Growing Zantedeschia for Cut Flower Production

Total Page:16

File Type:pdf, Size:1020Kb

Growing Zantedeschia for Cut Flower Production c a l l a 7 c a l l a 8 c a l l a 9 c a l l a 1 0 The right fertilising and greenhouse climate Harvesting the flowers is an art Working on a good tuber after flowering Proper hygiene during production prevents problems later for best results Harvest flowers on time Proper hygiene pays for itself Working on good tuber development Storage and preparation This chart lists the most important diseases (and pests) and the methods to control them. Erwinia is one of the most important The flowers are harvested once they are open and displaying Once harvested, place the flowers immediately in a clean Using the tubers for production following flowering can only If the tubers are to be sold dry or used for production for and commonly occurring diseases. Preventing stress and using proper hygiene largely reduce the risks of infections. Potassium more important than nitrogen Control temperature and humidity good colour. The right time for this is the day before the pail filled with clean water containing a chlorine tablet. be done with tubers planted in the spring. After flowering, another year, the schedule below must be followed. Dry Zantedeschia requires fertilising, but be sure not to apply A greenhouse temperature of 15-16°C is maintained after flower starts producing pollen. According to the Association Working with clean pails, clean water and using a bactericide continue to water and side dress moderately for around the tubers thoroughly after lifting and store them under cause symptoms prevention/control too much nitrogen in relationship to potassium. Too much planting. If possible, keep the soil temperature at 15-18°C. of Dutch Flower Auctions, this is stage 3 (see the photo such as a chlorine tablet is necessary to prevent bacterial 2 to 3 months. Maintain a greenhouse temperature of dry conditions with proper air circulation. Erwinia Affected leaves and stems turn dark Plant undamaged bulbs and prevent nitrogen can increase foliage production, decrease strength, Later during cultivation, once the leaves have unfurled, series). The pollen is clearly visible as yellow powder on growth resulting in slimy stems. Put the freshly harvested 17-18°C. Once the crop starts to turn yellow and shows Before planting, activate the tubers by storing them for 2 (bacteria) green, display rotten spots, become stress during growth. Plant in fresh reduce the number of flowers, and increase the risk of culls. the greenhouse temperature is usually kept at 18 to 20°C. the spike of the inflorescence. Do not put off harvesting flowers in a refrigerated chamber set at around 9-13°C. Later, signs of dying back, watering must be stopped. Once the to 4 weeks at 17-20°C at an RH of 80-85%. During this warm slimy and eventually fall over. The soil or potting soil that is free of The soil also has to provide sufficient quantities of other Depending on the amount of light, the temperature may be for too long because doing so will shorten keeping quality. after bunching and trimming the flowers to even their lengths, aerial parts of the crop have senesced, the tubers can be storage, the shoots will emerge; it also helps the tuber to tubers will also begin to rot and pathogens. Prevent mechanical elements, including trace elements. Simple or compound allowed to rise to a maximum of 25°C. Try to keep the soil Harvesting is best done in the morning when it is easiest to put them back into clean water containing a chlorine tablet. lifted. Trim away any leaf remnants to leave only a few start growing faster once planted. become malodorous. damage to the crop and tubers as fertilisers can be applied in various ways including mixing temperature below 20°C to limit the risk of damage from harvest a cool crop saturated with water. Briefly watering Store the flowers at 6 to 9°C. Keep the storage time as centimetres above the tuber. Lift the tubers carefully to well as high temperatures combined with a high RH. Do not provide too them in irrigation water. For uniform growth, be sure that Erwinia. More light benefits flower production and stem the crop very early in the morning makes it easier to harvest short as possible; as the flower ages, it will gradually turn prevent mechanical damage that could result in chalking much nitrogen when fertilising; the amount of potassium is about twice as much as nitrogen. quality, so try to make as much light as possible available the products. When the crop is limp (not fully saturated), green. Always place the flowers upright to prevent them during storage. Dry the Calla tubers thoroughly after lifting. prevent the growth of too much foliage. A normal basic dressing can be followed by side dressing to the crop during the spring and autumn. Shading with harvesting the flowers is more difficult; this leads to an from growing crookedly. Handle the flowers with care to later during cultivation. chalk or shade cloths is usually done during the summer to increased risk of pulling not only the main flower from the prevent mechanical damage. Processing the flowers also keep both the greenhouse and soil temperatures sufficiently plant but the second immature one and thus eliminating requires clean tables because the flowers can quickly storage drying preparation total storage time Rhizoctonia This fungus damages the shoot at the Use fresh soil or potting soil that is Conduct weed control before crop emergence low. Shading under these conditions also prevents the crop, this one as a usable product. become dirty. In general, adding nutrients for cut flowers Short-term storage 2 weeks at 17-23°C 2.5 months at 17-20°C 3-4 months (soil-borne point at which it emerges from the soil free of pathogens. Soil suspected of fungus) and exhibits as spots that look eaten being infected should be treated with Chemical weed control can be conducted before the and thus the flower stems, from remaining too short. When to the water will have very little effect on increasing keeping Medium-term storage 2 weeks at 17-23°C 1 month at 17°C + 13°C 4-6 months away. a fungicide. emergence of the crop. After emergence, the options are the crop comes into flower during the spring and autumn, quality although the sugar can sometimes prevent the Long-term storage 2 weeks at 17-23°C 1 month at 17°C + 9°C 4-8 months GROWING ZANTEDESCHIA more limited. Once the crop grows together, however, weed the greenhouse temperature can be lowered to 15 to 10°C stems from splitting open. The flowers can be kept for control is usually unnecessary. Use care in conducting at night. This slows crop development but intensifies flower up to two weeks. Botrytis Spots on leaves and flowers. A Botrytis Keep the crop dry to keep the fungus FOR CUT FLOWER PRODUCTION mechanical weed control in order to prevent damage to colour. The best possible RH during the day is 60 to 75%. (fungus) infection on the leaves is almost from germinating. If growing outside, always limited to a small spot and use a crop spray containing a fungicide q choosing the right planting material for production leaves and the roots in the upper soil level. Never let this drop below 50-60%. Try not to let the RH getting production off to a good start will not cause any problems. during flowering. practical tips for q exceed 75-85% at night. Neither the plants nor the tubers q producing flowers of high quality tolerate any frost. q keeping the crop healthy Pythium This fungus causes root rot that keeps Use fresh soil or potting soil that is (soil-borne the plant from absorbing water free of pathogens. fungus) properly. Soil suspected of being infected should be treated with a fungicide. Penicillium This blue-green fungus grows on and Store tubers under dry conditions and (fungus) sometimes in the tuber during storage. prevent mechanical damage. Infection grows particularly on places Provide sufficient air circulation to where the tuber has suffered mechani- prevent the microclimate surrounding cally damage and occurs under moist the tubers from developing a high RH. conditions. Infected tuber tissue is grey or brown. Thrips and aphids Thrips cause elongated spots or strips Prevent weeds during cultivation; (insects) on the flowers; aphids leave round control weeds outside the greenhouse green spots. Both these pests can as well. If thrips or aphids are identified, also transfer viruses. spray immediately before flowering with an insecticide. c a l l a 2 c a l l a 3 c a l l a 4 c a l l a 5 c a l l a 6 Goal-oriented scheduling and planting Tuber size, cultivar and dipping tubers in GA3 determine Plant only in suitable soil; otherwise, use boxes Plant carefully for a good start number of flowers A beautiful cut flower and pot plant best way to distribute flowering over time is to plant at Air-permeable soil for best growth they could root at 12-16°C in a cooler room. Once rooted, Plant tubers in an upright position and cover Table 2. Average planting densities per tuber size. The coloured Zantedeschia (also known as the Calla) can various times. One of the factors in the length of the The tubers can be grown in practically all types of soil, but the boxes could be housed. The medium preferred for this with enough substrate be used for cut flower production, pot plant production and flowering period is the number of flowers produced by The tubers flowering cultivar.
Recommended publications
  • Arum Lily Control
    ARUM LILY CONTROL Nature Conservation Information Sheet Why control arum lilies? Arum lily (Zantedeschia aethiopica) is native to South Africa and was introduced to Australia as an ornamental garden plant. It has become a serious weed in the south west of Western Australia in both pasture and bushland, particularly in damp areas but also invading drier sites. Arum lily is spread by birds and invades areas of good quality native vegetation. Often forming dense monocultures it out competes native understorey species reducing biodiversity and decreasing habitat and food resources for native animals. Arum lily is poisonous to most stock, pets and humans. Symptoms can include swelling of the lips, tongue, and throat, stomach pain, vomiting and severe diarrhoea. Ingestion of the plant may be fatal. The toxicity is due to sequestering of calcium oxalate crystals and possibly other toxic compounds by the plant. Arum lily is a listed as a Declared Plant under the Biosecurity and Agriculture Management Act 2007. Understanding the plant biology Arum lily is a perennial plant. Each year the above ground part of the plant dies back to an underground tuberous rhizome. New leaves begin to regrow in autumn and flowering generally occurs from August to December. The plant then dies back in summer. As well as reproducing via seed, arum lily reproduces vegetatively. Vegetative propagation is by small rhizomes, which are produced on the sides of the main tuber. A 2 cm tuber can produce 25-30 small rhizomes in a year. Even very small rhizomes are capable of producing new growth or new plants if they are detached or the tuber dies.
    [Show full text]
  • Protecting the Natural Endangered Heritage in Romania, Croatia, Poland and Slovenia
    Available online at http://journals.usamvcluj.ro/index.php/promediu ProEnvironment ProEnvironment 11 (2018) 143-157 Review The Rights of Alive – Protecting the Natural Endangered Heritage in Romania, Croatia, Poland and Slovenia CIOANCĂ Lia-Maria1*, Luminița UJICĂ2, Marijana MIKULANDRA3, Ryszard SOŁTYSIK4, Maja ČERNE5 1Babeș-Bolyai University Cluj-Napoca, University Extension Bistrița, Andrei Mureşanu st., no. 3-5, Romania 2High Scool with Sportive Program Bistrița, Calea Moldovei no. 18. Romania 3OŠ Tina Ujevi Osnovna škola Tina Ujevića Koturaška cesta 75 10000 Zagreb, Croatia 4Zespół Szkół Nr1 w Humniskach, 36 – 206, Huminska 264, Poland 5OŠ Rogaška Slatina, Kidričeva ulica 24, 3250 Rogaška Slatina Slovenia Received 23 July 2018; received and revised form 18 September 2018; accepted 25 September 2018 Available online 30 September 2018 Abstract This article deals with the impact of destructive actions of human population on natural world. As a consequence of relying on non-renewable energy sources and reckless encroachment on natural habitats a lot of plant and animal species have become extinct and more and more species are getting endangered. Thus celebrating biodiversity and solidarity for all life forms, from the tiniest one to the most complex eco-systems, has been in the centre of our attention and operational activities. Keywords: durable development, ecology, endangered species. 1. Introduction Within the massive destruction of forests and forest climate, we witness significant changes, Just as the man has passed from the stage of sometimes radical of the environment. For the animal hunter and collector up to animal raiser and farmer, and plants which have survived through a long period the natural vegetation has increasingly been subject of adaptation, a new difficult era starts again.
    [Show full text]
  • Download/Empfehlung-Invasive-Arten.Pdf
    09-15078 rev FORMAT FOR A PRA RECORD (version 3 of the Decision support scheme for PRA for quarantine pests) European and Mediterranean Plant Protection Organisation Organisation Européenne et Méditerranéenne pour la Protection des Plantes Guidelines on Pest Risk Analysis Lignes directrices pour l'analyse du risque phytosanitaire Decision-support scheme for quarantine pests Version N°3 PEST RISK ANALYSIS FOR LYSICHITON AMERICANUS HULTÉN & ST. JOHN (ARACEAE) Pest risk analyst: Revised by the EPPO ad hoc Panel on Invasive Alien Species Stage 1: Initiation The EWG was held on 2009-03-25/27, and was composed of the following experts: - Ms Beate Alberternst, Projektgruppe Biodiversität und Landschaftsökologie ([email protected]) - M. Serge Buholzer, Federal Department of Economic Affairs DEA ([email protected]) - M. Manuel Angel Duenas, CEH Wallingford ([email protected]) - M. Guillaume Fried, LNPV Station de Montpellier, SupAgro ([email protected]), - M. Jonathan Newman, CEH Wallingford ([email protected]), - Ms Gritta Schrader, Julius Kühn Institut (JKI) ([email protected]), - M. Ludwig Triest, Algemene Plantkunde en Natuurbeheer (APNA) ([email protected]) - M. Johan van Valkenburg, Plant Protection Service ([email protected]) 1 What is the reason for performing the Lysichiton americanus originates from the pacific coastal zone of Northwest-America PRA? and was imported into the UK at the beginning of the 20th century as a garden ornamental, and has since been sold in many European countries, including southern 1 09-15078 rev countries like Italy. It is now found in 11 European countries. The species has been observed to reduce biodiversity in the Taunus region in Germany.
    [Show full text]
  • Introduction to Common Native & Invasive Freshwater Plants in Alaska
    Introduction to Common Native & Potential Invasive Freshwater Plants in Alaska Cover photographs by (top to bottom, left to right): Tara Chestnut/Hannah E. Anderson, Jamie Fenneman, Vanessa Morgan, Dana Visalli, Jamie Fenneman, Lynda K. Moore and Denny Lassuy. Introduction to Common Native & Potential Invasive Freshwater Plants in Alaska This document is based on An Aquatic Plant Identification Manual for Washington’s Freshwater Plants, which was modified with permission from the Washington State Department of Ecology, by the Center for Lakes and Reservoirs at Portland State University for Alaska Department of Fish and Game US Fish & Wildlife Service - Coastal Program US Fish & Wildlife Service - Aquatic Invasive Species Program December 2009 TABLE OF CONTENTS TABLE OF CONTENTS Acknowledgments ............................................................................ x Introduction Overview ............................................................................. xvi How to Use This Manual .................................................... xvi Categories of Special Interest Imperiled, Rare and Uncommon Aquatic Species ..................... xx Indigenous Peoples Use of Aquatic Plants .............................. xxi Invasive Aquatic Plants Impacts ................................................................................. xxi Vectors ................................................................................. xxii Prevention Tips .................................................... xxii Early Detection and Reporting
    [Show full text]
  • Karyotype and Nucleic Acid Content in Zantedeschia Aethiopica Spr. and Zantedeschia Elliottiana Engl
    African Journal of Biotechnology Vol. 11(53), pp. 11604-11609, 3 July, 2012 Available online at http://www.academicjournals.org/AJB DOI:10.5897//AJB12.061 ISSN 1684–5315 ©2012 Academic Journals Full Length Research Paper Karyotype and nucleic acid content in Zantedeschia aethiopica Spr. and Zantedeschia elliottiana Engl. Bimal Kumar Ghimire1, Chang Yeon Yu2, Ha Jung Kim3 and Ill Min Chung3* 1Department of Ethnobotany and Social Medicine, Sikkim University, Gangtok- 737 102, Sikkim, India. 2Department of Applied Plant Sciences, Kangwon National University, Chuncheon 200-701, South Korea. 3Department of Applied Life Science, Konkuk University, Seoul 143-701, South Korea. Accepted 6 June, 2012 Analysis of karyotype, nucleic deoxyribonucleic acid (DNA) content and sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) were performed in Zantedeschia aethiopica and Zantedeschia elliottiana. Mitotic metaphase in both species showed 2n=32. The chromosomes of both species were quite similar with medium length ranging from 1.55 ± 0.04 to 3.85 ± 0.12 µM in Z. aethiopica and 2.15 ± 0.04 to 3.90 ± 0.12 µM in Z. elliottiana. However, some differences were found in morphology and centromeric position among the chromosomes. Identification of individual chromosomes was carried out using chromosomes length, and centromeric positions. The karyotype of Z. aethiopica was determined to be 2n = 32 = 14 m + 18 sm and of Z. elliottiana to be 2n = 32 = 10 m + 22 sm. The 2C nuclear DNA content was found to be 3.72 ± 0.10 picograms (equivalent to 3638.16 mega base pairs) for Z. aethiopica and 1144.26 ± 0.05 picograms (equivalent to 1144.26 mega base pairs) for Z.
    [Show full text]
  • Witte Moerasaronskelken in Alle Kleuren
    © Werkgroep Aquatische Planten WWW.WATERPLANTEN.ORG Aad Bouman Witte moerasaronskelken in alle kleuren Aronskelken zijn populaire planten, vooral voor in en rond de tuinvijver, maar ook als kamerplant. Aad Boumans voordracht had al twee maal op het programma gestaan, maar nu kwam het er eindelijk van. Een verslag in zwart-wit over soms heel kleurige bloemen. Aronskelkfamilie Voor aquarianen is de aronskelkfamilie (Araceae) heel belangrijk: Cryptocoryne, Lagenandra, Anubias. Als gemeenschappelijk kenmerk hebben ze de vorm van de bloem: een aar die omgeven is door een schutblad (spatha). Soms is het schutblad vergroeid tot een vrijwel dichte koker: bij Cryptocoryne en Lagenandra. Een stuk van het schutblad kan uitgegroeid zijn tot een vlag. Bij Anubias lijkt het schutblad de aar geheel te omgeven, maar al snel ontrolt het zich, waarna de bloeiaar zichtbaar wordt en gemakkelijk toegankelijk voor bestuivende insecten. Bij Moerasaronskelken als Arum, Calla, Lysichiton, Zantedeschia, is het schutblad zeer open. In feite is het dit onderdeel dat de bloem zo aantrekkelijk maakt. Op de eerste dia's werd overigens meteen een plantensoort getoond die niet tot de aronskelken behoort: Acorus. De bloemen hiervan hebben wel een aarvorm, maar er is geen schutblad. Arum De Italiaanse aronskelk (Arum italicum) is een inheemse plant. De planten moeten wat vorst kunnen verdragen. Zodra het begint te vriezen lijkt dat tegen te vallen: de bladeren liggen verlept neer op de grond. Het verval is maar schijn. Zodra het warmer wordt komen ze weer tot leven. De bloem is wit. Er is een speciale cultivar met witte nerven in het blad. Op foto's zagen we de vruchtzetting en de overgang in kleur van de bessen, van groen via oranje naar behoorlijk rood.
    [Show full text]
  • Life History of Peltandra Virginica Author(S): Benjamin Goldberg Source: Botanical Gazette, Vol
    Life History of Peltandra virginica Author(s): Benjamin Goldberg Source: Botanical Gazette, Vol. 102, No. 4 (Jun., 1941), pp. 641-662 Published by: The University of Chicago Press Stable URL: http://www.jstor.org/stable/2471954 . Accessed: 11/08/2011 10:15 Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at . http://www.jstor.org/page/info/about/policies/terms.jsp JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact [email protected]. The University of Chicago Press is collaborating with JSTOR to digitize, preserve and extend access to Botanical Gazette. http://www.jstor.org VOLUME 102 NUMBER 4 THE BOTANICAL GAZETTE June 1941 LIFE HISTORY OF PELTANDRA VIRGINICA BENJAMIN GOLDBERG (WITH FORTY-NINE FIGURES) Introduction A morphologicalstudy of Peltandravirginica Kunth was made to assemble data which would give a rathercomplete life history of a widespreadplant and a basis forcomparison within and outside the Araceae. Features neglectedor incomplete- ly ascertainedin theplant and the familyas a wholewere studied as fullyas possi- ble. Comparativestudies on the aroids (13, 23) have been of interestsince ENGLER (IO, i i, i2) pointedout that in spite of appreciable variationthere were unifying tendenciesin the group. The only detailed morphologicalaccount of Peltandra(7) deals with part of the developmentof the pollen. Additional reportsinclude a microchemicalstudy of the seed and its germination(i8), a demonstrationthat the seed can germinatein almost total absence of oxygen(8), and an account of seed frequencies(9).
    [Show full text]
  • The Evolution of Pollinator–Plant Interaction Types in the Araceae
    BRIEF COMMUNICATION doi:10.1111/evo.12318 THE EVOLUTION OF POLLINATOR–PLANT INTERACTION TYPES IN THE ARACEAE Marion Chartier,1,2 Marc Gibernau,3 and Susanne S. Renner4 1Department of Structural and Functional Botany, University of Vienna, 1030 Vienna, Austria 2E-mail: [email protected] 3Centre National de Recherche Scientifique, Ecologie des Foretsˆ de Guyane, 97379 Kourou, France 4Department of Biology, University of Munich, 80638 Munich, Germany Received August 6, 2013 Accepted November 17, 2013 Most plant–pollinator interactions are mutualistic, involving rewards provided by flowers or inflorescences to pollinators. An- tagonistic plant–pollinator interactions, in which flowers offer no rewards, are rare and concentrated in a few families including Araceae. In the latter, they involve trapping of pollinators, which are released loaded with pollen but unrewarded. To understand the evolution of such systems, we compiled data on the pollinators and types of interactions, and coded 21 characters, including interaction type, pollinator order, and 19 floral traits. A phylogenetic framework comes from a matrix of plastid and new nuclear DNA sequences for 135 species from 119 genera (5342 nucleotides). The ancestral pollination interaction in Araceae was recon- structed as probably rewarding albeit with low confidence because information is available for only 56 of the 120–130 genera. Bayesian stochastic trait mapping showed that spadix zonation, presence of an appendix, and flower sexuality were correlated with pollination interaction type. In the Araceae, having unisexual flowers appears to have provided the morphological precon- dition for the evolution of traps. Compared with the frequency of shifts between deceptive and rewarding pollination systems in orchids, our results indicate less lability in the Araceae, probably because of morphologically and sexually more specialized inflorescences.
    [Show full text]
  • THE INFLUENCE of SELECTED GROWTH REGULATORS on DEVELOPMENT, DECORATIVE VALUE and YIELD of CORMS of EASY POT FREESIA (Freesia Eckl
    Acta Sci. Pol., Hortorum Cultus 12(1) 2013, 55-64 THE INFLUENCE OF SELECTED GROWTH REGULATORS ON DEVELOPMENT, DECORATIVE VALUE AND YIELD OF CORMS OF EASY POT FREESIA (Freesia Eckl. ex Klatt). PART I. GIBBERELLIN A3 Piotr ĩurawik, Monika Placek West Pomeranian University of Technology in Szczecin Abstract. Freesias of Easy Pot group are very interesting complement to an assortment of flowering potted plants. However , there is a lack of information about their requirements and cultivation methods. Experiments were carried out in the years 2006–2007 in the un- heated plastic tunnel. Cormlets of three cultivars: ‘Gompey’, ‘Popey’ and ‘Suzy’ were the plant material. Corms were soaked in solution of gibberellic acid in concentration of 10, 20, 40, 80 or 160 mg dm-3 for 24 hours just before planting, in a dark room with air tem- perature 28–30oC. Corms soaked in water were served as the control. During the vegeta- tion season measurements of vegetative and generative traits of plants were conducted. After the end of vegetation period, coefficients of corm weight and number increase were calculated. It was found that cormlets of Easy Pot Freesia can be recommended for culti- vation in pots. Cultivar had a significant effect on vegetative and generative parameters of plants. Among evaluated cultivars ‘Gompey’ was characterized by the greatest decorative value. Plants of this cultivar had the longest inflorescence shoots with the greatest number of lateral shoots and the greatest number of flowers. Irrespective of cultivar, gibberellic acid increased plant height, total number of leaves, length of inflorescence shoots and de- creased flower diameter.
    [Show full text]
  • Featured Plants Leucocasia (Formerly Colocasia) Gigantea 'Thailand Giant'
    Spring Spectacular Plant Sale: Featured Plants Leucocasia (formerly Colocasia) gigantea ‘Thailand Giant’, commonly called elephant ear, is a show stopper known for its large size and texture in the landscape. In one growing season individual leaves can reach up to 2 to 4 feet in length and are held up by sturdy, succulent leaf stalks. They can handle part shade, but will not grow as large as they do if planted in full sun. In late summer calla lily-like white flowers provide a pleasant fragrance. Elephant ears should be watered regularly, especially during dry summer months. These giants are fabulous when planted in mixed borders, used as specimen plants, and in large containers. Hydrangea serrata Let’s Dance Cancan™ is a new introduction that is not available in garden centers until next year! This selection features handsome lacecap flowers that are strawberry pink in neutral/alkaline soils and soft lavender in acidic soils. Unlike other serratas this hydrangea combats winter dieback by having the ability to create flower buds along the entire length of the stem instead of only at the top of the stem. It also reblooms faster than others, providing long-lasting color throughout summer. For years Philadelphus coronarius, commonly known as mockorange, has fallen out of favor with gardeners, as its unruly size and unkempt look has limited its placement in smaller gardens. Fret no more! New selections of this old-fashioned favorite have been released that are perfect for any size garden. Illuminati Tower™ mockorange is a selection that grows in a very narrow, upright form that is covered with fragrant white flowers in late spring and early summer.
    [Show full text]
  • Conservation and Management of NORTH AMERICAN MASON BEES
    Conservation and Management of NORTH AMERICAN MASON BEES Bruce E. Young Dale F. Schweitzer Nicole A. Sears Margaret F. Ormes Arlington, VA www.natureserve.org September 2015 The views and opinions expressed in this report are those of the author(s). This report was produced in partnership with the U.S. Department of Agriculture, Forest Service. Citation: Young, B. E., D. F. Schweitzer, N. A. Sears, and M. F. Ormes. 2015. Conservation and Management of North American Mason Bees. 21 pp. NatureServe, Arlington, Virginia. © NatureServe 2015 Cover photos: Osmia sp. / Rollin Coville Bee block / Matthew Shepherd, The Xerces Society Osmia coloradensis / Rollin Coville NatureServe 4600 N. Fairfax Dr., 7th Floor Arlington, VA 22203 703-908-1800 www.natureserve.org EXECUTIVE SUMMARY This document provides a brief overview of the diversity, natural history, conservation status, and management of North American mason bees. Mason bees are stingless, solitary bees. They are well known for being efficient pollinators, making them increasingly important components of our ecosystems in light of ongoing declines of honey bees and native pollinators. Although some species remain abundant and widespread, 27% of the 139 native species in North America are at risk, including 14 that have not been recorded for several decades. Threats to mason bees include habitat loss and degradation, diseases, pesticides, climate change, and their intrinsic vulnerability to declines caused by a low reproductive rate and, in many species, small range sizes. Management and conservation recommendations center on protecting suitable nesting habitat where bees spend most of the year, as well as spring foraging habitat. Major recommendations are: • Protect nesting habitat, including dead sticks and wood, and rocky and sandy areas.
    [Show full text]
  • Transcriptome Analysis of Colored Calla Lily (Zantedeschia Rehmannii Engl.) by Illumina Sequencing: De Novo Assembly, Annotation and EST-SSR Marker Development
    Transcriptome analysis of colored calla lily (Zantedeschia rehmannii Engl.) by Illumina sequencing: de novo assembly, annotation and EST-SSR marker development Zunzheng Wei1,2,*, Zhenzhen Sun3,*, Binbin Cui4, Qixiang Zhang1, Min Xiong2, Xian Wang2 and Di Zhou2 1 Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture and College of Landscape Architecture, Beijing Forestry Univer- sity, Beijing, China 2 Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Key Laboratory of Urban Agriculture (North), Ministry of Agriculture, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China 3 Beijing Key Laboratory of Separation and Analysis in Biomedicine and Pharmaceuticals, Beijing Institute of Technology, Beijing, China 4 Department of Biology and Chemistry, Baoding University, Baoding, Hebei, China * These authors contributed equally to this work. ABSTRACT Colored calla lily is the short name for the species or hybrids in section Aestivae of genus Zantedeschia. It is currently one of the most popular flower plants in the world due to its beautiful flower spathe and long postharvest life. However, little genomic information and few molecular markers are available for its genetic improvement. Here, de novo transcriptome sequencing was performed to produce large transcript sequences for Z. rehmannii cv. `Rehmannii' using an Illumina HiSeq 2000 instrument. More than 59.9 million cDNA sequence reads were obtained and assembled into 39,298 unigenes with an average length of 1,038 bp. Among these, 21,077 unigenes showed significant similarity to protein sequences in the non-redundant protein Submitted 23 April 2016 Accepted 29 July 2016 database (Nr) and in the Swiss-Prot, Gene Ontology (GO), Cluster of Orthologous Published 1 September 2016 Group (COG) and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases.
    [Show full text]