Physics with Muons: from Atomic Physics to Solid State Physics

Total Page:16

File Type:pdf, Size:1020Kb

Physics with Muons: from Atomic Physics to Solid State Physics University of Zurich¨ Script - Lecture PHY 432 Physics with Muons: From Atomic Physics to Solid State Physics Alex Amato March 2020 Contents Forwords 7 Literature 9 1. Introduction: the Muon 11 1.1. The muon: an elementary particle ...................... 11 1.2. Muon discovery................................ 12 1.3. The pion: the parent particle ......................... 17 1.3.1. Pion properties............................ 17 1.3.2. Pion production reactions ...................... 17 1.3.3. The pion decay............................ 19 1.4. Muon properties................................ 21 1.5. The muon decay................................ 23 1.5.1. Generalities.............................. 23 1.5.2. Differential positron emission .................... 23 1.5.3. Decay of a muon ensemble ...................... 26 1.6. Muon magnetic moment and spin precession . 27 1.6.1. Muon magnetic moment ....................... 27 1.6.2. Muon spin precession ........................ 28 1.6.2.1. Classical view ....................... 28 1.6.2.2. Quantum mechanics view . 29 1.7. Atmospheric muons .............................. 30 1.8. “Man-made” muons .............................. 36 1.8.1. Pion production: 3 different possible accelerators . 36 1.8.2. Pion production: for example at the Paul Scherrer Institute . 38 1.8.3. Muon beams for condensed matter . 42 1.8.3.1. “High-energy” muons ................... 42 1.8.3.2. “Surface” muons ...................... 46 1.8.3.3. Few words about a typical beamline and beam optics . 48 Dipole magnets ........................ 49 Quadrupole magnets ..................... 50 Separator (Wien filter) and spin rotator . 55 2. Implanting Muons in Matter 59 2.1. Energy loss of particles in matter ....................... 59 2.1.1. Energy loss by ionization: classical approach . 61 2.1.2. Energy loss: Bethe formula ..................... 64 2.2. Range and thermalization time ........................ 70 2.2.1. Range of muons ........................... 70 2 2.2.2. Thermalization time ......................... 73 2.3. “Free” muon vs muonium........................... 74 3. µSR Technique 77 3.1. The µSR signal ................................ 78 3.2. Key features of the µSR technique ...................... 83 3.2.1. Local probe - volume sensitivity ................... 83 3.2.2. Larmor frequency - magnetic field sensitivity . 86 3.2.3. Typical time window ......................... 87 3.2.4. Other important features ....................... 87 3.3. Experimental setup .............................. 89 3.3.1. At a “continuous-wave” (cw) beam . 89 3.3.2. At a pulsed beam ........................... 94 3.3.3. Muon-on-request setup ........................ 95 3.4. The different measurement geometries .................... 96 3.4.1. ZF & LF geometry .......................... 96 3.4.2. TF geometry ............................. 99 4. Depolarization Functions 101 4.1. Depolarization function for static internal fields (ZF geometry) . 101 4.1.1. The simple case: single value of field . 103 4.1.1.1. Single-crystal case . 103 Some examples . 105 4.1.1.2. Polycrystal case . 107 Some examples . 110 4.1.2. Randomly oriented fields . 112 4.1.2.1. Gaussian distribution . 112 Some examples . 115 4.1.2.2. Lorentzian distribution . 117 4.1.2.3. “In between” . 119 4.1.3. Generalization ............................ 120 4.2. Depolarization function for applied external fields (TF geometry) . 121 4.3. Dynamical effects ............................... 124 4.3.1. Stochastic processes . 124 4.3.2. The strong collision approximation . 124 4.3.2.1. The muon depolarization . 127 Approximations for some limiting cases . 128 Examples . 130 Fluctuation time or correlation time? . 133 4.3.3. Testing for the dynamical character with a longitudinal external field (LF) .................................. 136 4.3.3.1. LF external field and static field distribution . 138 4.3.3.2. LF external field and dynamical effects . 143 4.3.4. Dynamical effects in TF external field . 151 5. Studying magnetism with the µSR technique 153 5.1. Local magnetic fields in magnetic materials . 153 5.1.1. The interaction muon - electron . 153 3 5.1.2. Dipolar and contact contributions .................. 154 5.1.2.1. Orbital field ........................ 155 5.1.2.2. Dipolar field........................ 155 5.1.2.3. Contact field........................ 157 5.1.3. Demagnetizing field and Lorentz sphere . 158 5.2. Examples of magnetic states studied by µSR . 161 5.3. Special cases magnetic states . 172 5.3.1. Incommensurate vs commensurate magnetic structure . 172 5.3.1.1. The simple case . 172 5.3.1.2. The slightly more difficult case . 176 5.3.2. Study of spin glasses . 179 5.4. Determining magnetic volume fractions . 183 5.5. Studying the magnetic response in the paramagnetic or diamagnetic states: the Knight shift ................................ 186 5.5.1. Knight shift (contact term): Studying the paramagnetism of the con- duction electrons . 187 5.5.1.1. Pauli susceptibility . 188 5.5.2. Knight shift in materials with local moments . 192 5.5.2.1. The dipole field contribution . 192 5.5.2.2. The enhanced contact field contribution . 193 5.5.2.3. The total Knight shift . 194 5.5.3. Determining the muon-stopping site . 195 5.6. Depolarization created by nuclear moments . 200 5.6.1. Classical calculation . 200 5.6.1.1. The TF case . 200 5.6.1.2. The ZF case . 203 5.6.1.3. Comment . 205 6. µSR in the Superconducting State 207 6.1. Introduction .................................. 207 6.2. Two characteristic lengths in superconductors . 209 6.2.1. The magnetic penetration depth . 210 6.2.1.1. The London equations . 210 6.2.1.2. Field and current decay in the Meissner state . 211 6.2.2. The coherence length . 213 6.2.2.1. The Ginzburg Landau theory . 213 6.3. Two types of superconductor . 216 6.3.1. Condensation energy and energy balance . 216 6.3.2. Type I and type II superconductors . 217 6.4. Abrikosov state of a type II superconductor . 220 6.4.1. Field in the Abrikosov state . 221 6.4.1.1. Field due to one vortex . 223 6.4.1.2. Field distribution of an extreme type II superconductor . 224 6.4.1.3. Corrections due to the coherence length and the magnetic field ............................ 227 4 6.5. Obtaining the characteristic lengths from µSR . 232 6.5.1. Obtaining the penetration depth . 232 6.5.1.1. Multi-Gaussian approach . 236 6.5.2. Obtaining the coherence length . 238 6.6. Testing the superconducting gap symmetry . 239 6.7. Determining the anisotropy of the magnetic penetration depth . 243 6.8. Multiple superconducting gaps . 244 6.9. Uemura relation, Uemura plot: Correlation between Tc and σ . 245 6.10. Dynamics of the FLL ............................. 248 6.10.1. Melting through temperature . 248 6.10.1.1. Stabilization with defects . 248 6.10.2. Moving the FLL with an applied current . 248 7. Low energy muons: a tool to study thin films and heterostructures 249 7.1. Introduction .................................. 249 7.2. Generation of low energy muons . 250 7.2.1. Moderation in thin layers of cryosolids . 250 7.2.2. Laser resonant ionization of muonium . 253 7.3. The Low-Energy Muon (LEM) instrument at PSI . 255 7.4. Stopping profiles of Low-Energy Muons in thin films . 259 7.5. Examples of LEM studies . 264 7.5.1. Magnetic field penetration at the surface of superconductors . 264 7.5.1.1. Strongly type-II superconductors . 264 7.5.1.2. Weak type-II superconductors and type-I superconductors 266 7.5.2. Giant proximity effect in cuprate heterostructures . 268 7.5.3. Probing the spin injection in an organic spin valve . 270 8. Muonium 273 8.1. Introduction .................................. 273 8.2. Muonium ground state and hyperfine interaction . 274 8.2.1. Ionisation energy . 274 8.2.2. Hyperfine interaction . 275 8.2.3. Adding an external field . 277 8.3. Time evolution of the muon polarization in the muonium state . 281 8.3.1. Introduction .............................. 281 8.3.2. Longitudinal (and zero) field case . 283 8.3.3. Transverse field case . 285 8.4. Few examples of muonium studies . 289 8.5. Anomalous muonium and weakly bound muonium . 291 A. Annex 297 A.1. Magnetic Moment ............................... 297 A.1.1. Introduction .............................. 297 A.1.2. Relation to the angular momentum . 298 A.1.2.1. Orbital angular momentum . 298 A.1.2.2. Spin angular momentum . 299 A.1.2.3. Spin angular momentum of the muon . 299 5 A.2. Spin Angular Momentum........................... 301 A.2.1. Spin Operators............................ 301 A.2.2. Spin Space .............................. 301 2 A.2.3. Eigenstates of S z and S . 303 A.2.4. Pauli Representation......................... 304 A.2.5. Relating Spinor to Spin Direction .................. 307 A.3. The canonical momentum (or generalized momentum) . 308 A.3.1. Legendre transformation....................... 309 A.3.2. Rewriting the Hamiltonian...................... 310 A.4. The demagnetizing field ........................... 311 A.5. Useful formula from Quantum Mechanics.................. 313 A.5.1. Time evolution of an operator . 313 A.5.2. 2-D Matrix .............................. 314 A.6. Useful vector relations ............................ 315 A.6.1. Laplacian ............................... 315 A.6.1.1. Laplacian operator . 315 A.6.1.2. Vector Laplacian . 315 A.6.2. General identities . 315 A.6.3. Gradient, divergence and curl . 316 A.6.4. Some examples ............................ 316 Bibliography 317 Bibliography 317 6 Forwords The first version of this lecture notes was composed in December 2017 and Januar 2018. Though
Recommended publications
  • The Consortium of Swiss Academic Libraries the Consortium of Swiss Academic Libraries
    Research Collection Other Conference Item Times change and we change with them: the Consortium of Swiss Academic Libraries the Consortium of Swiss Academic Libraries Author(s): Boutsiouci, Pascalia Publication Date: 2015 Permanent Link: https://doi.org/10.3929/ethz-a-010439524 Rights / License: In Copyright - Non-Commercial Use Permitted This page was generated automatically upon download from the ETH Zurich Research Collection. For more information please consult the Terms of use. ETH Library TIMES CHANGE AND WE CHANGE WITH THEM The Consortium of Swiss Academic Libraries ICoASL – 4th International Conference of Asian Special Libraries 2015 Pascalia Boutsiouci, Seoul, April 23 of 2015 AGENDA 1 Overview Switzerland and Higher Education 2 Overview Consortium of Swiss Academic Libraries 3 Our business – range of activity 4 Cooperation with our partner libraries 5 projects © Consortium of Swiss Academic Libraries | 2015 2 Overview Switzerland 1 and Higher Education © Consortium of Swiss Academic Libraries | 2015 3 THE LANDSCAPE Switzerland lies in the heart of Europe 8.2 million people 26 cantons Four official languages Matterhorn, Zermatt (4,478 m/14,692 ft) / Image source: http://www.zermatt.ch/Media/Pressecorner/Fotodatenbank/Matterhorn/Sicht-aufs- . German (66%) Matterhorn-vom-Gornergrat . French (23%) . Italian (9%) . Rheto- Romanic (1%) Image source: http://en.wikipedia.org/wiki/Switzerland#/media/File:Europe-Switzerland.svg © Consortium of Swiss Academic Libraries | 2015 4 SWITZERLAND = CONFOEDERATIO HELVETICA = CH Federal parliamentary republic consisting of 26 cantons wth Bern as the seat of the federal authorities Germany France Liechtenstein Austria Italy Image source:http://de.wikipedia.org/wiki/Datei:Switzerland,_administrative_divisions_-_de_-_colored.svg © Consortium of Swiss Academic Libraries | 2015 5 HIGHER EDUCATION IN SWITZERLAND Official Higher Education Institutions 10 Cantonal Universities .
    [Show full text]
  • Treating Cancer with Proton Therapy Information for Patients and Family Members Professor Dr
    Treating Cancer with Proton Therapy Information for patients and family members Professor Dr. med. Damien Charles Weber, Dear readers Head and Chairman, Proton therapy is a special kind of radiation therapy. For many years now, patients Centre for Proton Therapy suffering from certain tumour diseases have successfully undergone proton radi- ation therapy at the Paul Scherrer Institute’s Centre for Proton Therapy. This brochure is intended to give a more detailed explanation of how proton ther- apy works and provide practical information on the treatment we offer at our facil- ity. We will include a step-by-step description of the way in which we treat deep- seated tumours. We will not deal with the treatment of eye tumours in this brochure. If you have further questions on the proton therapy carried out at the Paul Scherrer Institute, please do not hesitate to address these by getting in touch with our secretaries. Contact details are provided at the end of the brochure. 2 Contents 4 Radiation against cancer 10 Physics in the service of medicine 14 Four questions for Professor Dr. Tony Lomax, Chief Medical Physicist 16 Practical information on treatment at PSI 20 Four questions for Dr. Marc Walser, Senior Radiation Oncologist 22 In good hands during treatment 28 Four questions for Lydia Lederer, Chief Radiation Therapist 30 Treating infants and children 36 Children ask a specialist about radiation 38 PSI in brief Radiation against cancer 4 Because it can be used with great ac- The most important cancer therapies curacy, proton therapy is a particularly are: sparing form of radiation treatment • surgery (operation), with lower side effects.
    [Show full text]
  • Annual Report 2018 Swiss Nanoscience Institute University of Basel
    EINE INITIATIVE DER UNIVERSITÄT BASEL UND DES KANTONS AARGAU Annual Report 2018 Swiss Nanoscience Institute University of Basel Swiss Nanoscience Institute University of Basel Klingelbergstrasse 82 4056 Basel Switzerland www.nanoscience.ch The Swiss Nanoscience Institute (SNI) is a research initiative of the Canton of Aargau and the University of Basel. Swiss Nanoscience Institute Klingelbergstrasse 82 4056 Basel Switzerland www.nanoscience.ch Cover: Atomic force microscopic image of “nano-bone” molecules on a gold surface. The molecule is a buil- ding block for the formation of two-dimensional organic topological insulators (Rémy Pawlak, Department of Physics, University of Basel). © Swiss Nanoscience Institute, March 2019 Content 3 Foreword 4 Swiss Nanoscience Institute — The interdisciplinary center of excellence for nanosciences in Northwestern Switzerland 6 Network 8 News from the network 14 The Paul Scherrer Institute – 30 years old and a key partner on the SNI network 16 Nano Study Program 18 Glued wounds heal better – Tino Matter wins the prize for the best master’s thesis 20 Discussing science at SmallTalk – Students organize their own symposium about the block courses 22 PhD School 24 SNI PhD School – An excellent start of a scientific career 29 Multiple awards – Daniel Riedel wins several prizes 30 SNI Professors 32 Martino Poggio studies nanowires – These tiny wires with special properties have a variety of potential applications 34 Roderick Lim researches the transport processes and mechanical properties of cells – Promising
    [Show full text]
  • Particle Accelerator Activities at the Paul Scherrer Institut
    PSI Bericht Nr. 17-07 December 2017 Particle Accelerator Activities at the Paul Scherrer Institut Terence GARVEY Paul Scherrer Institut, Villigen, Switzerland 5232 Division of Large Research Infrastructures Invited paper presented at Les Journées Accélérateurs de la Société Française de Physique, Roscoff, 3rd – 6th October, 2017. Resumé Les Activités Accélérateur à l’Institut Paul Scherrer. L'Institut Paul Scherrer exploite deux complexes d'accélérateurs en tant que ‘centre- serveurs’ pour une grande communauté de chercheurs. Il s'agit de l'Accélérateur de Protons à Haute Intensité (HIPA) et de la Source de Lumière Suisse (SLS). HIPA est un cyclotron à protons de 590 MeV. Il sert à produire des neutrons par spallation pour la recherche en physique de la matière condensée et à produire des muons et d'autres particules secondaires pour la recherche en magnétisme et en physique des particules. Le SLS est un anneau de stockage d’électrons de 2,4 GeV utilisé comme source de rayonnement synchrotron de 3ème génération fournissant des photons pour une large gamme de disciplines scientifiques. En plus de ces deux installations, l'Institut met progressivement en service un laser à électrons libres en rayons X (SwissFEL) qui fournira aux chercheurs des impulsions femto-seconde intenses à partir d’une ligne de rayons X ‘dur’ (ARAMIS) et de rayons X ‘mou’ (ATHOS). L'Institut exploite également un cyclotron supraconductrice à 250 MeV (COMET) aux fins de la thérapie par proton. Le centre de thérapie a récemment été équipé d'un troisième « gantry » rotatif qui est en cours de mise en service. Un « upgrade » du système de radiofréquence de HIPA et des projets pour "SLS-2" seront présentés.
    [Show full text]
  • Charged-Particle (Proton Or Helium Ion) Radiotherapy for Neoplastic Conditions
    Charged-Particle (Proton or Helium Ion) Radiotherapy for Neoplastic Conditions Policy Number: Original Effective Date: MM.05.005 07/01/2009 Line(s) of Business: Current Effective Date: HMO; PPO; QUEST Integration 07/28/2017 Section: Radiology Place(s) of Service: Outpatient I. Description Charged-particle beams consisting of protons or helium ions are a type of particulate radiation therapy (RT). Treatment with charged-particle radiotherapy is proposed for a large number of indications, often for tumors that would benefit from the delivery of a high dose of radiation with limited scatter that is enabled by charged-particle beam radiotherapy. For individuals who have uveal melanoma(s) who receive charged-particle (proton or helium ion) radiotherapy, the evidence includes RCTs and systematic reviews. Relevant outcomes are overall survival, disease-free survival, change in disease status, and treatment-related morbidity. Systematic reviews, including a 1996 TEC Assessment and a 2013 review of randomized and non- randomized studies, concluded that the technology is at least as effective as alternative therapies for treating uveal melanomas and is better at preserving vision. The evidence is sufficient to determine qualitatively that the technology results in a meaningful improvement in the net health outcome. For individuals who have skull-based tumor(s) (i.e., cervical chordoma and chondrosarcoma) who receive charged-particle (proton or helium ion) radiotherapy, the evidence includes observational studies and systematic reviews. Relevant outcomes are overall survival, disease-free survival, change in disease status, and treatment-related morbidity. A 1996 TEC Assessment concluded that the technology is at least as effective as alternative therapies for treating skull-based tumors.
    [Show full text]
  • 2018 Research Slam
    University of St.Gallen (HSG) Centro Latinoamericano-Suizo (CLS-HSG) Leading House for the Latin American Region Müller-Friedberg-Strasse 8 CH-9000 St.Gallen 2018 Research Slam Wednesday, December 19, 2018 / 10:30 to 17:10 hrs Tellstrasse 2, St.Gallen / Room 58-515 Seed Money Grants 2017 Research Merger 2018 Seed Money Grants 2018 Presentation Material of the Winning Projects The Funding Instruments SMG – Seed Money Grants 2017 + 2018 duration: 10 – 12 months grants: CHF 10’000 – CHF 25’000 applications received: 87 / projects awarded: 30 RM – Research Merger 2017 duration: 10 – 12 months grants: CHF 30’000 – CHF 50’000 applications received: 29 / projects awarded: 4 MOB – Mobility Grants 2018 duration: up to 3 months grants: up to CHF 8’000 applications received: 9 / projects awarded: 7 2018 Research Slam 2 / 22 Index Towards the detection of Earth analogues (TDEA). – SMG2017 Damien Ségransan, University of Geneva.............................................................................................................................. 5 Structural colours in natural and artificial multilayers. – SMG2017 Ullrich Steiner, University of Fribourg, Adolphe Merkle Institute .................................................................................. 5 In-operando control of nanoscale decoration of graphene and reduced graphene oxide by novel mini-reactors. – SMG2017 Ivo Utke, Empa, Eidgenössische Materialprüfungs- und Forschungsanstalt (EMPA) ................................................... 6 A dendrogeomorphic reconstruction of
    [Show full text]
  • 03 (15. Februar 2017)
    2017/03 ISSN 1661-8211 | 117. Jahrgang | 15. Februar 2017 Redaktion und Herausgeberin: Schweizerische Nationalbibliothek NB, Hallwylstrasse 15, CH-3003 Bern Erscheinungsweise: halbmonatlich, am 15. und 30. jeden Monats Hinweise unter: http://ead.nb.admin.ch/web/sb-pdf/ ISSN 1661-8211 © Schweizerische Nationalbibliothek NB, CH-3003 Bern. Alle Rechte vorbehalten Inhaltsverzeichnis - Table des matières - Sommario - Cuntegn - Table of contents Inhaltsverzeichnis - Table des matières - 220 Bibel / Bible / Bibbia / Bibla / Bible....................................... 6 Sommario - Cuntegn - Table of contents 230 Christentum, christliche Theologie / Christianisme, théologie chrétienne / Cristianesimo, teologia cristiana / Cristianissem, teologia cristiana / Christianity and Christian theology..................6 000 Allgemeine Werke, Informatik, Informationswissenschaft / Informatique, information, 290 Andere Religionen / Autres religions / Altre religioni / Autras ouvrages de référence / Informatica, scienza religiuns / Other religions............................................................... 9 dell'informazione, generalità / Informatica, infurmaziun e referenzas generalas / Computers, information and general reference........................................................................................ 1 300 Sozialwissenschaften / Sciences sociales / Scienze sociali / Scienzas socialas / Social sciences.......................... 10 000 Allgemeine Werke, Wissen, Systeme / Généralités, savoir, systèmes / Generalità, sapere, sistemi / Generalitads,
    [Show full text]
  • Muon Spin Rotation/Relaxation/Resonance
    Muon Spin µSR Rotation/Relaxation/Resonance (µµµSR) Unlike the electron, the muon is an magnetic moment is 3.18 times larger Understanding the fundamental unstable particle, living for only about than a proton. Thus when implanted in physical properties of matter at a two millionths of a second. Muons matter this feature makes them an microscopic level enables the extension carry a positive (µ+) or negative (µ-) extremely sensitive microscopic probe of existing technologies and leads to the charge, and spontaneously decay into a of magnetism. development of reliable new materials positron (or an electron) and a neutrino- for tomorrow’s applications. For these anti-neutrino pair as follows: reasons, scientists are interested in The Birth of µµµSR studying microscopic structures and µ e ++ ++→ νν processes in a wide range of materials. e µ he acronym µSR was coined in Only through experimental verification e −− ++→ ννµ T can one establish physical laws e µ 1974 to grace the cover of the first issue describing their inner workings. Since of the µSR Newsletter, in which the we cannot see such small-scale Muon following definition and explanation phenomena directly with our eyes, we were given: must rely on experimental methods that can probe deep inside materials for us. µµµSR stands for Muon Spin Relaxation, Rotation, Resonance, Research or The µSR technique is one such method. what have you. The intention of the It makes use of a short-lived subatomic mnemonic acronym is to draw particle called a muon, whose spin and attention to the analogy with NMR and charge are exquisitely sensitive local ESR, the range of whose applications magnetic and electronic probes of is well known.
    [Show full text]
  • Plasma Heating by Intense Charged Particle-Beams Injected on Solid Targets T
    PLASMA HEATING BY INTENSE CHARGED PARTICLE-BEAMS INJECTED ON SOLID TARGETS T. Okada, T. Shimojo, K. Niu To cite this version: T. Okada, T. Shimojo, K. Niu. PLASMA HEATING BY INTENSE CHARGED PARTICLE-BEAMS INJECTED ON SOLID TARGETS. Journal de Physique Colloques, 1988, 49 (C7), pp.C7-185-C7-189. 10.1051/jphyscol:1988721. jpa-00228205 HAL Id: jpa-00228205 https://hal.archives-ouvertes.fr/jpa-00228205 Submitted on 1 Jan 1988 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. JOURNAL DE PHYSIQUE Colloque C7, supplgment au n012, Tome 49, dbcembre 1988 PLASMA HEATING BY INTENSE CHARGED PARTICLE-BEAMS INJECTED ON SOLID TARGETS T. OKADA, T. SHIMOJO* and K. NIU* ' Department of Applied Physics, Tokyo University of Agriculture and Technology, Koganei-shi, Tokyo 184, Japan *~epartmentof Physics, Tokyo Gakugei University, Koganei-shi, Tokyo 184, Japan Department of Energy Sciences, Tokyo Institute of Technology, Midori-ku, Yokohama 227, Japan Rbsunb - La production et le chauffage du plasma sont estimbs numbriquement B l'aide d'un modele simple pour l'interaction de faisceaux intenses d'blectrons ou protons avec plusieurs cibles solides. On obtient ainsi les longueurs d'ionisation et la temperature du plasma produit.
    [Show full text]
  • Production of Radioactive Isotopes: Cyclotrons and Accelerators Numbers of Accelerators Worldwide: Type and Application
    Isotopes: production and application Kornoukhov Vasily Nikolaevich [email protected] Lecture No 5 Production of radioactive isotopes: cyclotrons and accelerators Numbers of accelerators worldwide: type and application TOTAL TOTAL ~ 42 400 ~ 42 400 Electron Protons and ions Science Industry Accelerators Accelerators ~ 1 200 ~ 27 000 27 000 12 000 Medicine Protons ~ 14 200 Accelerators Ion implantation in 4 000 microelectronics ~ 1.5 B$/year Cost of food after sterilization ~ 500 B$/year 20.11.2020 Lecture No 5: Production of radioactive isotopes: cyclotrons and accelerators V.N. Kornoukhov 2 Accelerators for radionuclide production Characterization of accelerators for radionuclide production General cross-sectional behavior for nuclear reactions as a function of the The number of charged particles is usually measured as an electric current incident particle energy. Since the proton has to overcome the Coulomb in microamperes (1 μA = 6 × 1012 protons/s = 3 × 1012 alpha/s) barrier, there is a threshold that is not present for the neutron. Even very low energy neutrons can penetrate into the nucleus to cause a nuclear reaction. In the classic sense, a reaction between a charged particle and a nucleus cannot take place if the center of mass energy of the two particles is less than the Coulomb barrier. It implies that the charged particle must have an energy greater than the electrostatic repulsion, which is given by the following B = Zˑzˑe2/R where B is the barrier to the reaction; Z and z are the atomic numbers of the two species; R is the separation of the two species (cm). 20.11.2020 Lecture No 5: Production of radioactive isotopes: cyclotrons and accelerators V.N.
    [Show full text]
  • Protocol for Heavy Charged-Particle Therapy Beam Dosimetry
    AAPM REPORT NO. 16 PROTOCOL FOR HEAVY CHARGED-PARTICLE THERAPY BEAM DOSIMETRY Published by the American Institute of Physics for the American Association of Physicists in Medicine AAPM REPORT NO. 16 PROTOCOL FOR HEAVY CHARGED-PARTICLE THERAPY BEAM DOSIMETRY A REPORT OF TASK GROUP 20 RADIATION THERAPY COMMITTEE AMERICAN ASSOCIATION OF PHYSICISTS IN MEDICINE John T. Lyman, Lawrence Berkeley Laboratory, Chairman Miguel Awschalom, Fermi National Accelerator Laboratory Peter Berardo, Lockheed Software Technology Center, Austin TX Hans Bicchsel, 1211 22nd Avenue E., Capitol Hill, Seattle WA George T. Y. Chen, University of Chicago/Michael Reese Hospital John Dicello, Clarkson University Peter Fessenden, Stanford University Michael Goitein, Massachusetts General Hospital Gabrial Lam, TRlUMF, Vancouver, British Columbia Joseph C. McDonald, Battelle Northwest Laboratories Alfred Ft. Smith, University of Pennsylvania Randall Ten Haken, University of Michigan Hospital Lynn Verhey, Massachusetts General Hospital Sandra Zink, National Cancer Institute April 1986 Published for the American Association of Physicists in Medicine by the American Institute of Physics Further copies of this report may be obtained from Executive Secretary American Association of Physicists in Medicine 335 E. 45 Street New York. NY 10017 Library of Congress Catalog Card Number: 86-71345 International Standard Book Number: 0-88318-500-8 International Standard Serial Number: 0271-7344 Copyright © 1986 by the American Association of Physicists in Medicine All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means (electronic, mechanical, photocopying, recording, or otherwise) without the prior written permission of the publisher. Published by the American Institute of Physics, Inc., 335 East 45 Street, New York, New York 10017 Printed in the United States of America Contents 1 Introduction 1 2 Heavy Charged-Particle Beams 3 2.1 ParticleTypes .........................
    [Show full text]
  • Future Muon Source Possibilities at the SNS
    ORNL/TM-2017/165 Future Muon Source Possibilities at the SNS Gregory J. MacDougall Travis J. Williams Date: March 28, 2017 DOCUMENT AVAILABILITY Reports produced after January 1, 1996, are generally available free via US Department of Energy (DOE) SciTech Connect. Website http://www.osti.gov/scitech/ Reports produced before January 1, 1996, may be purchased by members of the public from the following source: National Technical Information Service 5285 Port Royal Road Springfield, VA 22161 Telephone 703-605-6000 (1-800-553-6847) TDD 703-487-4639 Fax 703-605-6900 E-mail [email protected] Website http://www.ntis.gov/help/ordermethods.aspx Reports are available to DOE employees, DOE contractors, Energy Technology Data Exchange representatives, and International Nuclear Information System representatives from the following source: Office of Scientific and Technical Information PO Box 62 Oak Ridge, TN 37831 Telephone 865-576-8401 Fax 865-576-5728 E-mail [email protected] Website http://www.osti.gov/contact.html This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof.
    [Show full text]