Antimicrobial Peptides: a New Hope in Biomedical and Pharmaceutical Fields

Total Page:16

File Type:pdf, Size:1020Kb

Antimicrobial Peptides: a New Hope in Biomedical and Pharmaceutical Fields REVIEW published: 14 June 2021 doi: 10.3389/fcimb.2021.668632 Antimicrobial Peptides: A New Hope in Biomedical and Pharmaceutical Fields † † † † Antonio Moretta 1 , Carmen Scieuzo 1,2 , Anna Maria Petrone 1 , Rosanna Salvia 1,2 , Michele Dario Manniello 1, Antonio Franco 1,2, Donatella Lucchetti 3, Antonio Vassallo 1, Heiko Vogel 4, Alessandro Sgambato 3,5* and Patrizia Falabella 1,2* 1 Department of Sciences, University of Basilicata, Potenza, Italy, 2 Spinoff XFlies s.r.l, University of Basilicata, Potenza, Italy, 3 Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy, 4 Department of Edited by: Entomology, Max Planck Institute for Chemical Ecology, Jena, Germany, 5 Centro di Riferimento Oncologico della Basilicata Francesc Rabanal, (IRCCS-CROB), Rionero in Vulture, Italy University of Barcelona, Spain Reviewed by: Surajit Bhattacharjya, Antibiotics are essential drugs used to treat pathogenic bacteria, but their prolonged use Nanyang Technological University, contributes to the development and spread of drug-resistant microorganisms. Antibiotic Singapore resistance is a serious challenge and has led to the need for new alternative molecules less Clara Balleste, Instituto Salud Global Barcelona prone to bacterial resistance. Antimicrobial peptides (AMPs) have aroused great interest (ISGlobal), Spain as potential next-generation antibiotics, since they are bioactive small proteins, naturally *Correspondence: produced by all living organisms, and representing the first line of defense against fungi, Patrizia Falabella fi [email protected] viruses and bacteria. AMPs are commonly classi ed according to their sources, which are Alessandro Sgambato represented by microorganisms, plants and animals, as well as to their secondary [email protected] structure, their biosynthesis and their mechanism of action. They find application in † These authors have contributed different fields such as agriculture, food industry and medicine, on which we focused our equally to this work and share first authorship attention in this review. Particularly, we examined AMP potential applicability in wound healing, skin infections and metabolic syndrome, considering their ability to act as Specialty section: potential Angiotensin-Converting Enzyme I and pancreatic lipase inhibitory peptides as This article was submitted to Clinical Microbiology, well as antioxidant peptides. Moreover, we argued about the pharmacokinetic and a section of the journal pharmacodynamic approaches to develop new antibiotics, the drug development Frontiers in Cellular and Infection Microbiology strategies and the formulation approaches which need to be taken into account in Received: 16 February 2021 developing clinically suitable AMP applications. Accepted: 10 May 2021 Keywords: drug-resistant microorganisms, antimicrobial peptides, biomedical and pharmacological applications, Published: 14 June 2021 pharmacokinetics and pharmacodynamics, drug delivery Citation: Moretta A, Scieuzo C, Petrone AM, Abbreviations: ACE, Angiotensin-Converting Enzyme I; AMP, Antimicrobial Peptide; APD, Antimicrobial Peptide Database; Salvia R, Manniello MD, Franco A, API, Active pharmaceutical ingredient; DDS, Drug Delivery System; Di-Phe, di-phenylalanine; EGFR, Epidermal Growth Lucchetti D, Vassallo A, Vogel H, Factor Receptor; EPL, ϵ-poly-L-lysine; GMO, Glyceryl Monooleate; HBBD, HG-Based Burn Dressings; hBD, Human b Sgambato A and Falabella P (2021) defensin; HG, Hydrogel; IPTG, Isopropyl b- D-1-Thiogalactopyranoside; LPS, Lipopolysaccharides; MRSA, Methicillin- Antimicrobial Peptides: A New Hope in resistant Staphylococcus aureus; PD, Pharmacodynamics; PK, Pharmacokinetics; SARS-CoV-2, Severe Acute Respiratory Biomedical and Pharmaceutical Fields. Syndrome Coronavirus 2; SCID, Severe Combined Immunodeficiency; TLR, Toll-like receptor; WHO, World Health Front. Cell. Infect. Microbiol. 11:668632. Organization; BPS, block polymeric structure; CB, cubosome; CMC, Critical Micelle Concentration; PA, peptide doi: 10.3389/fcimb.2021.668632 amphiphiles; SPPS, Solid Phase Peptide Synthesis. Frontiers in Cellular and Infection Microbiology | www.frontiersin.org1 June 2021 | Volume 11 | Article 668632 Moretta et al. AMPs: Biomedical and Pharmacological Applications INTRODUCTION AMP Properties and Biosynthesis Natural AMPs are evolutionary conserved gene-encoded A wide variety of antimicrobial agents are available today and molecules with structural and functional diversity, which is they are broadly applied to treat different types of human responsible for their wide range of activities against different infections. Specifically, antibiotics are powerful drugs used for pathogens in various organisms (Zhang and Gallo, 2016). treatments of pathogenic bacteria (Lei et al., 2019). However, However, although displaying considerable diversity in their their indiscriminate and prolonged use, especially in developing physio-chemical and structural properties, origins and countries, in both human and veterinary medicine, as well as in mechanisms of action, AMPs share some common features agriculture have contributed to the development and spread of (Moravej et al., 2018). Indeed, they are mostly short molecules drug-resistant microorganisms (Huan et al., 2020). As the World (<100 amino acids) (Pasupuleti et al., 2012), typically with a Health Organization (WHO) has extensively announced, the positive net charge (generally ranging from +2 to +11) and a alarming rise globally in resistance towards conventional notable proportion of hydrophobic residues (typically 50%) antimicrobials represents a potential and serious risk to public (Haney et al., 2017). They display an amphipathic structure, as health (Luong et al., 2020). Therefore, the antibiotic resistance they contain both hydrophobic and hydrophilic regions, that issue has made it urgent to search for alternatives to conventional enable them to be soluble in aqueous environments (Boparai and antibiotics, with novel modes of action and less predisposed to Sharma, 2020). A less common class of AMPs is represented by bacterial resistance. In the quest of new antibiotics, the the anionic AMPs, which have a negative net charge ranging antimicrobial peptides (AMPs), also known as host defense from -1 to -7 and have been identified in vertebrates, peptides, have recently raised great interest (Haney et al., 2019; invertebrates and plants (Harris et al., 2009). They include Bhattacharjya and Straus, 2020; Mahlapuu et al., 2020). Current many negatively charged aspartic and glutamic acid residues, research is focused on these natural compounds as innovative and in animals are found in various vital organs, including the anti-infective drugs and novel immunomodulatory candidates brain, the epidermis, the respiratory and gastrointestinal tracts (Luong et al., 2020; Mahlapuu et al., 2020). (Lakshmaiah Narayana and Chen, 2015). They show a different AMPs are bioactive small proteins, naturally produced by all mechanism of action than the cationic ones. In order to facilitate living organisms as important and indispensable components of their interaction with the target organism, some anionic AMPs their innate immune system, becoming the first-line defense use metal ions to form cationic salt bridges with negatively against microbial attacks in Eukaryotes, or produced as a charged constituents of microbial membranes, allowing their competition strategy in Prokaryotes, to limit the growth of penetration into the cell. When they reach the cytoplasm, they other microorganisms (Lei et al., 2019; Magana et al., 2020). may attach to ribosomes or inhibit ribonuclease activity Natural AMPs have potent and broad-spectrum activity against (Jeżowska-Bojczuk and Stokowa-Sołtys, 2018). Some anionic multiple classes of bacteria, yeasts, fungi, viruses and parasites AMPs, such as theromyzin from Theromyzon tessulatum (Huan et al., 2020; Luong et al., 2020), displaying bacteriostatic, (Tasiemski et al., 2004), require zinc as a functional cofactor microbicidal and cytolytic properties (Pasupuleti et al., 2012). and it was found that the complex with zinc has stronger Moreover, the interest in AMPs has recently increased during the antimicrobial activity (Jiang et al., 2014). Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV- Despite their relative similarity in biophysical characteristics, 2) pandemic in the search of new antiviral molecules to AMP sequences are rarely similar among closely related or counteract COVID-19 disease (Kurpe et al., 2020). distinct species/organisms (Pasupuleti et al., 2012). However, AMPs were discovered in 1939, when the microbiologist René for some AMPs, a certain degree of identity is found either in the Dubos isolated from a soil Bacillus strain, an antimicrobial agent, pro-region (the inactive sequence that is deleted by post- named gramicidin, which was demonstrated to protect mice translational modifications) or in the amino acid patterns. This from pneumococcal infection (Van Epps, 2006). Afterwards, event could be due to species adaptation to the unique microbial several AMPs have been discovered from both the prokaryotic environment that characterize the niche occupied by specific and eukaryotic kingdom (Boparai and Sharma, 2020), including species (Pasupuleti et al., 2012). the tyrocidine, produced by the bacteria Bacillus brevis, with The amphiphilic nature of the majority of AMPs is activity against bacteria, and the purothionin, identified in the responsible for their structural
Recommended publications
  • Histatin-1 Attenuates LPS-Induced Inflammatory Signaling in RAW264
    International Journal of Molecular Sciences Article Histatin-1 Attenuates LPS-Induced Inflammatory Signaling in RAW264.7 Macrophages Sang Min Lee 1 , Kyung-No Son 1, Dhara Shah 1, Marwan Ali 1, Arun Balasubramaniam 1, Deepak Shukla 1,2 and Vinay Kumar Aakalu 1,3,* 1 Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL 60612, USA; [email protected] (S.M.L.); [email protected] (K.-N.S.); [email protected] (D.S.); [email protected] (M.A.); [email protected] (A.B.); [email protected] (D.S.) 2 Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, IL 60612, USA 3 Research and Surgical Services, Jesse Brown VA Medical Center, Chicago, IL 60612, USA * Correspondence: [email protected] Abstract: Macrophages play a critical role in the inflammatory response to environmental triggers, such as lipopolysaccharide (LPS). Inflammatory signaling through macrophages and the innate immune system are increasingly recognized as important contributors to multiple acute and chronic disease processes. Nitric oxide (NO) is a free radical that plays an important role in immune and inflammatory responses as an important intercellular messenger. In addition, NO has an important role in inflammatory responses in mucosal environments such as the ocular surface. Histatin peptides are well-established antimicrobial and wound healing agents. These peptides are important in multiple biological systems, playing roles in responses to the environment and immunomodulation. Citation: Lee, S.M.; Son, K.-N.; Shah, Given the importance of macrophages in responses to environmental triggers and pathogens, we D.; Ali, M.; Balasubramaniam, A.; Shukla, D.; Aakalu, V.K.
    [Show full text]
  • A Novel Secretion and Online-Cleavage Strategy for Production of Cecropin a in Escherichia Coli
    www.nature.com/scientificreports OPEN A novel secretion and online- cleavage strategy for production of cecropin A in Escherichia coli Received: 14 March 2017 Meng Wang 1, Minhua Huang1, Junjie Zhang1, Yi Ma1, Shan Li1 & Jufang Wang1,2 Accepted: 23 June 2017 Antimicrobial peptides, promising antibiotic candidates, are attracting increasing research attention. Published: xx xx xxxx Current methods for production of antimicrobial peptides are chemical synthesis, intracellular fusion expression, or direct separation and purifcation from natural sources. However, all these methods are costly, operation-complicated and low efciency. Here, we report a new strategy for extracellular secretion and online-cleavage of antimicrobial peptides on the surface of Escherichia coli, which is cost-efective, simple and does not require complex procedures like cell disruption and protein purifcation. Analysis by transmission electron microscopy and semi-denaturing detergent agarose gel electrophoresis indicated that fusion proteins contain cecropin A peptides can successfully be secreted and form extracellular amyloid aggregates at the surface of Escherichia coli on the basis of E. coli curli secretion system and amyloid characteristics of sup35NM. These amyloid aggregates can be easily collected by simple centrifugation and high-purity cecropin A peptide with the same antimicrobial activity as commercial peptide by chemical synthesis was released by efcient self-cleavage of Mxe GyrA intein. Here, we established a novel expression strategy for the production of antimicrobial peptides, which dramatically reduces the cost and simplifes purifcation procedures and gives new insights into producing antimicrobial and other commercially-viable peptides. Because of their potent, fast, long-lasting activity against a broad range of microorganisms and lack of bacterial resistance, antimicrobial peptides (AMPs) have received increasing attention1.
    [Show full text]
  • Current Topics in Medicinal Chemistry, 2020, 20, 1291-1299 REVIEW ARTICLE
    Send Orders for Reprints to [email protected] 1291 Current Topics in Medicinal Chemistry, 2020, 20, 1291-1299 REVIEW ARTICLE ISSN: 1568-0266 eISSN: 1873-4294 Impact Factor: The Microbiome: A Reservoir to Discover New Antimicrobials Agents 3.442 The international journal for in-depth reviews on Current Topics in Medicinal Chemistry BENTHAM SCIENCE Sébastien Boutin1,2,* and Alexander H. Dalpke3 1Department of Infectious Diseases, Medical Microbiology and Hygiene, University Hospital Heidelberg, 69120 Hei- delberg, Germany; ²German Center for Lung Research (DZL), TLRC Heidelberg, 69120 Heidelberg, Germany; 3Institute of Medical Microbiology and Hygiene, Medical Faculty, Technische Universität Dresden, 01307 Dresden, Gemany Abstract: Nature offered mankind the first golden era of discovery of novel antimicrobials based on A R T I C L E H I S T O R Y the ability of eukaryotes or micro-organisms to produce such compounds. The microbial world proved to be a huge reservoir of such antimicrobial compounds which play important functional roles in every Received: November 11, 2019 environment. However, most of those organisms are still uncultivable in a classical way, and therefore, Revised: February 10, 2020 the use of extended culture or DNA based methods (metagenomics) to discover novel compounds Accepted: February 17, 2020 promises usefulness. In the past decades, the advances in next-generation sequencing and bioinformat- DOI: 10.2174/1568026620666200320112731 ics revealed the enormous diversity of the microbial worlds and the functional repertoire available for studies. Thus, data-mining becomes of particular interest in the context of the increased need for new antibiotics due to antimicrobial resistance and the rush in antimicrobial discovery.
    [Show full text]
  • Design, Development, and Characterization of Novel Antimicrobial Peptides for Pharmaceutical Applications Yazan H
    University of Arkansas, Fayetteville ScholarWorks@UARK Theses and Dissertations 8-2013 Design, Development, and Characterization of Novel Antimicrobial Peptides for Pharmaceutical Applications Yazan H. Akkam University of Arkansas, Fayetteville Follow this and additional works at: http://scholarworks.uark.edu/etd Part of the Biochemistry Commons, Medicinal and Pharmaceutical Chemistry Commons, and the Molecular Biology Commons Recommended Citation Akkam, Yazan H., "Design, Development, and Characterization of Novel Antimicrobial Peptides for Pharmaceutical Applications" (2013). Theses and Dissertations. 908. http://scholarworks.uark.edu/etd/908 This Dissertation is brought to you for free and open access by ScholarWorks@UARK. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of ScholarWorks@UARK. For more information, please contact [email protected], [email protected]. Design, Development, and Characterization of Novel Antimicrobial Peptides for Pharmaceutical Applications Design, Development, and Characterization of Novel Antimicrobial Peptides for Pharmaceutical Applications A Dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Cell and Molecular Biology by Yazan H. Akkam Jordan University of Science and Technology Bachelor of Science in Pharmacy, 2001 Al-Balqa Applied University Master of Science in Biochemistry and Chemistry of Pharmaceuticals, 2005 August 2013 University of Arkansas This dissertation is approved for recommendation to the Graduate Council. Dr. David S. McNabb Dissertation Director Professor Roger E. Koeppe II Professor Gisela F. Erf Committee Member Committee Member Professor Ralph L. Henry Dr. Suresh K. Thallapuranam Committee Member Committee Member ABSTRACT Candida species are the fourth leading cause of nosocomial infection. The increased incidence of drug-resistant Candida species has emphasized the need for new antifungal drugs.
    [Show full text]
  • Appendix 2. Significantly Differentially Regulated Genes in Term Compared with Second Trimester Amniotic Fluid Supernatant
    Appendix 2. Significantly Differentially Regulated Genes in Term Compared With Second Trimester Amniotic Fluid Supernatant Fold Change in term vs second trimester Amniotic Affymetrix Duplicate Fluid Probe ID probes Symbol Entrez Gene Name 1019.9 217059_at D MUC7 mucin 7, secreted 424.5 211735_x_at D SFTPC surfactant protein C 416.2 206835_at STATH statherin 363.4 214387_x_at D SFTPC surfactant protein C 295.5 205982_x_at D SFTPC surfactant protein C 288.7 1553454_at RPTN repetin solute carrier family 34 (sodium 251.3 204124_at SLC34A2 phosphate), member 2 238.9 206786_at HTN3 histatin 3 161.5 220191_at GKN1 gastrokine 1 152.7 223678_s_at D SFTPA2 surfactant protein A2 130.9 207430_s_at D MSMB microseminoprotein, beta- 99.0 214199_at SFTPD surfactant protein D major histocompatibility complex, class II, 96.5 210982_s_at D HLA-DRA DR alpha 96.5 221133_s_at D CLDN18 claudin 18 94.4 238222_at GKN2 gastrokine 2 93.7 1557961_s_at D LOC100127983 uncharacterized LOC100127983 93.1 229584_at LRRK2 leucine-rich repeat kinase 2 HOXD cluster antisense RNA 1 (non- 88.6 242042_s_at D HOXD-AS1 protein coding) 86.0 205569_at LAMP3 lysosomal-associated membrane protein 3 85.4 232698_at BPIFB2 BPI fold containing family B, member 2 84.4 205979_at SCGB2A1 secretoglobin, family 2A, member 1 84.3 230469_at RTKN2 rhotekin 2 82.2 204130_at HSD11B2 hydroxysteroid (11-beta) dehydrogenase 2 81.9 222242_s_at KLK5 kallikrein-related peptidase 5 77.0 237281_at AKAP14 A kinase (PRKA) anchor protein 14 76.7 1553602_at MUCL1 mucin-like 1 76.3 216359_at D MUC7 mucin 7,
    [Show full text]
  • Alterations of the Salivary Secretory Peptidome Profile in Children Affected by Type 1 Diabetes
    Research Alterations of the Salivary Secretory Peptidome Profile in Children Affected by Type 1 Diabetes Tiziana Cabras*, Elisabetta Pisano†, Andrea Mastinu†, Gloria Denotti†, Pietro Paolo Pusceddu§, Rosanna Inzitari¶, Chiara Fanali¶, Sonia Nemolato‡, Massimo Castagnola¶, and Irene Messana* The acidic soluble fraction of whole saliva of type 1 diabetic creasing in Europe (2). Because type 1 diabetes involves children was analyzed by reversed phase (RP)1–HPLC- many organs and tissues, signs and symptoms of diabetes ESI-MS and compared with that of sex- and age-matched can occur in the oral cavity. Indeed, several studies have control subjects. Salivary acidic proline-rich phospho- shown that the prevalence, severity, and progression of ␣ proteins (aPRP), histatins, -defensins, salivary cyst- periodontal diseases are significantly increased in diabetics, atins, statherin, proline-rich peptide P-B (P-B), beta- and the pathology is considered an important risk factor for thymosins, S100A8 and S100A9*(S100A9* corresponds to periodontitis (3). The study of Lalla et al. (4) showed an S100A9 vairant lacking the first four amino acids), as well some naturally occurring peptides derived from salivary association between diabetes and the increased risk for pe- acidic proline-rich phosphoproteins, histatins, statherin, riodontal destruction even very early in life. Flow rate and and P-B peptide, were detected and quantified on the basis composition of saliva are crucial for the maintenance of oral of the extracted ion current peak area. The level of phos- cavity health, and both have been found altered in diabetic phorylation of salivary acidic proline-rich phosphoproteins, subjects, although with contradictory findings. For instance, histatin-1 (Hst-1), statherin and S100A9* and the percentage several studies reported a reduced resting salivary flow rate in of truncated forms of salivary acidic proline-rich phospho- adults and children who have type 1 diabetes with respect to proteins was also determined in the two groups.
    [Show full text]
  • The Influence of Salivary Statherin, Histatin-1 and Their 21 N-Terminal Peptides Individually and When in Combination on The
    The Influence of Salivary Statherin, Histatin-1 and Their 21 N-terminal Peptides Individually and When in Combination on the Demineralisation of Hydroxyapatite and Enamel. The Effect of Peptides Adsorption, Aggregation, Surface Charge and Secondary Structure Huda Barak A Almandil BDS (KSU), MClinDent Paediatric Dentistry(QMUL) Supervised by Prof. Paul Anderson, Dr Maisoon Al-Jawad Thesis submitted in fulfilment of the requirements for the degree of Doctor of Philosophy in the University of London 2018 Dental Physical Sciences Unit, Institute of Dentistry, Barts and the London School of Medicine and Dentistry, Queen Mary University of London I Huda Barak Almandil, confirm that the research included within this thesis is my own work or that where it has been carried out in collaboration with, or supported by others, that this is duly acknowledged below, and my contribution indicated. Previously published material is also acknowledged below. I attest that I have exercised reasonable care to ensure that the work is original and does not to the best of my knowledge break any UK law, infringe any third party’s copyright or other Intellectual Property Right, or contain any confidential material. I accept that the College has the right to use plagiarism detection software to check the electronic version of the thesis. I confirm that this thesis has not been previously submitted for the award of a degree by this or any other university. The copyright of this thesis rests with the author and no quotation from it or information derived from it may be published without the prior written consent of the author.
    [Show full text]
  • Histatin Peptides: Pharmacological Functions and Their Applications in Dentistry
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Bradford Scholars The University of Bradford Institutional Repository http://bradscholars.brad.ac.uk This work is made available online in accordance with publisher policies. Please refer to the repository record for this item and our Policy Document available from the repository home page for further information. To see the final version of this work please visit the publisher’s website. Access to the published online version may require a subscription. Link to publisher’s version: http://dx.doi.org/10.1016/j.jsps.2016.04.027 Citation: Khurshid Z, Najeeb S, Mali M et al (2016) Histatin peptides: Pharmacological functions and their applications in dentistry. Saudi Pharmaceutical Journal. Copyright statement: © 2016 The Authors. This is an open access article licensed under the Crative Commons CC-BY-NC-ND license. Saudi Pharmaceutical Journal (2016) xxx, xxx–xxx King Saud University Saudi Pharmaceutical Journal www.ksu.edu.sa www.sciencedirect.com REVIEW Histatin peptides: Pharmacological functions and their applications in dentistry Zohaib Khurshid a, Shariq Najeeb b, Maria Mali c, Syed Faraz Moin d, Syed Qasim Raza e, Sana Zohaib f, Farshid Sefat f,g, Muhammad Sohail Zafar h,* a Department of Dental Biomaterials, College of Dentistry, King Faisal University, Al-Ahsa, Saudi Arabia b School of Dentistry, University of Sheffield, Sheffield, UK c Department of Endodontics, Fatima Jinnah Dental College, Karachi, Pakistan d National Centre for Proteomics,
    [Show full text]
  • Histatin Peptides: Pharmacological Functions and Their Applications in Dentistry
    Histatin peptides: Pharmacological functions and their applications in dentistry Item Type Article Authors Khurshid, Z.; Najeeb, S.; Mali, M.; Moin, S.F.; Raza, S.Q.; Zohaib, S.; Sefat, Farshid; Zafar, M.S. Citation Khurshid Z, Najeeb S, Mali M et al (2016) Histatin peptides: Pharmacological functions and their applications in dentistry. Saudi Pharmaceutical Journal. Article in Press. Rights © 2016 The Authors. This is an open access article licensed under the Crative Commons CC-BY-NC-ND license (http:// creativecommons.org/licenses/by-nc-nd/4.0/) Download date 02/10/2021 02:35:32 Link to Item http://hdl.handle.net/10454/8907 The University of Bradford Institutional Repository http://bradscholars.brad.ac.uk This work is made available online in accordance with publisher policies. Please refer to the repository record for this item and our Policy Document available from the repository home page for further information. To see the final version of this work please visit the publisher’s website. Access to the published online version may require a subscription. Link to publisher’s version: http://dx.doi.org/10.1016/j.jsps.2016.04.027 Citation: Khurshid Z, Najeeb S, Mali M et al (2016) Histatin peptides: Pharmacological functions and their applications in dentistry. Saudi Pharmaceutical Journal. Copyright statement: © 2016 The Authors. This is an open access article licensed under the Crative Commons CC-BY-NC-ND license. Saudi Pharmaceutical Journal (2016) xxx, xxx–xxx King Saud University Saudi Pharmaceutical Journal www.ksu.edu.sa www.sciencedirect.com
    [Show full text]
  • Proteomic and Bioinformatics Analysis of Human Saliva for the Dental-Risk
    Open Life Sci. 2017; 12: 248–265 Research Article Galina Laputková*, Mária Bencková, Michal Alexovič, Vladimíra Schwartzová, Ivan Talian, Ján Sabo Proteomic and bioinformatics analysis of human saliva for the dental-risk assessment https://doi.org/10.1515/biol-2017-0030 revealed information about potential risk factors Received June 13, 2017; accepted July 24, 2017 associated with the development of caries-susceptibility and provides a better understanding of tooth protection Abstract: Background: Dental caries disease is a dynamic mechanisms. process with a multi-factorial etiology. It is manifested by demineralization of enamel followed by damage Keywords: saliva; proteins; caries-susceptible; caries- spreading into the tooth inner structure. Successful free; proteomic analysis; bioinformatics early diagnosis could identify caries-risk and improve dental screening, providing a baseline for evaluating personalized dental treatment and prevention strategies. Methodology: Salivary proteome of the whole 1 Introduction unstimulated saliva (WUS) samples was assessed in Dental caries, resulting in demineralization of the tooth caries-free and caries-susceptible individuals of older structure, is ranked among the most prevalent chronic adolescent age with permanent dentition using a diseases of people worldwide [1-3]. Although it is not a life- nano-HPLC and MALDI-TOF/TOF mass spectrometry. threatening disorder, it still represents a serious health Results: 554 proteins in the caries-free and 695 proteins in issue with a significant effect on general health and the caries-susceptible group were identified. Assessment quality of life [4,5]. using bioinformatics tools and Gene Ontology (GO) term A complex set of interactions between acid producing enrichment analysis revealed qualitative differences bacteria and fermentable carbohydrates contribute to between these two proteomes.
    [Show full text]
  • Expression and Function of Host Defense Peptides at Inflammation
    International Journal of Molecular Sciences Review Expression and Function of Host Defense Peptides at Inflammation Sites Suhanya V. Prasad, Krzysztof Fiedoruk , Tamara Daniluk, Ewelina Piktel and Robert Bucki * Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Bialystok, Mickiewicza 2c, Bialystok 15-222, Poland; [email protected] (S.V.P.); krzysztof.fi[email protected] (K.F.); [email protected] (T.D.); [email protected] (E.P.) * Correspondence: [email protected]; Tel.: +48-85-7485483 Received: 12 November 2019; Accepted: 19 December 2019; Published: 22 December 2019 Abstract: There is a growing interest in the complex role of host defense peptides (HDPs) in the pathophysiology of several immune-mediated inflammatory diseases. The physicochemical properties and selective interaction of HDPs with various receptors define their immunomodulatory effects. However, it is quite challenging to understand their function because some HDPs play opposing pro-inflammatory and anti-inflammatory roles, depending on their expression level within the site of inflammation. While it is known that HDPs maintain constitutive host protection against invading microorganisms, the inducible nature of HDPs in various cells and tissues is an important aspect of the molecular events of inflammation. This review outlines the biological functions and emerging roles of HDPs in different inflammatory conditions. We further discuss the current data on the clinical relevance of impaired HDPs expression in inflammation and selected diseases. Keywords: host defense peptides; human antimicrobial peptides; defensins; cathelicidins; inflammation; anti-inflammatory; pro-inflammatory 1. Introduction The human body is in a constant state of conflict with the unseen microbial world that threatens to disrupt the host cell function and colonize the body surfaces.
    [Show full text]
  • Harnessing Synthetic Biology for the Bioprospecting and Engineering of Aromatic Polyketide Synthases
    HARNESSING SYNTHETIC BIOLOGY FOR THE BIOPROSPECTING AND ENGINEERING OF AROMATIC POLYKETIDE SYNTHASES A thesis submitted to The University of Manchester for the degree of Doctor of Philosophy in the Faculty of Science and Engineering (2017) MATTHEW J. CUMMINGS SCHOOL OF CHEMISTRY 1 THIS IS A BLANK PAGE 2 List of contents List of contents .............................................................................................................................. 3 List of figures ................................................................................................................................. 8 List of supplementary figures ...................................................................................................... 10 List of tables ................................................................................................................................ 11 List of supplementary tables ....................................................................................................... 11 List of boxes ................................................................................................................................ 11 List of abbreviations .................................................................................................................... 12 Abstract ....................................................................................................................................... 14 Declaration .................................................................................................................................
    [Show full text]