Arboreality Has Allowed for the Evolution of Increased Longevity in Mammals

Total Page:16

File Type:pdf, Size:1020Kb

Arboreality Has Allowed for the Evolution of Increased Longevity in Mammals Arboreality has allowed for the evolution of increased longevity in mammals Milena R. Shattuck and Scott A. Williams1 Department of Anthropology, University of Illinois, Urbana, IL 61801 Edited by Alan Walker, Pennsylvania State University, University Park, PA, and approved January 28, 2010 (received for review October 2, 2009) The evolutionary theory of aging predicts that species will experi- other factors such as hibernation and reproductive rate have been ence delayed senescence and increased longevity when rates of shown to play a role in bat longevity (22), these factors are accordant extrinsic mortality are reduced. It has long been recognized that birds with evolutionary theory of aging, and it is clear that the exceptional and bats are characterized by lower rates of extrinsic mortality and longevity of Chiroptera as a whole is the result of flight. In addition to greater longevities than nonvolant endotherms, presumably be- flying birds and mammals, gliding mammals are longer-lived than cause flight reduces exposure to terrestrial predators, disease, and nonvolant, nongliding mammals (21, 23). As with flight and gliding environmental hazards. Like flight, arboreality may act to reduce behavior, arboreality may act to lower extrinsic mortality rates and extrinsic mortality, delay senescence, and increase longevity and has increase longevity by providing a relatively protected environment been suggested as an explanation for the long lifespans of primates. with reduced exposure to predation, disease, and environmental However, this hypothesis has yet to be tested in mammals in general. hazards. Indeed, Darwin himself (ref. 24, p. 169) identified an We analyze a large dataset of mammalian longevity records to test association between arboreality and extrinsic mortality, recognizing whether arboreal mammals are characterized by greater longevities the “power of quickly climbing trees, so as to escape from enemies.” than terrestrial mammals. Here, we show that arboreal mammals are Furthermore, several researchers have suggested that primates are longer lived than terrestrial mammals at common body sizes, inde- long-lived among mammals at least in part because they are largely pendent of phylogeny. Subclade analyses demonstrate that this arboreal (25, 26). If so, then we might expect arboreal mammals in trend holds true in nearly every mammalian subgroup, with two general to possess greater longevities than their terrestrial coun- — notable exceptions metatherians (marsupials) and euarchontans terparts. Using analysis of covariance (ANCOVA) and an analysis of EVOLUTION (primates and their close relatives). These subgroups are unique in phylogenetically independent contrasts (PIC), we test this hypoth- that each has experienced a long and persistent arboreal evolution- esis by comparing longevity records for arboreal and terrestrial ary history, with subsequent transitions to terrestriality occurring mammals in a molecular phylogenetic context (Fig. 1 and Fig. S1). multiple times within each group. In all other clades examined, ter- restriality appears to be the primitive condition, and species that Results and Discussion become arboreal tend to experience increased longevity, often inde- Overall, in agreement with previous studies (27, 28), body mass pendently in multiple lineages within each clade. Adoption of an accounts for 60% of the variance in maximal lifespan in nonvolant, arboreal lifestyle may have allowed for increased longevity in these nonaquatic mammals. Longevity, like many life-history traits, is fi lineages and in primates in general. Overall, these results con rm the negatively allometric, so that lifespan increases at between one- fundamental predictions of the evolutionary theory of aging. fourth and one-third the rate of body mass (Fig. 2). An initial analysis on the entire dataset indicates that the slope for semi- senescence | extrinsic mortality | terrestriality | marsupials | primates arboreal species is significantly different from the arboreal and terrestrial slopes. A separate analysis of Eutheria alone results in enescence, or aging, is an intrinsic biological phenomenon that common slopes for all three groups (see below; Table 1), suggesting Slimits an organism’s maximum potential lifespan, even in the that the departure of the semiarboreal slope results from the absence of extrinsic sources of mortality such as predation, disease, influence of marsupials. Because of this result, semiarboreal species and environmental hazards. Its evolution is of particular interest in were removed for analysis on the overall dataset, and an ANCOVA life-history studies (1, 2), in part because it is not immediately clear was conducted on the remaining habitat groups (arboreal and ter- why senescence persists in the presence of natural selection, which restrial). This analysis demonstrates that, at common body sizes, might be expected to eliminate it. The evolutionary theory of aging, arboreal mammals are characterized by greater longevities than in its several, nonmutually exclusive forms (3–8), proposes that terrestrial mammals (P < 0.001) (Table 1 and Fig. 2). Results of the senescence is the result of late-acting, deleterious mutations that PIC analysis on the mammalian dataset also are significant (P < accumulate because of the diminishing effectiveness of selection 0.001), indicating the effect of habitat type on longevity remains with increasing age. Extrinsic mortality is one major factor that even when the effects of phylogeny are removed. contributes to the accumulation of deleterious mutations by limiting Results of subsequent ANCOVA are listed in Table 1. In 8 of the exposure of these late-acting mutations to selection; thus, the evo- 10 subclades included in the analysis, arboreal mammals are char- lutionary theory of aging predicts that extrinsic mortality will be a acterized by greater longevities than terrestrial mammals (Table 1). principal determinate of the rate of senescence in age-structured Semiarboreal eutherian mammals are either intermediately long- populations (9). This theory predicts that populations experiencing lived or are not significantly different from one or the other habitat high extrinsic mortality rates will accumulate more deleterious type (Table 1 and Fig. 3). Results for two subclades, Metatheria mutations, evolve earlier senescence and reproduction, low somatic (marsupials) and Euarchonta (primates and their close relatives), maintenance, and shorter maximal lifespans. Conversely, pop- ulations subject to low extrinsic mortality rates will eliminate late- acting deleterious mutations more effectively and evolve delayed Author contributions: M.R.S. and S.A.W. designed research, performed research, analyzed senescence, late fecundity, durable somas, and greater longevities. data, and wrote the paper. These relationships have been demonstrated in laboratory (10–12), The authors declare no conflict of interest. wild (13–15), and simulation (16) studies. This article is a PNAS Direct Submission. In the wild, flying birds and bats experience lower rates of extrinsic 1To whom correspondence should be addressed. E-mail: [email protected]. – mortality(17)andgreaterlongevity(1823) than their nonvolant This article contains supporting information online at www.pnas.org/cgi/content/full/ relatives, presumably because of decreased predation. Although 0911439107/DCSupplemental. www.pnas.org/cgi/doi/10.1073/pnas.0911439107 PNAS Early Edition | 1of5 Downloaded by guest on September 24, 2021 Prototheria Mammalia Metatheria Atlantogenata Afrotheria Theria Xenarthra Eutheria Euarchonta Euarchontoglires Glires Eulipotyphla Boreoeutheria Cetartiodactyla Laurasiatheria Chiroptera Ferae Pegasoferae Perissodactyla Fig. 1. Molecular phylogeny of Mammalia. Prototheria: monotremes. Meta- theria: marsupials. Afrotheria: aardvark, tenrecs, elephant shrews, hyraxes, manatees, dugongs, elephants. Xenarthra: sloths, anteaters, armadillos. Euarchonta: tree shrews, colugos, primates. Glires: rodents, rabbits. Eulipoty- phla: moles, hedgehogs, shrews. Cetartiodactyla: bovids, cervids, suiforms, camelids, hippopotamids, cetaceans. Chiroptera: bats. Ferae: Pholidota (manids) Fig. 2. Maximal lifespan plotted against body mass for 776 mammals in log and Carnivora (canids, ursids, musteloids, pinnipeds, felids, viverrids, herpestids, space. The solid line is the least squares regression for terrestrial mammals; hyaenids). Perissodactyla: horses, tapirs, rhinos. the dashed line is the least squares regression for arboreal mammals. The slopes for these regression lines are common, and the intercepts are sig- nificantly different (P < 0.001). OLS regression for arboreal mammals: y = differfromthe overall results. Within Metatheria, although arboreal 0.245x + 1.64, r2 = 0.499, P < 0.001. OLS regression for terrestrial mammals: 2 < and terrestrial marsupials are not significantly different from each y = 0.222x + 1.39, r = 0.756, P 0.001. other, both are significantly longer-lived than semiarboreal taxa (Table 1). Our results therefore confirm a previous finding that primates, initially evolved in an ancestral euarchontan (30–35). arboreality is not associated with increased longevity in marsupials Marsupials also probably are primitively arboreal (34, 36–38), (29). In Euarchonta, our analyses did not reveal significant differ- ences between any of the habitat types (Table 1). However, taken with subsequent and repeated events of terrestriality (38). In together, the overall results demonstrate that there is a general, contrast,
Recommended publications
  • A Phylogeny and Timescale for Marsupial Evolution Based on Sequences for Five Nuclear Genes
    J Mammal Evol DOI 10.1007/s10914-007-9062-6 ORIGINAL PAPER A Phylogeny and Timescale for Marsupial Evolution Based on Sequences for Five Nuclear Genes Robert W. Meredith & Michael Westerman & Judd A. Case & Mark S. Springer # Springer Science + Business Media, LLC 2007 Abstract Even though marsupials are taxonomically less diverse than placentals, they exhibit comparable morphological and ecological diversity. However, much of their fossil record is thought to be missing, particularly for the Australasian groups. The more than 330 living species of marsupials are grouped into three American (Didelphimorphia, Microbiotheria, and Paucituberculata) and four Australasian (Dasyuromorphia, Diprotodontia, Notoryctemorphia, and Peramelemorphia) orders. Interordinal relationships have been investigated using a wide range of methods that have often yielded contradictory results. Much of the controversy has focused on the placement of Dromiciops gliroides (Microbiotheria). Studies either support a sister-taxon relationship to a monophyletic Australasian clade or a nested position within the Australasian radiation. Familial relationships within the Diprotodontia have also proved difficult to resolve. Here, we examine higher-level marsupial relationships using a nuclear multigene molecular data set representing all living orders. Protein-coding portions of ApoB, BRCA1, IRBP, Rag1, and vWF were analyzed using maximum parsimony, maximum likelihood, and Bayesian methods. Two different Bayesian relaxed molecular clock methods were employed to construct a timescale for marsupial evolution and estimate the unrepresented basal branch length (UBBL). Maximum likelihood and Bayesian results suggest that the root of the marsupial tree is between Didelphimorphia and all other marsupials. All methods provide strong support for the monophyly of Australidelphia. Within Australidelphia, Dromiciops is the sister-taxon to a monophyletic Australasian clade.
    [Show full text]
  • Convergent Evolution in the Euarchontoglires
    This is a repository copy of Convergent evolution in the Euarchontoglires. White Rose Research Online URL for this paper: https://eprints.whiterose.ac.uk/133262/ Version: Published Version Article: Morris, Philip James Rencher, Cobb, Samuel Nicholas Frederick orcid.org/0000-0002- 8360-8024 and Cox, Philip Graham orcid.org/0000-0001-9782-2358 (2018) Convergent evolution in the Euarchontoglires. Biology letters. 2018036. ISSN 1744-957X https://doi.org/10.1098/rsbl.2018.0366 Reuse This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the authors for the original work. More information and the full terms of the licence here: https://creativecommons.org/licenses/ Takedown If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing [email protected] including the URL of the record and the reason for the withdrawal request. [email protected] https://eprints.whiterose.ac.uk/ Downloaded from http://rsbl.royalsocietypublishing.org/ on August 1, 2018 Evolutionary biology Convergent evolution in the rsbl.royalsocietypublishing.org Euarchontoglires Philip J. R. Morris1, Samuel N. F. Cobb2 and Philip G. Cox2 1Hull York Medical School, University of Hull, Hull HU6 7RX, UK Research 2Department of Archaeology and Hull York Medical School, University of York, York YO10 5DD, UK SNFC, 0000-0002-8360-8024; PGC, 0000-0001-9782-2358 Cite this article: Morris PJR, Cobb SNF, Cox PG. 2018 Convergent evolution in the Convergence—the independent evolution of similar phenotypes in distantly Euarchontoglires.
    [Show full text]
  • Supplemental File 1: Addressing Claims of “Zombie” Lineages on Phillips’ (2016) Timetree
    Supplemental File 1: Addressing claims of “zombie” lineages on Phillips’ (2016) timetree The soft explosive model of placental mammal evolution Matthew J. Phillips*,1 and Carmelo Fruciano1 1School of Earth, Environmental and Biological Sciences, Queensland University of Technology, Brisbane, Australia *Corresponding author: E-mail: [email protected] Contents Addressing claims of “zombie” lineages on Phillips’ (2016) timetree ................................................... 1 Incorrect or poorly supported fossil placements ................................................................................. 1 Figure S1 ............................................................................................................................................ 4 Table S1 .............................................................................................................................................. 6 References .............................................................................................................................................. 7 Addressing claims of “zombie lineages” on Phillips’ (2016) timetree Phillips [1] found extreme divergence underestimation among large, long-lived taxa that were not calibrated, and argued that calibrating these taxa instead shifted the impact of the underlying rate model misspecification to inflating dates deeper in the tree. To avoid this “error-shift inflation”, Phillips [1] first inferred divergences with dos Reis et al.’s [2] calibrations, most of which are set among taxa
    [Show full text]
  • Follow-Up Visits to Alatash – Dinder Lion Conservation Unit Ethiopia
    Follow-up visits to Alatash – Dinder Lion Conservation Unit Ethiopia & Sudan Hans Bauer, Ameer Awad, Eyob Sitotaw and Claudio Sillero-Zubiri 1-20 March 2017, Alatash National Park, Ethiopia 30 April - 16 May 2017, Dinder National Park, Sudan Report published in Oxford, September 2017 Wildlife Conservation Research Unit - University of Oxford (WildCRU); Ethiopian Wolf Conservation Programme (EWCP); Ethiopian Wildlife Conservation Authority (EWCA); Mekele University (MU); Sudan Wildlife Research Centre (SWRC). Funded by the Born Free Foundation and Born Free USA. 1 Contents Summary ................................................................................................................................................. 3 Teams ...................................................................................................................................................... 4 Introduction ............................................................................................................................................ 5 Methods .................................................................................................................................................. 5 Area description - Alatash ....................................................................................................................... 6 Area description - Dinder ........................................................................................................................ 7 Results - Alatash .....................................................................................................................................
    [Show full text]
  • Hyaenodontidae (Creodonta, Mammalia) and the Position of Systematics in Evolutionary Biology
    Hyaenodontidae (Creodonta, Mammalia) and the Position of Systematics in Evolutionary Biology by Paul David Polly B.A. (University of Texas at Austin) 1987 A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Paleontology in the GRADUATE DIVISION of the UNIVERSITY of CALIFORNIA at BERKELEY Committee in charge: Professor William A. Clemens, Chair Professor Kevin Padian Professor James L. Patton Professor F. Clark Howell 1993 Hyaenodontidae (Creodonta, Mammalia) and the Position of Systematics in Evolutionary Biology © 1993 by Paul David Polly To P. Reid Hamilton, in memory. iii TABLE OF CONTENTS Introduction ix Acknowledgments xi Chapter One--Revolution and Evolution in Taxonomy: Mammalian Classification Before and After Darwin 1 Introduction 2 The Beginning of Modern Taxonomy: Linnaeus and his Predecessors 5 Cuvier's Classification 10 Owen's Classification 18 Post-Darwinian Taxonomy: Revolution and Evolution in Classification 24 Kovalevskii's Classification 25 Huxley's Classification 28 Cope's Classification 33 Early 20th Century Taxonomy 42 Simpson and the Evolutionary Synthesis 46 A Box Model of Classification 48 The Content of Simpson's 1945 Classification 50 Conclusion 52 Acknowledgments 56 Bibliography 56 Figures 69 Chapter Two: Hyaenodontidae (Creodonta, Mammalia) from the Early Eocene Four Mile Fauna and Their Biostratigraphic Implications 78 Abstract 79 Introduction 79 Materials and Methods 80 iv Systematic Paleontology 80 The Four Mile Fauna and Wasatchian Biostratigraphic Zonation 84 Conclusion 86 Acknowledgments 86 Bibliography 86 Figures 87 Chapter Three: A New Genus Eurotherium (Creodonta, Mammalia) in Reference to Taxonomic Problems with Some Eocene Hyaenodontids from Eurasia (With B. Lange-Badré) 89 Résumé 90 Abstract 90 Version française abrégéé 90 Introduction 93 Acknowledgments 96 Bibliography 96 Table 3.1: Original and Current Usages of Genera and Species 99 Table 3.2: Species Currently Included in Genera Discussed in Text 101 Chapter Four: The skeleton of Gazinocyon vulpeculus n.
    [Show full text]
  • Afrotherian Conservation – Number 16
    AFROTHERIAN CONSERVATION Newsletter of the IUCN/SSC Afrotheria Specialist Group Number 16 Edited by PJ Stephenson September 2020 Afrotherian Conservation is published annually by the measure the effectiveness of SSC’s actions on biodiversity IUCN Species Survival Commission Afrotheria Specialist conservation, identification of major new initiatives Group to promote the exchange of news and information needed to address critical conservation issues, on the conservation of, and applied research into, consultations on developing policies, guidelines and aardvarks, golden moles, hyraxes, otter shrews, sengis and standards, and increasing visibility and public awareness of tenrecs. the work of SSC, its network and key partners. Remarkably, 2020 marks the end of the current IUCN Published by IUCN, Gland, Switzerland. quadrennium, which means we will be dissolving the © 2020 International Union for Conservation of Nature membership once again in early 2021, then reassembling it and Natural Resources based on feedback from our members. I will be in touch ISSN: 1664-6754 with all members at the relevant time to find out who wishes to remain a member and whether there are any Find out more about the Group people you feel should be added to our group. No one is on our website at http://afrotheria.net/ASG.html automatically re-admitted, however, so you will all need to and on Twitter @Tweeting_Tenrec actively inform me of your wishes. We will very likely need to reassess the conservation status of all our species during the next quadrennium, so get ready for another round of Red Listing starting Message from the Chair sometime in the not too distant future.
    [Show full text]
  • GREVY's ZEBRA Equus Grevyi Swahili Name
    Porini Camps Mammal Guide By Rustom Framjee Preface This mammal guide provides some interesting facts about the mammals that are seen by guests staying at Porini Camps. In addition, there are many species of birds and reptiles which are listed separately from this guide. Many visitors are surprised at the wealth of wildlife and how close you can get to the animals without disturbing them. Because the camps operate on a low tourist density basis (one tent per 700 acres) the wildlife is not ‘crowded’ by many vehicles and you can see them in a natural state - hunting, socialising, playing, giving birth and fighting to defend their territories. Some are more difficult to see than others, and some can only be seen when you go on a night drive. All Porini camps are unfenced and located in game rich areas and you will see much wildlife even in and around the camps. The Maasai guides who accompany you on all game drives and walks are very well trained and qualified professional guides. They are passionate and enthusiastic about their land and its wildlife and really want to show you as much as they can. They have a wealth of knowledge and you are encouraged to ask them more about what you see. They know many of the animals individually and can tell you stories about them. If you are particularly interested in something, let them know and they will try to help you see it. While some facts and figures are from some of the references listed, the bulk of information in this guide has come from the knowledge of guides and camp staff.
    [Show full text]
  • A New Genus of Stem Lagomorph (Mammalia: Glires) from the Middle Eocene of the Erlian Basin, Nei Mongol, China
    Acta zoologica cracoviensia, 57(1-2): 29-42, Kraków, 31 December 2014 Ó Institute of Systematics and Evolution of Animals, Pol. Acad. Sci., Kraków doi:10.3409/azc.57_1-2.29 Zoobank Account:urn:lsid:zoobank.org:pub:22E831F0-4830-4649-9740-1BD6171983DD Anewgenusofstemlagomorph(Mammalia:Glires)fromthe MiddleEoceneoftheErlianBasin,NeiMongol,China £ucja FOSTOWICZ-FRELIK andQianLI Received: 15 October 2014. Accepted: 10 December 2014. Available online: 29 December 2014. FOSTOWICZ-FRELIK £., LI Q. 2014. A new genus of stem lagomorph (Mammalia: Glires) from the Middle Eocene of the Erlian Basin, Nei Mongol, China. Acta zool. cracov., 57(1-2): 29-42. Abstract. We report the discovery of Erenlagus anielae, a new genus and species of stem lagomorph from the lower part of the Middle Eocene Irdin Manha Formation at the Huhe- boerhe locality, Erlian Basin, Nei Mongol, China. The remains consist of isolated teeth; however, the material includes all loci except the incisors and P2. The new lagomorph is characterized by a small size and high degree of unilateral hypsodonty comparable to that of Aktashmys and slightly higher than that observed in the coeval and co-occurring Stre- nulagus. Further, it shows advanced root fusion, which exceeds even that in Gobiolagus. Although phylogenetic relationships of the Eocene lagomorphs from Asia are still not fully resolved, the dental characters of Erenlagus anielae suggest that it is most closely re- lated to Lushilagus danjingensis from the Middle Eocene of Henan, China and Ak- tashmys montealbus from the late Early Eocene of Kyrgyzstan. This stratigraphically well-constrained finding represents one of the lagomorph genera that appeared in the Eo- cene Glires paleobiodiversity reservoir, the Erlian Basin in Nei Mongol.
    [Show full text]
  • The Remarkable, Yet Not Extraordinary, Human Brain As a Scaled-Up Primate Brain and Its Associated Cost
    The remarkable, yet not extraordinary, human brain as a scaled-up primate brain and its associated cost Suzana Herculano-Houzel1 Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, 21941-902, Rio de Janeiro, Brazil; and Instituto Nacional de Neurociência Translacional, Instituto Nacional de Ciência e Tecnologia/Ministério de Ciência e Tecnologia, 04023-900, Sao Paulo, Brazil Edited by Francisco J. Ayala, University of California, Irvine, CA, and approved April 12, 2012 (received for review February 29, 2012) Neuroscientists have become used to a number of “facts” about the The incongruity between our extraordinary cognitive abilities human brain: It has 100 billion neurons and 10- to 50-fold more glial and our not-that-extraordinary brain size has been the major cells; it is the largest-than-expected for its body among primates driving factor behind the idea that the human brain is an outlier, and mammals in general, and therefore the most cognitively able; an exception to the rules that have applied to the evolution of all it consumes an outstanding 20% of the total body energy budget other animals and brains. A largely accepted alternative expla- despite representing only 2% of body mass because of an increased nation for our cognitive superiority over other mammals has been metabolic need of its neurons; and it is endowed with an overde- our extraordinary brain size compared with our body size, that is, veloped cerebral cortex, the largest compared with brain size. our large encephalization quotient (8). Compared
    [Show full text]
  • Chiroptera: Vespertilionidae)
    Zoologischer Anzeiger 258 (2015) 92–98 Contents lists available at ScienceDirect Zoologischer Anzeiger jou rnal homepage: www.elsevier.com/locate/jcz Penile histomorphology of the neotropical bat Eptesicus furinalis (Chiroptera: Vespertilionidae) a a b a,∗ Manuela T. Comelis , Larissa M. Bueno , Rejane M. Góes , Eliana Morielle-Versute a Department of Zoology and Botany, São Paulo State University, UNESP, Campus São José do Rio Preto, São Paulo 15054-000, Brazil b Department of Biology, São Paulo State University, UNESP, Campus São José do Rio Preto, São Paulo 15054-000, Brazil a r a t i b s c t l e i n f o r a c t Article history: External and internal penile morphologies have evolved rapidly and divergently in many mammalian Received 19 January 2015 orders and are extremely useful for taxonomic studies, particularly in the recovery of phylogenetic rela- Received in revised form 3 August 2015 tionships. Eptesicus furinalis, a Vespertilionid bat, belongs to a taxon in which species recognition can be Accepted 6 August 2015 difficult when only traditional features are employed. Therefore, any feature that may contribute to the Available online 11 August 2015 more accurate characterization of this taxon is relevant. In this study, we describe the histomorphology Corresponding Editor: Alexander Kupfer. of the penis and baculum of this species after analyzing serial transverse sections and three-dimensional (3D) reconstructions. The glans penis was small with no epidermal projections and had an inverted Keywords: Y-shaped baculum for most of its length. Internally, the penis contained three erectile tissues: corpus cav- Glans penis Baculum ernosum, accessory cavernous tissue, and corpus spongiosum around the urethra.
    [Show full text]
  • Activity Pack: African Animals
    Activity Pack: African Animals This pack is designed to provide teachers with information to help you lead a trip to Colchester Zoo focusing on African Animals How to Use this Pack: This African Animal Tour Guide pack was designed to help your students learn about African animals and prepare for a trip to Colchester Zoo. The pack starts with suggested African animals to visit at Colchester Zoo including a map of where to see them and which encounters/feeds to attend. The next section contains fact sheets about these animals. This includes general information about the type of animal (e.g. where they live, what they eat, etc.) and specific information about individuals at Colchester Zoo (e.g. their names, how to tell them apart, etc.). This information will help you plan your day, and your route around the zoo to see the most African Animals. We recommend all teachers read through this pack and give copies to adult helpers visiting with your school trip. The rest of the pack is broken into “Pre-Trip”, “At the Zoo”, and “Post-Trip”. Each of these sections start with ideas to help teachers think of ways to relate African animals to other topics. There are also a variety of pre-made activities and worksheets included in this pack. Activities are typically hands on ‘games’ that introduce and reinforce concepts. Worksheets are typically paper hand-outs teachers can photocopy and have pupils complete independently. Teachers can pick and choose which they want to use since all the activities/worksheets can be used independently (you can just use one worksheet if you wish; you don’t need to complete the others).
    [Show full text]
  • Fossil Imprint 3.2017.Indb
    FOSSIL IMPRINT • vol. 73 • 2017 • no. 3–4 • pp. 332–359 (formerly ACTA MUSEI NATIONALIS PRAGAE, Series B – Historia Naturalis) NEW HYAENODONTS (FERAE, MAMMALIA) FROM THE EARLY MIOCENE OF NAPAK (UGANDA), KORU (KENYA) AND GRILLENTAL (NAMIBIA) JORGE MORALES1, MARTIN PICKFORD2 1 Departamento de Paleobiología, Museo Nacional de Ciencias Naturales-CSIC – C/José Gutiérrez Abascal 2, 28006, Madrid, Spain; e-mail: [email protected]. 2 Sorbonne Universités – CR2P, MNHN, CNRS, UPMC – Paris VI, 8, rue Buffon, 75005, Paris, France; e-mail: [email protected]. * corresponding author Morales, J., Pickford, M. (2017): New hyaenodonts (Ferae, Mammalia) from the Early Miocene of Napak (Uganda), Koru (Ke- nya) and Grillental (Namibia). – Fossil Imprint, 73(3-4): 332–359, Praha. ISSN 2533-4050 (print), ISSN 2533-4069 (on-line). Abstract: Recent palaeontological surveys in Early Miocene sediments at Napak (Uganda), Koru (Kenya) and Grillental (Na- mibia) have resulted in the collection of a number of small to medium-sized hyaenodonts and carnivorans, some of which were poorly represented in previous collections. The present article describes and interprets the hyaenodonts from these localities. The new fossils permit more accurate interpretation of some of the poorly known taxa, but new taxa are also present. The fossils reveal the presence of a hitherto unsuspected morphofunctional dentognathic system in the Hyaenodontidae which is described and defined, along with previously documented dentognathic complexes. Two new tribes, three new genera and one new species are diagnosed. Key words: Hyaenailurinae, Hyaenodonta, Creodonta, Systematics, Miocene, Africa Received: May 24, 2017 | Accepted: November 13, 2017 | Issued: December 31, 2017 Introduction be considered a Hyaenodon.
    [Show full text]