The Determination of Asteroid Proper Elements

Total Page:16

File Type:pdf, Size:1020Kb

The Determination of Asteroid Proper Elements Knezevic et al.: Determination of Asteroid Proper Elements 603 The Determination of Asteroid Proper Elements Z. Knezevic Astronomical Observatory, Belgrade A. Lemaître Facultes Universitaires Notre-Dame de la Paix, Namur A. Milani University of Pisa Following a brief historical introduction, we first demonstrate that proper elements are quasi- integrals of motion and show how they are used to classify asteroids into families and study the long-term dynamics of asteroids. Then, we give a complete overview of the analytical, semi- analytical, and synthetic theories for the determination of proper elements of asteroids, with a special emphasis on the comparative advantages/disadvantages of the methods, and on the accuracy and availability of the computed proper elements. We also discuss special techniques applied in some particular cases (mean motion and secular resonant bodies). Finally, we draw conclusions and suggest directions for future work. 1. INTRODUCTION demonstrate that certain asteroids tend to cluster around special values of the orbital elements, which very closely The computation of asteroid proper elements is certainly correspond to the constants of integration of the solutions one of the fields of asteroid research that has undergone the of the equations of their motion, i.e., to a sort of averaged most remarkable development in the last decade. The accu- characteristic of their motion over very long timespans. In racy and efficiency of the methods introduced in this period his later papers Hirayama (1923, 1928) explicitly computed improved dramatically. Thus we were able to solve many just the proper elements (proper semimajor axis, proper problems that puzzled researchers in previous times. We eccentricity, and proper inclination) and used them for the could also recognize and investigate an entire spectrum of classification of asteroids into families. new problems, from novel classes of dynamical behavior to The next important contribution came from Brouwer different phenomena that were previously either completely (1951). He computed asteroid proper elements again using unknown or impossible to investigate with available tools. a linear theory of secular perturbations, but in combination The history, definition, and applications of proper ele- with an improved theory of motion of the perturbing plan- ments are described in great detail in a number of reviews ets (Brouwer and Van Woerkom, 1950). By including more (e.g., Valsecchi et al., 1989; Shoemaker et al., 1989; Lemaître, accurate values of planetary masses, and the effect of the 1993; Knezevic and Milani, 1994; Knezevic, 1994). How- “great inequality” of Jupiter and Saturn, he was able to get a ever, for the sake of completeness, these topics are tackled more realistic value for the precession rate of the perihelion in the following sections. of Saturn. Williams (1969) developed a semianalytic theory of as- 1.1. Historical Overview teroid secular perturbations that does not make use of a truncated development of the perturbing function, and A classical definition states that proper elements are which is therefore applicable to asteroids with arbitrary quasi-integrals of motion, and that they are therefore nearly eccentricity and inclination. Williams’ proper eccentricity constant in time. Alternatively, one can say that they are and proper inclination are defined as values acquired when true integrals, but of a conveniently simplified dynamical the argument of perihelion ω = 0 (thus corresponding to the system. In any case, proper elements are obtained as a re- minimum of eccentricity and the maximum of inclination sult of the elimination of short and long periodic perturba- over a cycle of ω). The theory is linearized in planetary tions from their instantaneous, osculating counterparts, and masses, eccentricities, and inclinations, so that the proper thus represent a kind of “average” characteristics of motion. elements computed by means of this theory (Williams, A concept of proper elements has been introduced by 1979, 1989), even if much better than the previously avail- Hirayama (1918) in his celebrated paper in which he an- able ones, were still of limited accuracy. nounced the discovery of asteroid families. Even if not Another achievement to be mentioned is that by Kozai using the technical term “proper,” he employed Lagrange’s (1979), who used his theory of secular perturbations for classical linear theory of asteroid secular perturbations to high-inclination asteroids (Kozai, 1962) to define a set of 603 604 Asteroids III proper parameters to identify the families. The selected 0.08 parameters were semimajor axis, z component of the angu- lar momentum (integral of motion in a first-order theory, 0.06 with perturbing planets moving on circular, planar orbits), and the minimum value of inclination over the cycle of the 0.04 argument of perihelion (corresponding to ω = π/2). ) e Finally, we refer readers to the work by Schubart (1982, e p ϖ 0.02 1991), Bien and Schubart (1987), and Schubart and Bien (1987), who pioneered attempts to determine the proper pa- f C 0 rameters for resonant groups, i.e., for Hildas and Trojans. h = e sin( O Since the usual averaging methods do not apply in this case, they adopted slightly different definitions of the proper –0.02 parameters, the most important difference being the substitu- tion of a representative value measuring the libration of the –0.04 critical argument instead of the usual proper semimajor axis. –0.06 1.2. Proper Elements/Parameters –0.06 –0.04 –0.02 0 0.02 0.04 0.06 0.08 k = e cos(ϖ) The notion of proper elements is based on the linear theory of secular perturbations, which dates back to Lagrange. Fig. 1. The orbit of the numbered asteroid 27633 over 20,000 yr Linear theory neglects the short periodic perturbations, con- projected in the (k,h) plane (full line). Data have been digitally taining anomalies in the arguments; this results in a constant smoothed to remove short periodic perturbations. Point C repre- sents average value of the forced term, f is forced eccentricity, and semimajor axis that becomes the first proper element ap. The long-term evolution of the other variables is obtained by the dashed circle of radius ep represents the best-fitting epicycle. approximating the “secular” equations of motion with a sys- The value of the eccentricity e, obtained as the length of the vec- torial sum of the forced and the free terms, is an approximation tem of linear differential equations. Because of the linear- of the current value. ity assumption, the solutions can be represented in the planes (k,h) = (e cos ϖ, e sin ϖ) as the sum of “proper modes,” one for each planet, plus one for the asteroid. Thus the solu- tion can be represented by epicyclic motion: For the aster- system, rather than a simple linear one, is by itself complex, oid, the sum of the contributions from the planets represents even if it admits integrals that are used as proper elements. the “forced” term, while the additional circular motion is the Whatever the type of theory, on the other hand, if it is so-called “free oscillation” and its amplitude is the proper to be accurate enough to represent the dynamics in the eccentricity ep. The same applies to the plane (q,p) = (sin i framework of a realistic model, its full-detail description cos Ω, sin i sin Ω), with amplitude of the free term given requires delving into a very long list of often cumbersome by the (sine of) proper inclination sin ip. Figure 1 shows the technicalities. For this reason, in the present paper we only output of a numerical integration of an asteroid’s orbit for give a qualitative description of the computational proce- 20,000 yr plotted in the (k,h) plane, and an epicyclic model dures, and then proceed to discuss the quality of the results. fitting to the data. As is apparent from the figure, the ap- Several different sets of proper parameters have been proximation of the linear secular perturbation theory is good introduced over time, but the most common set, usually enough for a timespan of the order of the period of circula- referred to as “proper elements,” includes proper semima- ϖ tion for the longitude of perihelion . However, even over jor axis ap, proper eccentricity ep, (sine of) proper inclina- ϖ such a timespan the linear theory is only an approximation, tion (sin) ip, proper longitude of perihelion p, and proper Ω and over a much longer timespan (e.g., millions of years) longitude of node p, the latter two angles being accompa- it would be a rather poor approximation in most cases. nied by their precession rates (fundamental frequencies g Proper elements can also be obtained from the output of and s respectively). a numerical integration of the full equations of motion: The The analytical theories and the previously mentioned simplest method is to take averages of the actionlike vari- theory by Williams (1969) use a different definition of ables a, e, i, over times much longer than the periods of cir- proper eccentricity and inclination. Other authors introduced culation of the corresponding angular variables. However, completely different parameters to replace the standard this method provides proper elements of low reliability: The proper elements. Still, the common feature of all these pa- dynamical state can change for unstable orbits and in such rameters is their supposed near constancy in time (or more cases the simple average wipes out this essential informa- precisely, stability over very long timespans), and one can tion. Thus, if the goal is to compute proper elements stable say that in this sense the term “proper” is practically a syn- to 1% of their value or better, over timespans of millions of onym for “invariable.” years, it is necessary to use much more complicated theories.
Recommended publications
  • The Recent Breakup of an Asteroid in the Main-Belt Region
    letters to nature .............................................................. (see Methods section). The recent breakup of an asteroid in The orbital distribution of the 39-body cluster is diagonally shaped in (a P, e P), and appears to fit inside one of the similarly the main-belt region shaped ‘equivelocity’ ellipses shown in Fig. 1. To create these ellipses, we launched test bodies isotropically from the centre of David Nesvorny´, William F. Bottke Jr, Luke Dones & Harold F. Levison the cluster (presumably the impact site) at a selected velocity impulse dV. Using Gauss’s equations (see, for example, ref. 14), Southwest Research Institute, 1050 Walnut St, Suite 426, Boulder, Colorado we then computed the change in their proper elements (da P, de P, 80302, USA diP). To determine the size, shape and orientation of the ellipses, we ............................................................................................................................................................................. experimented with various values of Vmax, the maximum velocity The present population of asteroids in the main belt is largely the 1,2 among our test bodies, the true anomaly f of the parent body (that result of many past collisions . Ideally, the asteroid fragments is, the angle between the parent body’s location and the perihelion resulting from each impact event could help us understand the of its orbit) and the parent body’s perihelion argument q at the large-scale collisions that shaped the planets during early instant of the impact (that is, the angle between the perihelion and epochs3–5. Most known asteroid fragment families, however, are the ascending node). very old and have therefore undergone significant collisional and We found that ellipsoids having V < 15 m s21, dynamical evolution since their formation6.
    [Show full text]
  • The Minor Planet Bulletin
    THE MINOR PLANET BULLETIN OF THE MINOR PLANETS SECTION OF THE BULLETIN ASSOCIATION OF LUNAR AND PLANETARY OBSERVERS VOLUME 36, NUMBER 3, A.D. 2009 JULY-SEPTEMBER 77. PHOTOMETRIC MEASUREMENTS OF 343 OSTARA Our data can be obtained from http://www.uwec.edu/physics/ AND OTHER ASTEROIDS AT HOBBS OBSERVATORY asteroid/. Lyle Ford, George Stecher, Kayla Lorenzen, and Cole Cook Acknowledgements Department of Physics and Astronomy University of Wisconsin-Eau Claire We thank the Theodore Dunham Fund for Astrophysics, the Eau Claire, WI 54702-4004 National Science Foundation (award number 0519006), the [email protected] University of Wisconsin-Eau Claire Office of Research and Sponsored Programs, and the University of Wisconsin-Eau Claire (Received: 2009 Feb 11) Blugold Fellow and McNair programs for financial support. References We observed 343 Ostara on 2008 October 4 and obtained R and V standard magnitudes. The period was Binzel, R.P. (1987). “A Photoelectric Survey of 130 Asteroids”, found to be significantly greater than the previously Icarus 72, 135-208. reported value of 6.42 hours. Measurements of 2660 Wasserman and (17010) 1999 CQ72 made on 2008 Stecher, G.J., Ford, L.A., and Elbert, J.D. (1999). “Equipping a March 25 are also reported. 0.6 Meter Alt-Azimuth Telescope for Photometry”, IAPPP Comm, 76, 68-74. We made R band and V band photometric measurements of 343 Warner, B.D. (2006). A Practical Guide to Lightcurve Photometry Ostara on 2008 October 4 using the 0.6 m “Air Force” Telescope and Analysis. Springer, New York, NY. located at Hobbs Observatory (MPC code 750) near Fall Creek, Wisconsin.
    [Show full text]
  • Near-Infrared Observations of Active Asteroid (3200) Phaethon Reveal No Evidence for Hydration ✉ Driss Takir 1,7 , Theodore Kareta 2, Joshua P
    ARTICLE https://doi.org/10.1038/s41467-020-15637-7 OPEN Near-infrared observations of active asteroid (3200) Phaethon reveal no evidence for hydration ✉ Driss Takir 1,7 , Theodore Kareta 2, Joshua P. Emery3, Josef Hanuš 4, Vishnu Reddy2, Ellen S. Howell2, Andrew S. Rivkin5 & Tomoko Arai6 Asteroid (3200) Phaethon is an active near-Earth asteroid and the parent body of the Geminid Meteor Shower. Because of its small perihelion distance, Phaethon’s surface reaches 1234567890():,; temperatures sufficient to destabilize hydrated materials. We conducted rotationally resolved spectroscopic observations of this asteroid, mostly covering the northern hemisphere and the equatorial region, beyond 2.5-µm to search for evidence of hydration on its surface. Here we show that the observed part of Phaethon does not exhibit the 3-µm hydrated mineral absorption (within 2σ). These observations suggest that Phaethon’s modern activity is not due to volatile sublimation or devolatilization of phyllosilicates on its surface. It is possible that the observed part of Phaethon was originally hydrated and has since lost volatiles from its surface via dehydration, supporting its connection to the Pallas family, or it was formed from anhydrous material. 1 JETS/ARES, NASA Johnson Space Center, Houston, TX 77058-3696, USA. 2 Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ 85721- 0092, USA. 3 Department of Astronomy and Planetary Sciences, Northern Arizona University, Flagstaff, AZ 86011, USA. 4 Institute of Astronomy, Charles University, CZ-18000 Prague 8, Czech Republic. 5 Johns Hopkins University Applied Physics Laboratory, Laurel, MD 20273, USA. 6 Planetary Exploration Research Center, Chiba Institute of Technology, Narashino, Japan.
    [Show full text]
  • The Solar System
    5 The Solar System R. Lynne Jones, Steven R. Chesley, Paul A. Abell, Michael E. Brown, Josef Durech,ˇ Yanga R. Fern´andez,Alan W. Harris, Matt J. Holman, Zeljkoˇ Ivezi´c,R. Jedicke, Mikko Kaasalainen, Nathan A. Kaib, Zoran Kneˇzevi´c,Andrea Milani, Alex Parker, Stephen T. Ridgway, David E. Trilling, Bojan Vrˇsnak LSST will provide huge advances in our knowledge of millions of astronomical objects “close to home’”– the small bodies in our Solar System. Previous studies of these small bodies have led to dramatic changes in our understanding of the process of planet formation and evolution, and the relationship between our Solar System and other systems. Beyond providing asteroid targets for space missions or igniting popular interest in observing a new comet or learning about a new distant icy dwarf planet, these small bodies also serve as large populations of “test particles,” recording the dynamical history of the giant planets, revealing the nature of the Solar System impactor population over time, and illustrating the size distributions of planetesimals, which were the building blocks of planets. In this chapter, a brief introduction to the different populations of small bodies in the Solar System (§ 5.1) is followed by a summary of the number of objects of each population that LSST is expected to find (§ 5.2). Some of the Solar System science that LSST will address is presented through the rest of the chapter, starting with the insights into planetary formation and evolution gained through the small body population orbital distributions (§ 5.3). The effects of collisional evolution in the Main Belt and Kuiper Belt are discussed in the next two sections, along with the implications for the determination of the size distribution in the Main Belt (§ 5.4) and possibilities for identifying wide binaries and understanding the environment in the early outer Solar System in § 5.5.
    [Show full text]
  • Deep Space Chronicle Deep Space Chronicle: a Chronology of Deep Space and Planetary Probes, 1958–2000 | Asifa
    dsc_cover (Converted)-1 8/6/02 10:33 AM Page 1 Deep Space Chronicle Deep Space Chronicle: A Chronology ofDeep Space and Planetary Probes, 1958–2000 |Asif A.Siddiqi National Aeronautics and Space Administration NASA SP-2002-4524 A Chronology of Deep Space and Planetary Probes 1958–2000 Asif A. Siddiqi NASA SP-2002-4524 Monographs in Aerospace History Number 24 dsc_cover (Converted)-1 8/6/02 10:33 AM Page 2 Cover photo: A montage of planetary images taken by Mariner 10, the Mars Global Surveyor Orbiter, Voyager 1, and Voyager 2, all managed by the Jet Propulsion Laboratory in Pasadena, California. Included (from top to bottom) are images of Mercury, Venus, Earth (and Moon), Mars, Jupiter, Saturn, Uranus, and Neptune. The inner planets (Mercury, Venus, Earth and its Moon, and Mars) and the outer planets (Jupiter, Saturn, Uranus, and Neptune) are roughly to scale to each other. NASA SP-2002-4524 Deep Space Chronicle A Chronology of Deep Space and Planetary Probes 1958–2000 ASIF A. SIDDIQI Monographs in Aerospace History Number 24 June 2002 National Aeronautics and Space Administration Office of External Relations NASA History Office Washington, DC 20546-0001 Library of Congress Cataloging-in-Publication Data Siddiqi, Asif A., 1966­ Deep space chronicle: a chronology of deep space and planetary probes, 1958-2000 / by Asif A. Siddiqi. p.cm. – (Monographs in aerospace history; no. 24) (NASA SP; 2002-4524) Includes bibliographical references and index. 1. Space flight—History—20th century. I. Title. II. Series. III. NASA SP; 4524 TL 790.S53 2002 629.4’1’0904—dc21 2001044012 Table of Contents Foreword by Roger D.
    [Show full text]
  • Origin of the Near-Earth Asteroid Phaethon and the Geminids Meteor Shower
    University of Central Florida STARS Faculty Bibliography 2010s Faculty Bibliography 1-1-2010 Origin of the near-Earth asteroid Phaethon and the Geminids meteor shower J. de León H. Campins University of Central Florida K. Tsiganis A. Morbidelli J. Licandro Find similar works at: https://stars.library.ucf.edu/facultybib2010 University of Central Florida Libraries http://library.ucf.edu This Article is brought to you for free and open access by the Faculty Bibliography at STARS. It has been accepted for inclusion in Faculty Bibliography 2010s by an authorized administrator of STARS. For more information, please contact [email protected]. Recommended Citation de León, J.; Campins, H.; Tsiganis, K.; Morbidelli, A.; and Licandro, J., "Origin of the near-Earth asteroid Phaethon and the Geminids meteor shower" (2010). Faculty Bibliography 2010s. 92. https://stars.library.ucf.edu/facultybib2010/92 A&A 513, A26 (2010) Astronomy DOI: 10.1051/0004-6361/200913609 & c ESO 2010 Astrophysics Origin of the near-Earth asteroid Phaethon and the Geminids meteor shower J. de León1,H.Campins2,K.Tsiganis3, A. Morbidelli4, and J. Licandro5,6 1 Instituto de Astrofísica de Andalucía-CSIC, Camino Bajo de Huétor 50, 18008 Granada, Spain e-mail: [email protected] 2 University of Central Florida, PO Box 162385, Orlando, FL 32816.2385, USA e-mail: [email protected] 3 Department of Physics, Aristotle University of Thessaloniki, 54 124 Thessaloniki, Greece 4 Departement Casiopée: Universite de Nice - Sophia Antipolis, Observatoire de la Cˆote d’Azur, CNRS 4, 06304 Nice, France 5 Instituto de Astrofísica de Canarias (IAC), C/Vía Láctea s/n, 38205 La Laguna, Spain 6 Department of Astrophysics, University of La Laguna, 38205 La Laguna, Tenerife, Spain Received 5 November 2009 / Accepted 26 January 2010 ABSTRACT Aims.
    [Show full text]
  • Widespread Water Among Primitive Asteroid Families: New Insights from the Main Belt Comets
    EPSC Abstracts Vol. 13, EPSC-DPS2019-892-1, 2019 EPSC-DPS Joint Meeting 2019 c Author(s) 2019. CC Attribution 4.0 license. Widespread water among primitive asteroid families: new insights from the main belt comets Bojan Novakovic´ (1) and Henry Hsieh (2,3) (1) University of Belgrade, Serbia, (2) Planetary Science Institute, USA, (3) Academia Sinica Institute of Astronomy and Astrophysics, Taiwan, ([email protected]) Abstract The obtained results are summarized in Table 1. For the first time we found active asteroids associated to We present new results regarding the association of the Pallas and Luthera families, namely P/2017 S8 and main belt comets to asteroid families. We find three P/2019 A7, respectively. new firm links, and three potential associations. These results further strengthen the link between the main Table 1: A list of asteroid family associations of newly belt comets and compositionally primitive asteroid discovered main belt comet candidates. families. MBC candidate Family 1. Introduction P/2016 P1 (PANSTARRS) Euphrosyne? P/2017 S8 (PANSTARRS) Pallas Main belt comets (MBCs) are a subgroup of active as- P/2017 S5 (PANSTARRS) Theobalda teroids, which exhibit visible mass loss activity yet P/2017 S9 (PANSTARRS) Theobalda? are dynamically asteroidal, for which it is believed P/2019 A3 (PANSTARRS) Theobalda? that observed activity is driven by the sublimation of P/2019 A4 (PANSTARRS) None? volatile ices [1, 2]. Our recent work has demonstrated P/2019 A7 (PANSTARRS) Luthera that all MBCs associated to collisional families be- P/2019 A8 (PANSTARRS) None? long to families with primitive taxonomic classifica- tions [3].
    [Show full text]
  • An Ancient and a Primordial Collisional Family As the Main Sources of X-Type Asteroids of the Inner Main Belt
    Astronomy & Astrophysics manuscript no. agapi2019.01.22_R1 c ESO 2019 February 6, 2019 An ancient and a primordial collisional family as the main sources of X-type asteroids of the inner Main Belt ∗ Marco Delbo’1, Chrysa Avdellidou1; 2, and Alessandro Morbidelli1 1 Université Côte d’Azur, CNRS–Lagrange, Observatoire de la Côte d’Azur, CS 34229 – F 06304 NICE Cedex 4, France e-mail: [email protected] e-mail: [email protected] 2 Science Support Office, Directorate of Science, European Space Agency, Keplerlaan 1, NL-2201 AZ Noordwijk ZH, The Netherlands. Received February 6, 2019; accepted February 6, 2019 ABSTRACT Aims. The near-Earth asteroid population suggests the existence of an inner Main Belt source of asteroids that belongs to the spec- troscopic X-complex and has moderate albedos. The identification of such a source has been lacking so far. We argue that the most probable source is one or more collisional asteroid families that escaped discovery up to now. Methods. We apply a novel method to search for asteroid families in the inner Main Belt population of asteroids belonging to the X- complex with moderate albedo. Instead of searching for asteroid clusters in orbital elements space, which could be severely dispersed when older than some billions of years, our method looks for correlations between the orbital semimajor axis and the inverse size of asteroids. This correlation is the signature of members of collisional families, which drifted from a common centre under the effect of the Yarkovsky thermal effect. Results. We identify two previously unknown families in the inner Main Belt among the moderate-albedo X-complex asteroids.
    [Show full text]
  • Nature of Bright C-Complex Asteroids
    Publ. Astron. Soc. Japan (2014) 00(0), 1–20 1 doi: 10.1093/pasj/xxx000 Nature of bright C-complex asteroids Sunao HASEGAWA,1,* Toshihiro KASUGA,2 Fumihiko USUI,3 and Daisuke KURODA4 1Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, 3-1-1 Yoshinodai, Chuo-ku, Sagamihara 252-5210, Japan 2Public Relations Center, National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka-shi, Tokyo 181-8588, Japan 3Center for Planetary Science, Graduate School of Science, Kobe University, 7-1-48, Minatojima-minamimachi, Chuo-Ku, Kobe 650-0047, Japan 4Okayama Astronomical Observatory, Graduate School of Science, Kyoto University, 3037-5 Honjo, Kamogata-cho, Asakuchi, Okayama 719-0232, Japan ∗E-mail: [email protected] Received ; Accepted Abstract Most C-complex asteroids have albedo values less than 0.1, but there are some high-albedo (bright) C-complex asteroids with albedo values exceeding 0.1. To reveal the nature and origin of bright C-complex asteroids, we conducted spectroscopic observations of the asteroids in visible and near-infrared wavelength regions. As a result, the bright B-, C-, and Ch-type (Bus) asteroids, which are subclasses of the Bus C-complex, are classified as DeMeo C-type aster- oids with concave curvature, B-, Xn-, and K-type asteroids. Analogue meteorites and material (CV/CK chondrites, enstatite chondrites/achondrites, and salts) associated with these spec- tral types of asteroids are thought to be composed of minerals and material exposed to high temperatures. A comparison of the results obtained in this study with the SDSS photometric data suggests that salts may have occurred in the parent bodies of 24 Themis and 10 Hygiea, as well as 2 Pallas.
    [Show full text]
  • The Minor Planet Bulletin
    THE MINOR PLANET BULLETIN OF THE MINOR PLANETS SECTION OF THE BULLETIN ASSOCIATION OF LUNAR AND PLANETARY OBSERVERS VOLUME 35, NUMBER 3, A.D. 2008 JULY-SEPTEMBER 95. ASTEROID LIGHTCURVE ANALYSIS AT SCT/ST-9E, or 0.35m SCT/STL-1001E. Depending on the THE PALMER DIVIDE OBSERVATORY: binning used, the scale for the images ranged from 1.2-2.5 DECEMBER 2007 – MARCH 2008 arcseconds/pixel. Exposure times were 90–240 s. Most observations were made with no filter. On occasion, e.g., when a Brian D. Warner nearly full moon was present, an R filter was used to decrease the Palmer Divide Observatory/Space Science Institute sky background noise. Guiding was used in almost all cases. 17995 Bakers Farm Rd., Colorado Springs, CO 80908 [email protected] All images were measured using MPO Canopus, which employs differential aperture photometry to determine the values used for (Received: 6 March) analysis. Period analysis was also done using MPO Canopus, which incorporates the Fourier analysis algorithm developed by Harris (1989). Lightcurves for 17 asteroids were obtained at the Palmer Divide Observatory from December 2007 to early The results are summarized in the table below, as are individual March 2008: 793 Arizona, 1092 Lilium, 2093 plots. The data and curves are presented without comment except Genichesk, 3086 Kalbaugh, 4859 Fraknoi, 5806 when warranted. Column 3 gives the full range of dates of Archieroy, 6296 Cleveland, 6310 Jankonke, 6384 observations; column 4 gives the number of data points used in the Kervin, (7283) 1989 TX15, 7560 Spudis, (7579) 1990 analysis. Column 5 gives the range of phase angles.
    [Show full text]
  • (K)Cudos at Ψtucson
    (K)CUDOs at ΨTucson Work based on collaborative effort with present/former AZ students: Jeremiah Birrell and Lance Labun with contributions from exchange student from Germany Ch. Dietl. Johann Rafelski (UA-Physics) (K)CUDOS at ΨTucson PSITucson,April11,2013 1/39 1. Introduction 2. Dark Matter (CDM) Generalities 3. Strangeletts 4. Dark Matter (DM) CUDOs 5. CUDO impacts Johann Rafelski (UA-Physics) (K)CUDOS at ΨTucson PSITucson,April11,2013 2/39 kudos (from Greek kyddos, singular) = honor; glory; acclaim; praise kudo = back formation from kudos construed as a plural cud (Polish, pronounced c-ood) = miracle cudo (colloq. Polish) = of surprising and exceptional character CUDO=Compact UltraDense Object: A new opportunity to search for dark matter. Not dark matter in form of elementary particles (all present day searches) but (self) bound dark matter. Either an ultra-compact impactor or/and condensation seed for comets. There is a lot of dark matter around, cosmological abundance limit shown below. Johann Rafelski (UA-Physics) (K)CUDOS at ΨTucson PSITucson,April11,2013 3/39 A new type of meteors What if there are ‘dark’ matter meteor and asteroid-like bodies in the Universe? Could some of them have collided with solar system bodies and the Earth? Are they dressed in visible matter from prior impacts and as condensation seeds? CUDOs’ high density of gravitating matter provides the distinct observable, the surface-penetrating puncture: shot through Only a fraction of the kinetic energy damaging the solid surface. Johann Rafelski (UA-Physics) (K)CUDOS at ΨTucson PSITucson,April11,2013 4/39 Asteroids of high density Fruitful Discussions with Marshall Eubanks lead to these data.
    [Show full text]
  • Ages of Asteroid Families Affected by Secular Resonances
    Ages of Asteroid Families Affected by Secular Resonances Zoran Kneˇzevic´ Serbian Academy of Sciences and Arts, Belgrade Dynamics and chaos in astronomy and physics, Luchon, September 20, 2016 Kneˇzevic´ Asteroid family ages In collaboration with: Andrea Milani Federica Spoto Alberto Cellino Bojan Novakovic´ Georgios Tsirvoulis Submitted to ICARUS Kneˇzevic´ Asteroid family ages Asteroid proper elements Definition: Proper elements are quasi-integrals of the equations of motion in the N-body problem. In practice: Integrals of simplified dynamics. Nearly constant in time. Deviation from constancy ⇒ measure of accuracy. Analytical proper elements: Milani, A., and Z. Kneˇzevic:´ 1990, Secular perturbation theory and computation of asteroid proper elements. Celestial Mechanics 49, 347–411. Synthetic proper elements: Kneˇzevic,´ Z., and A. Milani: 2000, Synthetic proper elements for outer main belt asteroids. Celest. Mech. Dyn. Astron. 78, 17–46. Secular resonant proper elements: Morbidelli, A.: 1993, Asteroid Secular Resonant Proper Elements.Icarus 105, 48–66. Kneˇzevic´ Asteroid family ages Parameters for classification into families Osculating vs. proper elements Kneˇzevic´ Asteroid family ages Hierarchical Clustering Method (HCM) Gauss equations; Nearest neighbor selection; Standard metrics: δap 2 2 2 ∆= nap k1( ) + k2δep + k3δIp s ap where ∆ is the distance function and the values of the coefficients are k1 = 5/4, k2 = k3 = 2. The distance has the dimension of velocity (expressed in m/s). Minimum number of members Nmin; Quasy Random Level (QRL) and/or dcutoff . Kneˇzevic´ Asteroid family ages Problems: mean motion (A.Milani’s talk) and secular resonances. Definition: Secular resonances are locations in the phase space where linear combinations of fundamental frequencies allowed by D’Alembert rules equal zero.
    [Show full text]