INTRODUCTION to DESCRIPTIVE SET THEORY Mathematicians In

Total Page:16

File Type:pdf, Size:1020Kb

INTRODUCTION to DESCRIPTIVE SET THEORY Mathematicians In INTRODUCTION TO DESCRIPTIVE SET THEORY ANUSH TSERUNYAN Mathematicians in the early 20th century discovered that the Axiom of Choice implied the existence of pathological subsets of the real line lacking desirable regularity properties (for example nonmeasurable sets). This gave rise to descriptive set theory, a systematic study of classes of sets where these pathologies can be avoided, including, in particular, the definable sets. In the first half of the course, we will use techniques from analysis and set theory, as well as infinite games, to study definable sets of reals and their regularity properties, such as the perfect set property (a strong form of the continuum hypothesis), the Baire property, and measurability. Descriptive set theory has found applications in harmonic analysis, dynamical systems, functional analysis, and various other areas of mathematics. Many of the recent applications are via the theory of definable equivalence relations (viewed as sets of pairs), which provides a framework for studying very general types of classification problems in mathematics. The second half of this course will give an introduction to this theory, culminating in a famous dichotomy theorem, which exhibits a minimum element among all problems that do not admit concrete classification. Acknowledgements. These notes owe a great deal to [Kec95]; in fact, some sections are almost literally copied from it. Also, the author is much obliged to Anton Bernshteyn, Lou van den Dries, Nigel Pynn-Coates, and Jay Williams for providing dense sets of corrections and suggestions, which significantly improved the readability and quality of these notes. Contents Part 1. Polish spaces 4 1. Definition and examples 4 2. Trees 6 2.A. Set theoretic trees6 2.B. Infinite branches and closed subsets of AN 6 2.C. Compactness7 2.D. Monotone tree-maps and continuous functions8 3. Compact metrizable spaces 9 3.A. Basic facts and examples9 3.B. Universality of the Hilbert Cube 10 3.C. Continuous images of the Cantor space 10 3.D. The hyperspace of compact sets 11 4. Perfect Polish spaces 13 4.A. Embedding the Cantor space 14 4.B. The Cantor{Bendixson Theorem, Derivatives and Ranks 15 1 2 5. Zero-dimensional spaces 16 5.A. Definition and examples 16 5.B. Luzin schemes 17 5.C. Topological characterizations of the Cantor space and the Baire space 17 5.D. Closed subspaces of the Baire space 18 5.E. Continuous images of the Baire space 18 6. Baire category 19 6.A. Nowhere dense sets 19 6.B. Meager sets 19 6.C. Relativization of nowhere dense and meager 20 6.D. Baire spaces 20 Part 2. Regularity properties of subsets of Polish spaces 22 7. Infinite games and determinacy 22 7.A. Non-determined sets and AD 23 7.B. Games with rules 23 8. The perfect set property 24 8.A. The associated game 24 9. The Baire property 25 9.A. The definition and closure properties 25 9.B. Localization 26 9.C. The Banach category theorem and a selector for =∗ 27 9.D. The Banach{Mazur game 29 9.E. The Kuratowski{Ulam theorem 30 9.F. Applications 32 10. Measurability 33 10.A. Definitions and examples 33 10.B. The null ideal and measurability 34 10.C. Non-measurable sets 35 10.D. The Lebesgue density topology on R 35 Part 3. Definable subsets of Polish spaces 37 11. Borel sets 37 11.A. σ-algebras and measurable spaces 37 11.B. The stratification of Borel sets into a hierarchy 38 0 0 11.C. The classes Σξ and Πξ 40 0 0 11.D. Universal sets for Σξ and Πξ 40 11.E. Turning Borel sets into clopen sets 42 12. Analytic sets 43 12.A. Basic facts and closure properties 44 1 12.B. A universal set for Σ1 44 1 12.C. Analytic separation and Borel = ∆1 45 12.D. Souslin operation A 46 13. More on Borel sets 48 13.A. Closure under small-to-one images 48 13.B. The Borel isomorphism theorem 50 3 13.C. Standard Borel spaces 50 13.D. The Effros Borel space 51 13.E. Borel determinacy 52 14. Regularity properties of analytic sets 53 14.A. The perfect set property 54 14.B. The Baire property and measurability 56 14.C. Closure of BP and MEAS under the operation A 56 15. The projective hierarchy 58 16. Γ-complete sets 60 0 0 16.A. Σξ- and Πξ-complete sets 60 1 16.B. Σ1-complete sets 61 Part 4. Definable equivalence relations, group actions and graphs 63 17. Examples of equivalence relations and Polish group actions 64 17.A. Equivalence relations 64 17.B. Polish groups 65 17.C. Actions of Polish groups 66 18. Borel reducibility 67 19. Perfect set property for quotient spaces 68 19.A. Co-analytic equivalence relations: Silver's dichotomy 69 19.B. Analytic equivalence relations: Burgess' trichotomy 69 19.C. Meager equivalence relations: Mycielski's theorem 70 20. Concrete classifiability (smoothness) 71 20.A. Definitions 71 20.B. Examples of concrete classification 72 20.C. Characterizations of smoothness 74 20.D. Nonsmooth equivalence relations 74 20.E. General Glimm–Effros dichotomies 76 20.F. Proof of the Becker{Kechris dichotomy 77 21. Definable graphs and colorings 79 21.A. Definitions and examples 79 21.B. Chromatic numbers 80 21.C. G0|the graph cousin of E0 82 21.D. The Kechris{Solecki{Todorˇcevi´cdichotomy 83 22. Some corollaries of the G0-dichotomy 83 22.A. Proof of Silver's dichotomy 83 22.B. Proof of the Luzin{Novikov theorem 84 22.C. The Feldman{Moore theorem and E1 84 References 85 4 Part 1. Polish spaces 1. Definition and examples Definition 1.1. A topological space is called Polish if it is separable and completely metri- zable (i.e. admits a complete compatible metric). We work with Polish topological spaces as opposed to Polish metric spaces because we don't want to fix a particular complete metric, we may change it to serve different purposes; all we care about is that such a complete compatible metric exists. Besides, our maps are homeomorphisms and not isometries, so we work in the category of topological spaces and not metric spaces. Examples 1.2. (a) For all n 2 N, n = f0; 1; :::; n − 1g is Polish with discrete topology; so is N; (b) Rn and Cn, for n ≥ 1; (c) Separable Banach spaces; in particular, separable Hilbert spaces, `p(N) and Lp(R) for 0 < p < 1. The following lemma, whose proof is left as an exercise, shows that when working with Polish spaces, we may always take a complete compatible metric d ≤ 1. Lemma 1.3. If X is a topological space with a compatible metric d, then the following metric is also compatible: for x; y 2 X, D(x; y) = min(d(x; y); 1): Proposition 1.4. (a) Completion of any separable metric space is Polish. (b) A closed subset of a Polish space is Polish (with respect to relative topology). (c) A countable disjoint union1 of Polish spaces is Polish. (d) A countable product of Polish spaces is Polish (with respect to the product topology). Proof. (a) and (b) are obvious. We leave (c) as an exercise and prove (d). To this end, let Xn; n 2 N be Polish spaces and let dn ≤ 1 be a complete compatible metric for Xn. For x; y 2 Q X , define n2N n . X −n d(x; y) .= 2 dn(x(n); y(n)): n2N It is easy to verify that d is a complete compatible metric for the product topology on Q X . n2N n Examples 1.5. (a) RN, CN; (b) The Cantor space C .= 2N, with the discrete topology on 2; 1 F . S Disjoint union of topological spaces fXigi2I is the space i2I Xi = i2I fig × Xi equipped with the topology generated by sets of the form fig × Ui, where i 2 I and Ui ⊆ Xi is open. 5 (c) The Baire space N .= NN, with the discrete topology on N. (d) The Hilbert cube IN, where I = [0; 1]. As mentioned in the previous proposition, closed subsets of Polish spaces are Polish. What other subsets have this property? The proposition below answers this question, but first we recall here that countable intersections of open sets are called Gδ sets, and countable unions of closed sets are called Fσ. Lemma 1.6. If X is a metric space, then closed sets are Gδ; equivalently, open sets are Fσ. Proof. Let C ⊆ X be a closed set and let d be a metric for X. For " > 0, define U" .= T T fx 2 X : d(x; C) < "g, and we claim that C = U1=n. Indeed, C ⊆ U1=n is trivial, and T n n to show the other inclusion, fix x 2 n U1=n. Thus, for every n, we can pick xn 2 C with d(x; xn) < 1=n, so xn ! x as n ! 1, and hence x 2 C by the virtue of C being closed. Proposition 1.7. A subset of a Polish space is Polish if and only if it is Gδ. Proof. Let X be a Polish space and let dX be a complete compatible metric on X. (: Considering first an open set U ⊆ X, we exploit the fact that it does not contain its boundary points to define a compatible metric for the topology of U that makes the boundary of U \look like infinity" in order to prevent sequences that converge to the boundary from being Cauchy. In fact, instead of defining a metric explicitly2, we define a homeomorphism of U with a closed subset of X × R by 1 x 7! x; ; dX (x; @U) where dX is a complete compatible metric for X.
Recommended publications
  • Games in Descriptive Set Theory, Or: It's All Fun and Games Until Someone Loses the Axiom of Choice Hugo Nobrega
    Games in Descriptive Set Theory, or: it’s all fun and games until someone loses the axiom of choice Hugo Nobrega Cool Logic 22 May 2015 Descriptive set theory and the Baire space Presentation outline [0] 1 Descriptive set theory and the Baire space Why DST, why NN? The topology of NN and its many flavors 2 Gale-Stewart games and the Axiom of Determinacy 3 Games for classes of functions The classical games The tree game Games for finite Baire classes Descriptive set theory and the Baire space Why DST, why NN? Descriptive set theory The real line R can have some pathologies (in ZFC): for example, not every set of reals is Lebesgue measurable, there may be sets of reals of cardinality strictly between |N| and |R|, etc. Descriptive set theory, the theory of definable sets of real numbers, was developed in part to try to fill in the template “No definable set of reals of complexity c can have pathology P” Descriptive set theory and the Baire space Why DST, why NN? Baire space NN For a lot of questions which interest set theorists, working with R is unnecessarily clumsy. It is often better to work with other (Cauchy-)complete topological spaces of cardinality |R| which have bases of cardinality |N| (a.k.a. Polish spaces), and this is enough (in a technically precise way). The Baire space NN is especially nice, as I hope to show you, and set theorists often (usually?) mean this when they say “real numbers”. Descriptive set theory and the Baire space The topology of NN and its many flavors The topology of NN We consider NN with the product topology of discrete N.
    [Show full text]
  • Topology and Descriptive Set Theory
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector TOPOLOGY AND ITS APPLICATIONS ELSEVIER Topology and its Applications 58 (1994) 195-222 Topology and descriptive set theory Alexander S. Kechris ’ Department of Mathematics, California Institute of Technology, Pasadena, CA 91125, USA Received 28 March 1994 Abstract This paper consists essentially of the text of a series of four lectures given by the author in the Summer Conference on General Topology and Applications, Amsterdam, August 1994. Instead of attempting to give a general survey of the interrelationships between the two subjects mentioned in the title, which would be an enormous and hopeless task, we chose to illustrate them in a specific context, that of the study of Bore1 actions of Polish groups and Bore1 equivalence relations. This is a rapidly growing area of research of much current interest, which has interesting connections not only with topology and set theory (which are emphasized here), but also to ergodic theory, group representations, operator algebras and logic (particularly model theory and recursion theory). There are four parts, corresponding roughly to each one of the lectures. The first contains a brief review of some fundamental facts from descriptive set theory. In the second we discuss Polish groups, and in the third the basic theory of their Bore1 actions. The last part concentrates on Bore1 equivalence relations. The exposition is essentially self-contained, but proofs, when included at all, are often given in the barest outline. Keywords: Polish spaces; Bore1 sets; Analytic sets; Polish groups; Bore1 actions; Bore1 equivalence relations 1.
    [Show full text]
  • Martin-L¨Of Random Points Satisfy Birkhoff's Ergodic
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 00, Number 0, Pages 000{000 S 0002-9939(XX)0000-0 MARTIN-LOF¨ RANDOM POINTS SATISFY BIRKHOFF'S ERGODIC THEOREM FOR EFFECTIVELY CLOSED SETS JOHANNA N.Y. FRANKLIN, NOAM GREENBERG, JOSEPH S. MILLER, AND KENG MENG NG Abstract. We show that if a point in a computable probability space X sat- isfies the ergodic recurrence property for a computable measure-preserving T : X ! X with respect to effectively closed sets, then it also satisfies Birkhoff's ergodic theorem for T with respect to effectively closed sets. As a corollary, every Martin-L¨ofrandom sequence in the Cantor space satisfies 0 Birkhoff's ergodic theorem for the shift operator with respect to Π1 classes. This answers a question of Hoyrup and Rojas. Several theorems in ergodic theory state that almost all points in a probability space behave in a regular fashion with respect to an ergodic transformation of the space. For example, if T : X ! X is ergodic,1 then almost all points in X recur in a set of positive measure: Theorem 1 (See [5]). Let (X; µ) be a probability space, and let T : X ! X be ergodic. For all E ⊆ X of positive measure, for almost all x 2 X, T n(x) 2 E for infinitely many n. Recent investigations in the area of algorithmic randomness relate the hierarchy of notions of randomness to the satisfaction of computable instances of ergodic theorems. This has been inspired by Kuˇcera'sclassic result characterising Martin- L¨ofrandomness in the Cantor space. We reformulate Kuˇcera'sresult using the general terminology of [4].
    [Show full text]
  • The Continuity of Additive and Convex Functions, Which Are Upper Bounded
    THE CONTINUITY OF ADDITIVE AND CONVEX FUNCTIONS, WHICH ARE UPPER BOUNDED ON NON-FLAT CONTINUA IN Rn TARAS BANAKH, ELIZA JABLO NSKA,´ WOJCIECH JABLO NSKI´ Abstract. We prove that for a continuum K ⊂ Rn the sum K+n of n copies of K has non-empty interior in Rn if and only if K is not flat in the sense that the affine hull of K coincides with Rn. Moreover, if K is locally connected and each non-empty open subset of K is not flat, then for any (analytic) non-meager subset A ⊂ K the sum A+n of n copies of A is not meager in Rn (and then the sum A+2n of 2n copies of the analytic set A has non-empty interior in Rn and the set (A − A)+n is a neighborhood of zero in Rn). This implies that a mid-convex function f : D → R, defined on an open convex subset D ⊂ Rn is continuous if it is upper bounded on some non-flat continuum in D or on a non-meager analytic subset of a locally connected nowhere flat subset of D. Let X be a linear topological space over the field of real numbers. A function f : X → R is called additive if f(x + y)= f(x)+ f(y) for all x, y ∈ X. R x+y f(x)+f(y) A function f : D → defined on a convex subset D ⊂ X is called mid-convex if f 2 ≤ 2 for all x, y ∈ D. Many classical results concerning additive or mid-convex functions state that the boundedness of such functions on “sufficiently large” sets implies their continuity.
    [Show full text]
  • Math 501. Homework 2 September 15, 2009 ¶ 1. Prove Or
    Math 501. Homework 2 September 15, 2009 ¶ 1. Prove or provide a counterexample: (a) If A ⊂ B, then A ⊂ B. (b) A ∪ B = A ∪ B (c) A ∩ B = A ∩ B S S (d) i∈I Ai = i∈I Ai T T (e) i∈I Ai = i∈I Ai Solution. (a) True. (b) True. Let x be in A ∪ B. Then x is in A or in B, or in both. If x is in A, then B(x, r) ∩ A , ∅ for all r > 0, and so B(x, r) ∩ (A ∪ B) , ∅ for all r > 0; that is, x is in A ∪ B. For the reverse containment, note that A ∪ B is a closed set that contains A ∪ B, there fore, it must contain the closure of A ∪ B. (c) False. Take A = (0, 1), B = (1, 2) in R. (d) False. Take An = [1/n, 1 − 1/n], n = 2, 3, ··· , in R. (e) False. ¶ 2. Let Y be a subset of a metric space X. Prove that for any subset S of Y, the closure of S in Y coincides with S ∩ Y, where S is the closure of S in X. ¶ 3. (a) If x1, x2, x3, ··· and y1, y2, y3, ··· both converge to x, then the sequence x1, y1, x2, y2, x3, y3, ··· also converges to x. (b) If x1, x2, x3, ··· converges to x and σ : N → N is a bijection, then xσ(1), xσ(2), xσ(3), ··· also converges to x. (c) If {xn} is a sequence that does not converge to y, then there is an open ball B(y, r) and a subsequence of {xn} outside B(y, r).
    [Show full text]
  • Polish Spaces and Baire Spaces
    Polish spaces and Baire spaces Jordan Bell [email protected] Department of Mathematics, University of Toronto June 27, 2014 1 Introduction These notes consist of me working through those parts of the first chapter of Alexander S. Kechris, Classical Descriptive Set Theory, that I think are impor- tant in analysis. Denote by N the set of positive integers. I do not talk about universal spaces like the Cantor space 2N, the Baire space NN, and the Hilbert cube [0; 1]N, or \localization", or about Polish groups. If (X; τ) is a topological space, the Borel σ-algebra of X, denoted by BX , is the smallest σ-algebra of subsets of X that contains τ. BX contains τ, and is closed under complements and countable unions, and rather than talking merely about Borel sets (elements of the Borel σ-algebra), we can be more specific by talking about open sets, closed sets, and sets that are obtained by taking countable unions and complements. Definition 1. An Fσ set is a countable union of closed sets. A Gδ set is a complement of an Fσ set. Equivalently, it is a countable intersection of open sets. If (X; d) is a metric space, the topology induced by the metric d is the topology generated by the collection of open balls. If (X; τ) is a topological space, a metric d on the set X is said to be compatible with τ if τ is the topology induced by d.A metrizable space is a topological space whose topology is induced by some metric, and a completely metrizable space is a topological space whose topology is induced by some complete metric.
    [Show full text]
  • Two Characterizations of Linear Baire Spaces 205
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 45, Number 2, August 1974 TWOCHARACTERIZATIONS OF LINEAR BAIRE SPACES STEPHEN A. SAXON1 ABSTRACT. The Wilansky-Klee conjecture is equivalent to the (un- proved) conjecture that every dense, 1-codimensional subspace of an arbitrary Banach space is a Baire space (second category in itself). The following two characterizations may be useful in dealing with this conjecture: (i) A topological vector space is a Baire space if and on- ly if every absorbing, balanced, closed set is a neighborhood of some point, (ii) A topological vector space is a Baire space if and only if it cannot be covered by countably many nowhere dense sets, each of which is a union of lines (1-dimensional subspaces). Characterization (i) has a more succinct form, using the definition of Wilansky's text [8, p. 224]: a topological vector space is a Baire space if and only if it has the t property. Introduction. The Wilansky-Klee conjecture (see [3], [7]) is equivalent to the conjecture that every dense, 1-codimensional subspace of a Banach space is a Baire space. In [4], [5], [6], [7] it is shown that every counta- ble-codimensional subspace of a locally convex space which is "nearly" a Baire space is, itself, "nearly" a Baire space. (Theorem 1 of this paper indicates how "nearly Baire" a barrelled space is: Wilansky's class of W'barrelled spaces [9,p. 44] is precisely the class of linear Baire spaces.) The theorem [7] that every countable-codimensional subspace of an unor- dered Baire-like space is unordered Baire-like is the closest to an affirmation of the conjecture.
    [Show full text]
  • Baire Category Theorem
    Baire Category Theorem Alana Liteanu June 2, 2014 Abstract The notion of category stems from countability. The subsets of metric spaces are divided into two categories: first category and second category. Subsets of the first category can be thought of as small, and subsets of category two could be thought of as large, since it is usual that asset of the first category is a subset of some second category set; the verse inclusion never holds. Recall that a metric space is defined as a set with a distance function. Because this is the sole requirement on the set, the notion of category is versatile, and can be applied to various metric spaces, as is observed in Euclidian spaces, function spaces and sequence spaces. However, the Baire category theorem is used as a method of proving existence [1]. Contents 1 Definitions 1 2 A Proof of the Baire Category Theorem 3 3 The Versatility of the Baire Category Theorem 5 4 The Baire Category Theorem in the Metric Space 10 5 References 11 1 Definitions Definition 1.1: Limit Point.If A is a subset of X, then x 2 X is a limit point of X if each neighborhood of x contains a point of A distinct from x. [6] Definition 1.2: Dense Set. As with metric spaces, a subset D of a topological space X is dense in A if A ⊂ D¯. D is dense in A. A set D is dense if and only if there is some 1 point of D in each nonempty open set of X.
    [Show full text]
  • TOPOLOGY PRELIM REVIEW 2021: LIST THREE Topic 1: Baire Property and Gδ Sets. Definition. X Is a Baire Space If a Countable Inte
    TOPOLOGY PRELIM REVIEW 2021: LIST THREE Topic 1: Baire property and Gδ sets. Definition. X is a Baire space if a countable intersection of open, dense subsets of X is dense in X. Complete metric spaces and locally compact spaces are Baire spaces. Def. X is locally compact if for all x 2 X, and all open Ux, there exists Vx with compact closure V x ⊂ Ux. 1. X is locally compact , for all C ⊂ X compact, and all open U ⊃ C, there exists V open with compact closure, so that: C ⊂ V ⊂ V ⊂ U. 2. Def: A set E ⊂ X is nowhere dense in X if its closure E has empty interior. Show: X is a Baire space , any countable union of nowhere dense sets has empty interior. 3. A complete metric space without isolated points is uncountable. (Hint: Baire property, complements of one-point sets.) 4. Uniform boundedness principle. X complete metric, F ⊂ C(X) a family of continuous functions, bounded at each point: (8a 2 X)(9M(a) > 0)(8f 2 F)jf(a)j ≤ M(a): Then there exists a nonempty open set U ⊂ X so that F is eq¨uibounded over U{there exists a constant C > 0 so that: (8f 2 F)(8x 2 U)jf(x)j ≤ C: Hint: For n ≥ 1, consider An = fx 2 X; jf(x)j ≤ n; 8f 2 Fg. Use Baire's property. An important application of 4. is the uniform boundedness principle for families of bounded linear operators F ⊂ L(E; F ), where E; F are Banach spaces.
    [Show full text]
  • Descriptive Set Theory
    Descriptive Set Theory David Marker Fall 2002 Contents I Classical Descriptive Set Theory 2 1 Polish Spaces 2 2 Borel Sets 14 3 E®ective Descriptive Set Theory: The Arithmetic Hierarchy 27 4 Analytic Sets 34 5 Coanalytic Sets 43 6 Determinacy 54 7 Hyperarithmetic Sets 62 II Borel Equivalence Relations 73 1 8 ¦1-Equivalence Relations 73 9 Tame Borel Equivalence Relations 82 10 Countable Borel Equivalence Relations 87 11 Hyper¯nite Equivalence Relations 92 1 These are informal notes for a course in Descriptive Set Theory given at the University of Illinois at Chicago in Fall 2002. While I hope to give a fairly broad survey of the subject we will be concentrating on problems about group actions, particularly those motivated by Vaught's conjecture. Kechris' Classical Descriptive Set Theory is the main reference for these notes. Notation: If A is a set, A<! is the set of all ¯nite sequences from A. Suppose <! σ = (a0; : : : ; am) 2 A and b 2 A. Then σ b is the sequence (a0; : : : ; am; b). We let ; denote the empty sequence. If σ 2 A<!, then jσj is the length of σ. If f : N ! A, then fjn is the sequence (f(0); : : :b; f(n ¡ 1)). If X is any set, P(X), the power set of X is the set of all subsets X. If X is a metric space, x 2 X and ² > 0, then B²(x) = fy 2 X : d(x; y) < ²g is the open ball of radius ² around x. Part I Classical Descriptive Set Theory 1 Polish Spaces De¯nition 1.1 Let X be a topological space.
    [Show full text]
  • Characterization of Cantor Spaces
    Characterization of Cantor Spaces Matthew Shaw (ref. Pugh Analysis Textbook) November 2019 1 Introduction The standard Cantor Middle Thirds Set is compact, perfect, nonempty, and to- tally disconnected (and since the construction takes place in R with its standard metric, the Cantor Set is also metrizable). Totally Disconnected: Every connected component is a singleton set, and equiv- alently, every point has arbitrarily small clopen neighborhoods. Perfect: A space is called perfect if it has no isolated points. There are two main theorems of this presentation: The Cantor Surjection The- orem, that every nonempty compact metric space is the image of a continuous function with the Cantor set as its domain, and a complete characterization of Cantor spaces, in particular that every compact, nonempty, perfect, and to- tally disconnected metric space is homeomorphic to the standard Cantor middle thirds set. Notation: The set of words of countably infinite length in a two character al- phabet is denoted by Ω, the standard Cantor Middle-Thirds set is denoted by C, and the set of words of length n (where n 2 N) in a two character alphabet is denoted !(n). Note that the size of !(n) is always 2n. ! with no associated number will represent a word of countably infinite length (i.e. an element of Ω) and the notation !jn for n 2 N means the word ! truncated to only its first n characters (this is an element of !(n)). t denotes disjoint union of sets. If α and β are words of finite length, then the notation αβ means the word made up of the characters of α followed by the characters of β, which is also termed concatenation.
    [Show full text]
  • Regularity Properties and Determinacy
    Regularity Properties and Determinacy MSc Thesis (Afstudeerscriptie) written by Yurii Khomskii (born September 5, 1980 in Moscow, Russia) under the supervision of Dr. Benedikt L¨owe, and submitted to the Board of Examiners in partial fulfillment of the requirements for the degree of MSc in Logic at the Universiteit van Amsterdam. Date of the public defense: Members of the Thesis Committee: August 14, 2007 Dr. Benedikt L¨owe Prof. Dr. Jouko V¨a¨an¨anen Prof. Dr. Joel David Hamkins Prof. Dr. Peter van Emde Boas Brian Semmes i Contents 0. Introduction............................ 1 1. Preliminaries ........................... 4 1.1 Notation. ........................... 4 1.2 The Real Numbers. ...................... 5 1.3 Trees. ............................. 6 1.4 The Forcing Notions. ..................... 7 2. ClasswiseConsequencesofDeterminacy . 11 2.1 Regularity Properties. .................... 11 2.2 Infinite Games. ........................ 14 2.3 Classwise Implications. .................... 16 3. The Marczewski-Burstin Algebra and the Baire Property . 20 3.1 MB and BP. ......................... 20 3.2 Fusion Sequences. ...................... 23 3.3 Counter-examples. ...................... 26 4. DeterminacyandtheBaireProperty.. 29 4.1 Generalized MB-algebras. .................. 29 4.2 Determinacy and BP(P). ................... 31 4.3 Determinacy and wBP(P). .................. 34 5. Determinacy andAsymmetric Properties. 39 5.1 The Asymmetric Properties. ................. 39 5.2 The General Definition of Asym(P). ............. 43 5.3 Determinacy and Asym(P). ................. 46 ii iii 0. Introduction One of the most intriguing developments of modern set theory is the investi- gation of two-player infinite games of perfect information. Of course, it is clear that applied game theory, as any other branch of mathematics, can be modeled in set theory. But we are talking about the converse: the use of infinite games as a tool to study fundamental set theoretic questions.
    [Show full text]