General Refraction Techniques
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Glossary Physics (I-Introduction)
1 Glossary Physics (I-introduction) - Efficiency: The percent of the work put into a machine that is converted into useful work output; = work done / energy used [-]. = eta In machines: The work output of any machine cannot exceed the work input (<=100%); in an ideal machine, where no energy is transformed into heat: work(input) = work(output), =100%. Energy: The property of a system that enables it to do work. Conservation o. E.: Energy cannot be created or destroyed; it may be transformed from one form into another, but the total amount of energy never changes. Equilibrium: The state of an object when not acted upon by a net force or net torque; an object in equilibrium may be at rest or moving at uniform velocity - not accelerating. Mechanical E.: The state of an object or system of objects for which any impressed forces cancels to zero and no acceleration occurs. Dynamic E.: Object is moving without experiencing acceleration. Static E.: Object is at rest.F Force: The influence that can cause an object to be accelerated or retarded; is always in the direction of the net force, hence a vector quantity; the four elementary forces are: Electromagnetic F.: Is an attraction or repulsion G, gravit. const.6.672E-11[Nm2/kg2] between electric charges: d, distance [m] 2 2 2 2 F = 1/(40) (q1q2/d ) [(CC/m )(Nm /C )] = [N] m,M, mass [kg] Gravitational F.: Is a mutual attraction between all masses: q, charge [As] [C] 2 2 2 2 F = GmM/d [Nm /kg kg 1/m ] = [N] 0, dielectric constant Strong F.: (nuclear force) Acts within the nuclei of atoms: 8.854E-12 [C2/Nm2] [F/m] 2 2 2 2 2 F = 1/(40) (e /d ) [(CC/m )(Nm /C )] = [N] , 3.14 [-] Weak F.: Manifests itself in special reactions among elementary e, 1.60210 E-19 [As] [C] particles, such as the reaction that occur in radioactive decay. -
Binocular Vision and the Stroop Test
1040-5488/16/9302-0194/0 VOL. 93, NO. 2, PP. 194Y208 OPTOMETRY AND VISION SCIENCE Copyright * 2015 American Academy of Optometry REVIEW Binocular Vision and the Stroop Test Franc¸ois Daniel* and ZoB Kapoula† ABSTRACT Purpose. Recent studies report a link between optometric results, learning disabilities, and problems in reading. This study examines the correlations between optometric tests of binocular vision, namely, of vergence and accommodation, reading speed, and cognitive executive functions as measured by the Stroop test. Methods. Fifty-one students (mean age, 20.43 T 1.25 years) were given a complete eye examination. They then performed the reading test L’Alouette and the Stroop interference test at their usual reading distance. Criteria for selection were the absence of significant refractive uncorrected error, strabismus, amblyopia, color vision defects, and other neurologic findings. Results. The results show a correlation between positive fusional vergences (PFVs) at near distance and the interference effect (IE) in the Stroop test: the higher the PFV value is, the less the IE. Furthermore, the subgroup of 11 students presenting convergence insufficiency, according to Scheiman and Wick criteria (2002), showed a significantly higher IE during the Stroop test than the other students (N = 18) who had normal binocular vision without symptoms at near. Importantly, there is no correlation between reading speed and PFV either for the entire sample or for the subgroups. Conclusions. These results suggest for the first time a link between convergence capacity and the interference score in the Stroop test. Such a link is attributable to the fact that vergence control and cognitive functions mobilize the same cortical areas, for example, parietofrontal areas. -
EMT UNIT 1 (Laws of Reflection and Refraction, Total Internal Reflection).Pdf
Electromagnetic Theory II (EMT II); Online Unit 1. REFLECTION AND TRANSMISSION AT OBLIQUE INCIDENCE (Laws of Reflection and Refraction and Total Internal Reflection) (Introduction to Electrodynamics Chap 9) Instructor: Shah Haidar Khan University of Peshawar. Suppose an incident wave makes an angle θI with the normal to the xy-plane at z=0 (in medium 1) as shown in Figure 1. Suppose the wave splits into parts partially reflecting back in medium 1 and partially transmitting into medium 2 making angles θR and θT, respectively, with the normal. Figure 1. To understand the phenomenon at the boundary at z=0, we should apply the appropriate boundary conditions as discussed in the earlier lectures. Let us first write the equations of the waves in terms of electric and magnetic fields depending upon the wave vector κ and the frequency ω. MEDIUM 1: Where EI and BI is the instantaneous magnitudes of the electric and magnetic vector, respectively, of the incident wave. Other symbols have their usual meanings. For the reflected wave, Similarly, MEDIUM 2: Where ET and BT are the electric and magnetic instantaneous vectors of the transmitted part in medium 2. BOUNDARY CONDITIONS (at z=0) As the free charge on the surface is zero, the perpendicular component of the displacement vector is continuous across the surface. (DIꓕ + DRꓕ ) (In Medium 1) = DTꓕ (In Medium 2) Where Ds represent the perpendicular components of the displacement vector in both the media. Converting D to E, we get, ε1 EIꓕ + ε1 ERꓕ = ε2 ETꓕ ε1 ꓕ +ε1 ꓕ= ε2 ꓕ Since the equation is valid for all x and y at z=0, and the coefficients of the exponentials are constants, only the exponentials will determine any change that is occurring. -
Chapter 22 Reflection and Refraction of Light
Chapter 22 Reflection and Refraction of Light Problem Solutions 22.1 The total distance the light travels is d2 Dcenter to R Earth R Moon center 2 3.84 108 6.38 10 6 1.76 10 6 m 7.52 10 8 m d 7.52 108 m Therefore, v 3.00 108 m s t 2.51 s 22.2 (a) The energy of a photon is sinc nair n prism 1.00 n prism , where Planck’ s constant is 1.00 8 sinc sin 45 and the speed of light in vacuum is c 3.00 10 m s . If nprism 1.00 1010 m , 6.63 1034 J s 3.00 10 8 m s E 1.99 1015 J 1.00 10-10 m 1 eV (b) E 1.99 1015 J 1.24 10 4 eV 1.602 10-19 J (c) and (d) For the X-rays to be more penetrating, the photons should be more energetic. Since the energy of a photon is directly proportional to the frequency and inversely proportional to the wavelength, the wavelength should decrease , which is the same as saying the frequency should increase . 1 eV 22.3 (a) E hf 6.63 1034 J s 5.00 10 17 Hz 2.07 10 3 eV 1.60 1019 J 355 356 CHAPTER 22 34 8 hc 6.63 10 J s 3.00 10 m s 1 nm (b) E hf 6.63 1019 J 3.00 1029 nm 10 m 1 eV E 6.63 1019 J 4.14 eV 1.60 1019 J c 3.00 108 m s 22.4 (a) 5.50 107 m 0 f 5.45 1014 Hz (b) From Table 22.1 the index of refraction for benzene is n 1.501. -
And Minus Cylinder Subjective Refraction Techniques for Clinicians January 2016
Mark E Wilkinson, OD Plus and Minus Cylinder Subjective Refraction Techniques for Clinicians January 2016 General Refraction Techniques Prior to starting your refraction, baseline visual acuities (OD, OS and OU) must be determined. For individuals with near vision complaints, and all presbyopes, near acuity should also be documented using M notation, with the testing distance documented if different than 16 inches (40 centimeters). Accurately assessing visual acuity is important for many reasons. It allows the clinician to: § Determine best corrected acuity with refraction § Monitor the effect of treatment and/or progression of disease § Estimate the dioptric power of optical devices necessary for reading regular size print § Verify eligibility for tasks such as driving § Verify eligibility as “legally blind” When measuring distance acuity, there is no longer a need to measure visual acuity in a darkened room. In the past, when projected charts were used, the room lights had to be lowered for better contrast on the chart. Now, with high definition LCD monitor acuity charts and ETDRS charts, contrast is no longer an issue. Additionally, for some patients, particularly those with difficulties adjusting to lower lighting conditions, taking them from a normally lit waiting room into a darkened clinic or work up room will artificially lower their acuity, because they do not have enough time for their eyes to adjust to the lower light conditions. Because clinical decisions are based on these acuity measurements, accurate assessment of each person’s acuity is critically important. With this in mind, all acuity testing should be done with the overhead lights on in the exam or work up room. -
9.2 Refraction and Total Internal Reflection
9.2 refraction and total internal reflection When a light wave strikes a transparent material such as glass or water, some of the light is reflected from the surface (as described in Section 9.1). The rest of the light passes through (transmits) the material. Figure 1 shows a ray that has entered a glass block that has two parallel sides. The part of the original ray that travels into the glass is called the refracted ray, and the part of the original ray that is reflected is called the reflected ray. normal incident ray reflected ray i r r ϭ i air glass 2 refracted ray Figure 1 A light ray that strikes a glass surface is both reflected and refracted. Refracted and reflected rays of light account for many things that we encounter in our everyday lives. For example, the water in a pool can look shallower than it really is. A stick can look as if it bends at the point where it enters the water. On a hot day, the road ahead can appear to have a puddle of water, which turns out to be a mirage. These effects are all caused by the refraction and reflection of light. refraction The direction of the refracted ray is different from the direction of the incident refraction the bending of light as it ray, an effect called refraction. As with reflection, you can measure the direction of travels at an angle from one medium the refracted ray using the angle that it makes with the normal. In Figure 1, this to another angle is labelled θ2. -
Care of the Patient with Accommodative and Vergence Dysfunction
OPTOMETRIC CLINICAL PRACTICE GUIDELINE Care of the Patient with Accommodative and Vergence Dysfunction OPTOMETRY: THE PRIMARY EYE CARE PROFESSION Doctors of optometry are independent primary health care providers who examine, diagnose, treat, and manage diseases and disorders of the visual system, the eye, and associated structures as well as diagnose related systemic conditions. Optometrists provide more than two-thirds of the primary eye care services in the United States. They are more widely distributed geographically than other eye care providers and are readily accessible for the delivery of eye and vision care services. There are approximately 36,000 full-time-equivalent doctors of optometry currently in practice in the United States. Optometrists practice in more than 6,500 communities across the United States, serving as the sole primary eye care providers in more than 3,500 communities. The mission of the profession of optometry is to fulfill the vision and eye care needs of the public through clinical care, research, and education, all of which enhance the quality of life. OPTOMETRIC CLINICAL PRACTICE GUIDELINE CARE OF THE PATIENT WITH ACCOMMODATIVE AND VERGENCE DYSFUNCTION Reference Guide for Clinicians Prepared by the American Optometric Association Consensus Panel on Care of the Patient with Accommodative and Vergence Dysfunction: Jeffrey S. Cooper, M.S., O.D., Principal Author Carole R. Burns, O.D. Susan A. Cotter, O.D. Kent M. Daum, O.D., Ph.D. John R. Griffin, M.S., O.D. Mitchell M. Scheiman, O.D. Revised by: Jeffrey S. Cooper, M.S., O.D. December 2010 Reviewed by the AOA Clinical Guidelines Coordinating Committee: David A. -
Descartes' Optics
Descartes’ Optics Jeffrey K. McDonough Descartes’ work on optics spanned his entire career and represents a fascinating area of inquiry. His interest in the study of light is already on display in an intriguing study of refraction from his early notebook, known as the Cogitationes privatae, dating from 1619 to 1621 (AT X 242-3). Optics figures centrally in Descartes’ The World, or Treatise on Light, written between 1629 and 1633, as well as, of course, in his Dioptrics published in 1637. It also, however, plays important roles in the three essays published together with the Dioptrics, namely, the Discourse on Method, the Geometry, and the Meteorology, and many of Descartes’ conclusions concerning light from these earlier works persist with little substantive modification into the Principles of Philosophy published in 1644. In what follows, we will look in a brief and general way at Descartes’ understanding of light, his derivations of the two central laws of geometrical optics, and a sampling of the optical phenomena he sought to explain. We will conclude by noting a few of the many ways in which Descartes’ efforts in optics prompted – both through agreement and dissent – further developments in the history of optics. Descartes was a famously systematic philosopher and his thinking about optics is deeply enmeshed with his more general mechanistic physics and cosmology. In the sixth chapter of The Treatise on Light, he asks his readers to imagine a new world “very easy to know, but nevertheless similar to ours” consisting of an indefinite space filled everywhere with “real, perfectly solid” matter, divisible “into as many parts and shapes as we can imagine” (AT XI ix; G 21, fn 40) (AT XI 33-34; G 22-23). -
Reflection, Refraction, and Total Internal Reflection
From The Physics Classroom's Physics Interactives http://www.physicsclassroom.com Reflection, Refraction, and Total Internal Reflection Purpose: To investigate the effect of the angle of incidence upon the brightness of a reflected ray and refracted ray at a boundary and to identify the two requirements for total internal reflection. Getting Ready: Navigate to the Refraction Interactive at The Physics Classroom website: http://www.physicsclassroom.com/Physics-Interactives/Refraction-and-Lenses/Refraction Navigational Path: www.physicsclassroom.com ==> Physics Interactives ==> Refraction and Lenses ==> Refraction Getting Acquainted: Once you've launched the Interactive and resized it, experiment with the interface to become familiar with it. Observe how the laser can be dragged about the workspace, how it can be turned On (Go button) and Cleared, how the substance on the top and the bottom of the boundary can be changed, and how the protractor can be toggled on and off and repositioned. Also observe that there is an incident ray, a reflected ray and a refracted ray; the angle for each of these rays can be measured. Part 1: Reflection and Refraction Set the top substance to Air and the bottom substance to Water. Drag the laser under the water so that you can shoot it upward through the water at the boundary with air (don't do this at home ... nor in the physics lab). Toggle the protractor to On. Then collect data for light rays approaching the boundary with the following angles of incidence (Θincidence). If there is no refracted ray, then put "--" in the table cell for the angle of refraction (Θrefraction). -
Physics 30 Lesson 8 Refraction of Light
Physics 30 Lesson 8 Refraction of Light Refer to Pearson pages 666 to 674. I. Reflection and refraction of light At any interface between two different mediums, some light will be reflected and some will be refracted, except in certain cases which we will soon discover. When problem solving for refraction, we usually ignore the reflected ray. Glass prism II. Index of refraction The fastest that light can travel is in a vacuum (c = 3.00 x 108 m/s). In other substances, the speed of light is always slower. The index of refraction is a ratio of the speed of light in vacuum with the speed of light in the medium: speed in vacuum (c) index of refraction (n) speed in medium (v) c n= v Some common indices of refraction are: Substance Index of refraction (n) vacuum 1.0000 Notice that the index of refraction (n) air 1.0003 is always greater than or equal to 1 water 1.33 ethyl alcohol 1.36 and that it has no units. quartz (fused) 1.46 glycerine 1.47 Lucite or Plexiglas 1.51 glass (crown) 1.52 sodium chloride 1.53 glass (crystal) 1.54 ruby 1.54 glass (flint) 1.65 zircon 1.92 diamond 2.42 Dr. Ron Licht 8 – 1 www.structuredindependentlearning.com Example 1 The index of refraction for crown glass was measured to be 1.52. What is the speed of light in crown glass? c n v c v n 3.00 108 m v s 1.52 8 m v 1.97 ×10 s III. -
THE NONZERO TARGET Differences Between Refractive Cylinder and Corneal Astigmatism Make a Difference
PRACTICAL ASTIGMATISM THE NONZERO TARGET Differences between refractive cylinder and corneal astigmatism make a difference. BY NOEL ALPINS, AM, FRANZCO, FRCOPHTH, FACS; PARAG A. MAJMUDAR, MD; AND KARL G. STONECIPHER, MD theory, ablating +2.00 D x 20º onto often described as lenticular, astigmatism. a cornea with cylinder measured at In many cases, the lenticular portion of 1.50 D @ 10º would leave 0.78 D x astigmatism changes over time, often 40º ORA. This is what is termed the because of accommodation. For this nonzero target. It would be only by reason, with the advent of topography- NOEL ALPINS, AM, FRANZCO, chance—perhaps healing factors—that guided excimer laser ablation, there FRCOPHTH, FACS zero astigmatism would be achieved has been a trend toward focusing pri- on the cornea in this case. The higher marily on the corneal component of A concept in astigmatic treatment the nonzero amount (as quantified by astigmatism when planning treatment. that many refractive surgeons find the ORA), the worse the prospect of an Topography-modified refraction (TMR) hard to digest is the nonzero target. outcome that will please the patient. therefore often differs from clinical When laser treatment is guided wholly This unfortunate situation can be manifest refraction and involves using by refractive (manifest refraction or avoided in several ways. One of these is the corneal component of astigmatism wavefront refraction) or by corneal to identify the problem, if it exists, prior to plan refractive surgery. Kanellopoulos (topography-guided) parameters, sur- to performing surgery by quantifying has suggested that using the TMR may geons believe they are targeting zero, the patient’s ORA at the time of coun- provide superior outcomes in lines of but they are neglecting the other mode seling. -
Strategizing the Return to Practice – Part 2 May 5, 2020 Presenting Sponsor Conversations About COVID-19 for Eye Care Professionals
Conversations about COVID-19 For Eye Care Professionals Strategizing the Return to Practice – Part 2 May 5, 2020 Presenting sponsor Conversations about COVID-19 for Eye Care Professionals Jason Brenner, MD Matthew Forgues, OD Amy Moy, OD Cornea and Refractive President, Director, Health Surgeon Massachusetts Society of Center Network Boston Eye Group Optometrists New England College Boston Laser of Optometry Conversations about COVID-19 for Eye Care Professionals Speakers have no Financial Disclosures to Report Equipment – Safereyecare.org Disinfection – Masks 1. Time 2. Heat 3. UVGI 4. VHP 5. Microwave? www.n95decon.org How long does it last? Storage in cold temp (below 22 C) may prolong life Viral load dependent IMO, for eye clinic 7 day rotation is adequate Masks - Heat 1. 70 for 5 minutes (Lancet) 2. 70 at 50-85% RH for 30 minutes (CDC) ℃ *Moisture ℃seems to be key for adequate sterilization Masks - UVGI (NIAID) • 260-285 nm • ≥1.0J/cm • Very hard for UV to hit all surfaces • It is available! UVGI Equipment Sanitation Bleach Alcohol* UV GI (5 tbsp /gallon) Chlorhexidine Betadine Zeiss: 70% IPA for HFA Equipment Sanitation Office Sanitation $$$ Disinfection Art by: Stefanie Trilling Disinfection of Office (COVID-19) Current CDC recommendations specific to COVID-19 include: ● Diluted household bleach ○ 5 tablespoons bleach per gallon of water ● Alcohol solutions with at least 70% alcohol. ● Common EPA-registered household disinfectants currently recommended for use against SARS-CoV-2: ○ Clorox brand products (e.g., disinfecting wipes, multi-surface cleaner + bleach, clean up cleaner + bleach) ○ Lysol brand products (e.g., professional disinfectant spray, clean and fresh multi-surface cleaner, disinfectant max cover mist), ○ Purell professional surface disinfectant wipes and more.