 2 R[x] = R[x1; : : : ; xn]. A set of the form n Z(f1; : : : ; fk) := fx 2 R : f1(x) = ··· = fk(x) = 0g is called an algebraic set. (v) A subset of Rn of the form U(f) : = fx 2 Rn : f(x) > 0g; n U(f1; : : : ; fk) : = fx 2 R : f1(x) > 0; : : : ; fk(x) > 0g = U(f1) \···\U(fk) is called a basic open semialgebraic set.
    [Show full text]
  • Differential Algebra, Ordered Fields and Model Theory
    UMONS - Universit´ede Mons Facult´edes Sciences Differential algebra, ordered fields and model theory Quentin Brouette Une dissertation pr´esent´eeen vue de l'obtention du grade acad´emiquede docteur en sciences. Directrice de th`ese Composition du jury Franc¸oise Point Thomas Brihaye Universit´ede Mons Universit´ede Mons, secr´etaire Codirecteur de th`ese Piotr Kowalski Christian Michaux Universit´ede Wroclaw Universit´ede Mons Cedric´ Riviere` Universit´ede Mons Marcus Tressl Universit´ede Manchester Maja Volkov Universit´ede Mons, pr´esidente Septembre 2015 Contents Note de l'auteur iii Preface v 1 Model theory, differential fields and ordered fields 1 1.1 Model Theory . .1 1.2 Differential fields . .7 1.2.1 Differential rings and fields . .8 1.2.2 Differentially closed fields . 11 1.3 Ordered fields . 14 1.4 Ordered differential fields and CODF . 17 1.4.1 Definitions and generalities . 17 1.4.2 Definable Closure . 19 1.4.3 Definable Skolem functions and imaginaries . 20 2 Stellens¨atze 21 2.1 The nullstellensatz for ordered fields . 23 2.2 The nullstellensatz for ordered differential fields . 24 2.3 Prime real differential ideals . 26 2.4 The positivstellensatz . 28 2.4.1 Topological version . 28 2.4.2 Algebraic version . 29 2.5 Schm¨udgen'stheorem . 31 2.5.1 Schm¨udgen's theorem for the real field . 32 2.5.2 Endowing R with a structure of CODF . 32 2.5.3 Schm¨udgen's theorem for differential fields . 34 3 Differential Galois Theory 37 3.1 Picard-Vessiot Extensions . 39 i ii 3.1.1 Generalities on linear differential equations and Picard- Vessiot extensions .
    [Show full text]
  • An Introduction to Semialgebraic Geometry
    AN INTRODUCTION TO SEMIALGEBRAIC GEOMETRY Michel COSTE Institut de Recherche Math´ematiquede Rennes [email protected] Octobre 2002 Contents Introduction 3 1 Counting the real roots 5 1.1 Sturm’s theorem . ....................... 5 1.1.1 P without multiple root . ............... 5 1.1.2 P with multiple roots . ................... 6 1.1.3 A bound for the roots ................... 7 1.2 Real roots satisfying inequalities . ............... 7 1.2.1 One inequality ....................... 7 1.2.2 Several inequalities . ................... 9 1.2.3 Deciding the existence of a solution of a system of poly- nomial equations and inequalities . .......... 10 1.3 Systems with parameters . ................... 10 1.3.1 Tarski-Seidenberg . ................... 11 1.3.2 Systems with one equation . ............... 12 1.3.3 Example: polynomial of degree 4 . .......... 13 1.3.4 General systems ....................... 16 1.4 Another method for counting real roots .............. 17 1.4.1 Hermite’s method . ................... 17 1.4.2 Determination of the signature .............. 19 1.4.3 Principal subresultant coefficients . .......... 21 2 Semialgebraic sets 25 2.1 Stability properties . ....................... 25 2.1.1 Definition and first examples . ............... 25 2.1.2 Consequences of Tarski-Seidenberg principle . ...... 26 2.2 Semialgebraic functions ....................... 29 2.2.1 Definition and first properties ............... 29 2.2.2 TheLojasiewicz 8 inequality . ............... 30 1 2 CONTENTS 2.3 Decomposition of a semialgebraic set . .............. 32 2.3.1 Cylindrical algebraic decomposition . ......... 32 2.3.2 Construction of an adapted c.a.d. ............. 34 2.3.3 The c.a.d. algorithm . .................. 38 2.3.4 Connected components of semialgebraic sets . ..... 40 3 Triangulation of semialgebraic sets 41 3.1 Thom’s lemma .
    [Show full text]
  • TAUT SUBMANIFOLDS ARE ALGEBRAIC 1. Introduction An
    TAUT SUBMANIFOLDS ARE ALGEBRAIC QUO-SHIN CHI Abstract. We prove that every (compact) taut submanifold in Euclidean space is real algebraic, i.e., is a connected component of a real irreducible algebraic variety in the same ambient space. This answers affirmatively a question of Nicolaas Kuiper raised in the 1980s. 1. Introduction An embedding f of a compact, connected manifold M into Euclidean space Rn is taut if every nondegenerate (Morse) Euclidean distance function, 2 n Lp : M ! R;Lp(z) = d(f(z); p) ; p 2 R ; has β(M; Z2) critical points on M, where β(M; Z2) is the sum of the Z2-Betti numbers of M. That is, Lp is a perfect Morse function on M. A slight variation of Kuiper's observation in [7] gives that tautness can be rephrased by the property that (1.1) Hj(M \ B; Z2) ! Hj(M; Z2) is injective for all closed disks B ⊂ Rn and all 0 ≤ j ≤ dim(M). As a result, tautness is a conformal invariant, so that via stereographic projection we can reformulate the notion of tautness in the sphere Sn using the spherical distance functions. Another immediate consequence is that if B1 ⊂ B2, then (1.2) Hj(M \ B1) ! Hj(M \ B2) is injective for all j. Kuiper in [8] raised the question whether all taut submanifolds in Rn are real algebraic. We established in [4] that a taut submanifold in Rn is real algebraic in the sense that, it is a connected component of a real irreducible algebraic variety in the same ambient space, provided the submanifold is of dimension no greater than 4.
    [Show full text]
  • Computing the Homology of Basic Semialgebraic Sets in Weak
    Computing the Homology of Basic Semialgebraic Sets in Weak Exponential Time PETER BÜRGISSER, Technische Universität Berlin, Germany FELIPE CUCKER, City University of Hong Kong PIERRE LAIREZ, Inria, France We describe and analyze an algorithm for computing the homology (Betti numbers and torsion coefficients) of basic semialgebraic sets which works in weak exponential time. That is, out of a set of exponentially small measure in the space of data, the cost of the algorithm is exponential in the size of the data. All algorithms previously proposed for this problem have a complexity which is doubly exponential (and this is so for almost all data). CCS Concepts: • Theory of computation → Computational geometry; • Computing methodologies → Hybrid symbolic-numeric methods. Additional Key Words and Phrases: Semialgebraic geometry, homology, algorithm ACM Reference Format: Peter Bürgisser, Felipe Cucker, and Pierre Lairez. 2018. Computing the Homology of Basic Semialgebraic Sets in Weak Exponential Time. J. ACM 66, 1, Article 5 (October 2018), 30 pages. https://doi.org/10.1145/3275242 1 INTRODUCTION Semialgebraic sets (that is, subsets of Euclidean spaces defined by polynomial equations and in- equalities with real coefficients) come in a wide variety of shapes and this raises the problem of describing a given specimen, from the most primitive features, such as emptiness, dimension, or number of connected components, to finer ones, such as roadmaps, Euler-Poincaré characteristic, Betti numbers, or torsion coefficients. The Cylindrical Algebraic Decomposition (CAD) introduced by Collins [23] and Wüthrich [63] n 5 in the 1970’s provided algorithms to compute these features that worked within time sD 2O( ) where s is the number of defining equations, D a bound on their degree and n the dimension( ) of the ambient space.
    [Show full text]