Quaternary International 364 (2015) 94e108

Contents lists available at ScienceDirect

Quaternary International

journal homepage: www.elsevier.com/locate/quaint

Flint as raw material in prehistoric times: Cantabrian Mountain and Western Pyrenees data

* A. Tarrino~ , I. Elorrieta, M. García-Rojas

Dpto. de Geografía, Prehistoria y Arqueología, Facultad de Letras de Vitoria, Universidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), Spain article info abstract

Article history: Currently, investigations about siliceous resources exploited during prehistoric times in the Cantabrian Available online 17 December 2014 Mountain and Western Pyrenees are still scarce and, generally, they did not employ methods which go deeply into the provenance characteristics. Keywords: A review of the studies of lithic resource exploitation offered by historiography indicates that the Flint theme has been examined in a generalized way in most cases. A model with a clear difference between Chert the Eastern and Western territory of the Cantabrian Coast was created: an area with flint and an area Basque-Cantabrian Basin without flint. This model needs to be qualified, because in recent years siliceous outcrops have been Cantabrian Mountains Sud-Aquitanian-Basin discovered in zones of the Western Cantabrian Mountains (Asturias). Information from the investigations Western Pyrenees in the Cantabrian Mountains, Basque-Cantabrian Basin, and Western Pyrenees indicates diverse patterns. There is a preference for lithic raw material found near the occupations, together with the inclusion of exotic or distant flints, always of good quality, to a greater or lesser extent, according to the chronological periods and the geographical location. © 2014 Elsevier Ltd and INQUA. All rights reserved.

1. Introduction the results to be poor. A geoarcheological cross-functional view is necessary to have valid information about mobility and territori- Prehistoric knappers employed a great variety of lithic materials ality. In this way, since the late 1990s, lithic provenance studies as raw material. Aside from having an appropriate size, those ma- were undertaken systematically, focused in the Basque-Cantabrian terials only needed suitable fracture and hardness in order to Basin and in the Western Pyrenean region, broadened to the Can- achieve their technological purposes. tabrian Mountains, Cenozoic Ebro Depression, and southern Aqui- Therefore, among the lithic raw material used in Prehistory, we taine Basin. can find “hard rocks” that embrace the entire petrogenetic spec- This paper is a compilation of the investigations about flint trum from igneous and metamorphic to sedimentary. The funda- availability and exploitation in the territory. The siliceous rocks are mental ones are the siliceous rocks of non-detrital sedimentary described and information of the previous management studies is origin (commonly named flint), because of their excellent proper- summarised, in order to develop a classification of the flints from ties for knapping and the wide distribution of outcrops. There can the perspective of the diffusion. be no doubt that this was the main mineral resource in Prehistoric times in SW Europe. 2. Overview of siliceous rocks investigation in the Cantabrian Flint is of great interest as a lithic raw material, also considering Mountains and Western Pyrenees that is a “Traveller rock”. Since the beginning of the prehistoric investigations (mid-XIX century, for example Damour, 1865), the The flint availability as a raw material in the Western Pyrenees is necessity for obtaining information about the provenance and an investigation that began to develop systematically in the 1980s availability of these lithic resources has been recognized. Never- in the North-Pyrenean watershed. The studies in 1980e85 were theless, the difficulty in conducting this type of study has caused started by the team formed by Chauchat and Normand, and pro- duced many publications (Normand, 1986, 1987), initiating analysis in the Grand Sud-Ouest of . There were also works about flint * Corresponding author. in adjacent regions with reference to their geological aspects in E-mail address: [email protected] (A. Tarrino).~ north-Aquitaine: Seronie-Vivien and Seronie-Vivien (1987),orto http://dx.doi.org/10.1016/j.quaint.2014.10.061 1040-6182/© 2014 Elsevier Ltd and INQUA. All rights reserved. A. Tarrino~ et al. / Quaternary International 364 (2015) 94e108 95 the prehistoric provenance in Aquitaine: Demars (1982); Geneste of emblematic sites were carried out, including Las Caldas (Asturias) (1985, 1988); Geneste and Rigaud (1989); Morala (1984); Turq (Corchon et al., 2007), Altamira (Cantabria), (Tarrino,~ 2014), Aitzbi- (1989), and in Midi-Pyren ees: Simonnet (1981). Those studies tarte IV (Gipuzkoa) (Tarrino,~ 2011a), Santimamine~ (Bizkaia) (Tarrino,~ culminated in the celebration of the Vth International Flint Sym- 2011b), Isturtiz (Pyren ees-Atlantiques) (Tarrino~ and Normand, posium held in Bordeaux (France) in the autumn of 1987 where 2002; Elorrieta, in press), and el Sidron (Asturias) (Santamaría several contributions were presented and edited by Seronie-Vivien et al., 2011; Tarrino~ et al., 2013). and Lenoir (1990). Currently, all the active projects of the University of the Basque- In the North-Pyrenean watershed, investigations continued Country (UPV/EHU) have included studies for the characterization since the symposium: in Aquitaine (Demars, 1994; Turq, 2000; of flint types as raw material, and several PhD thesis are in progress. Seronie-Vivien, 2003); in Midi-Pyren ees (Chalard et al., 1996; In this way, the acquisition patterns and the use and diffusion of Lacombe, 1999; Simonnet, 1999, 2002; Foucher, 2004); in Char- this mineral resource for the Cantabrian-Pyrenean Region were ante (Fouer e, 1994); in Creuse (Aubry, 1991); in Auvergne (Surmely investigated. et al., 1998); in Languedoc (Briois, 1997; Gregoire, 1998; Bazile, 1999); in the South-Alpine Massif (Bressy, 2003); in Pyren ees- 3. Petrological approach study of lithic raw materials Atlantiques and (Normand, 1993, 2002; Bon et al., 1996; Bon, 2002). 3.1. Methods In the South Pyrenean watershed of the Western Pyrenees, research followed a different course. The studies about silicifica- The lithic remains gathered in the archaeological sites are the tions had begun in a systematic way in the 1980s, exclusively only vestiges that can provide information about sourcing areas. centred on geological aspects (Elorza and Arriortua, 1985; Elorza However, surveys of this type of material (for our region flint, et al., 1985; Elorza and Bustillo, 1989; Tarrino~ el al., 1989; Urtiaga generally) have been very few. et al., 1990). The pioneer attempt of petrographic characterization The study of the lithic raw material questions from a petrologic of flint in a prehistoric site was carried out by Straus and Clark approach offers the possibility of analyzing flint on three levels (1986) in La Riera cave (Asturias). It was not until the next decade (Tarrino~ and Terradas, 2013): when works based on the application of geological knowledge and methods started to attempt to identify the prehistoric flint prove-  Textural analysis: allows characterization of the orthochemical nance. However the results were not very conclusive, including (crypto/microcrystalline quartz nature, carbonate relicts, etc.) Arias (1990, 1992) also in Asturias; Sarabia (1990a; 1990b), and allochemical components (fossils, mineral grains, dolomi- Gonzalez Sainz (1992), Bernaldo de Quiros and Cabrera (1996); tization, etc.). It is accomplished using microscopy (stereoscopic, Montes-Barquín and Sanguino-Gonzalez (1994) for Cantabria and petrographic, and scanning electronic microscopes). Ortiz et al. (1990) and Gonzalez and Ibanez~ (1992) for the southern  Mineralogical analysis: for the characterization of the siliceous Basque-Country, Mazo and Cuchí (1992) and Mandado and Tilo minerals presence (quartz ± moganite ± opal); impurities con- (1995) in Aragon, and Terradas et al. (1991), Terradas (1996), and tents (carbonates ± sulphates ± oxides ± sulphides ± clays) Mangado (2005) in Catalunya. using X-Ray Diffraction (XRD); organic matter and water con- In the VIth International Flint Symposium held in Madrid and tents are determined by Raman Spectroscopy, Infrared Spec- Granada in 1991, the scientific contributions about Cantabrian- troscopy and Thermogravimetric Analysis (TGA). Pyrenean flint and adjacent regions were limited and exclusively  Geochemical Analysis: allows the characterization of the of geological character: Elorza and García-Garmilla (1997) and Ortí geochemical fingerprint of flint regarding its majority and mi- et al. (1997), with the exception of a work presented about the nority components using X-Ray Fluorescence (XRF); trace and presence of non-local flint in the north-Pyrenean watershed Rare Earth elements are determined using Inductively Coupled (Aquitaine) (Lenoir et al.,1997). The VIIth and last International Flint Plasm Spectroscopy (ICP-MS/OES). Symposium held in Bochum (Germany) in 1999 did not include any scientific contributions about lithic raw materials in the Cantabrian- Western Pyrenean Region. The end of the 1990s saw important 3.2. Objectives of the petrological study works relating to the provenance of flints used in prehistoric times in the southern Pyrenees. In the Eastern area, in Catalunya, the By giving the petrological perspective to the investigations, we archaeopetrological studies began to emerge with two PhD thesis can contemplate the geological characterization and the geological/ (Terradas, 1996). The scheme of flint acquisition that existed in the archaeological implications related to the diffusion and the man- Cantabrian area previously was that of Sarabia (1999a; 1999b), agement of the prehistoric lithic industries (Tarrino,~ 2006a). where local or not very distant management of raw material was The main proposed objectives are: accepted. New data provided information indicating the mobility of lithic raw material (Tarrino,~ 2001a), changing the previous acquisi- 1. Cataloguing the silicifications capable of being employed as raw tion model. In this new model, it is usual to identify transport of lithic material; remains tens of kilometres away from the site, in some cases 2. Petrological, mineralogical and geochemical characterization of exceeding a hundred and exceptionally two thousand kilometres for the geological flints and their host rock, using the techniques the Upper Palaeolithic. The information about flints of the Canta- described above; brian Region now can be compared with that obtained for the 3. Establishing discriminating criteria between different types of identified types in the North-Pyrenean watershed. flint by carrying out analyses of the lithic remains collected in In 2009, another International Congress in lithic raw materials archaeological sites; was held (2nd International Conference of the UISPP Commission on 4. Detecting the points of supply (quarries) of such mineral re- Flint Mining in Pre- and Protohistoric Times). Here were presented sources and the geological-geomorphological determining fac- for the first time the investigations that have been accomplished tors that have allowed their exploitation (similar to what would about the prehistoric mines of Trevino~ (Tarrino~ et al., 2011a, 2011b). be involved in conventional work of mineral sites); Rissetto (2009) presented his PhD thesis about the Magdalenian in 5. Identifying which of the listed flint was used as raw material in Eastern Cantabria. Subsequently, studies of raw material provenance the lithic industries of the archaeological sites; and 96 A. Tarrino~ et al. / Quaternary International 364 (2015) 94e108

6. Investigation of the production strategies and the management dynamics of the prehistoric societies during the late Pleistocene and the Holocene.

Nevertheless, when dealing with this question from a unique archaeological perspective, it is normal not to take into account the first three goals and to go on with the fourth, in the best case, or directly go to the fifth point in order to try to identify the archae- ological flint. This methodological partiality prevents these studies Fig. 1. Geographic and geological terminology of the Pyrenean Mountain Range. CM: Cantabrian Mountains; OB: Oviedo Basin; BCB: Basque-Cantabrian Basin; AB: Aquita- from being reliable and comparable to different sites. Finally, the nian Basin (Barnolas and Pujalte, 2004; modified). last of the objectives allows us to propose a socio-economic reconstruction of prehistoric societies through the information types, only a few have been used with the intensity that prehistoric about flint management. groups needed. The style of exposure must be observed: if the flints For the Western Pyrenees, this research has practically started are included in the host rocks more or less covered, with better or from zero when characterizing the flint used in prehistoric times, worse accessibility, with different distribution, and with hard or aspects in which France and the rest of Europe have been working weak host rocks. The siliceous rocks that appear in blocks or nod- on for several decades. They have also detected countless prehis- ules were easily extracted or collected. Generally, there are out- toric mining evidences, and identified several flint types that have crops/workshops in which flints have been extracted, selected and been employed in Prehistory. accumulated by external geodynamic processes in superficial and secondary formations. Hence, geomorphologic research is impor- 4. Geographical and geological situation tant for studies of raw materials in Prehistory.

The geographic area where our researches are framed is 5. Flint in the Cantabrian Mountains and Western Pyrenees delimited by the regional extent of the flint outcrops employed by the Prehistoric societies, inside the Cantabrian Mountains (CM); The compilation of siliceous rocks in the Cantabrian Mountains Oviedo Basin (OB); Basque-Cantabrian Basin (BCB); and the Navarre and Western Pyrenees is presented below, grouped according to fl Pyrenees (NP) (Fig. 1), located in the north of the Iberian Peninsula. the formation environment and the geological age of the ints. fl The Atlantic-Mediterranean watershed crosses it from east to west Fig. 2 shows the main outcrops. The terms int and chert are fl in a central position separating the northern (Bay of Biscay) and distinguished in this paper; int is the common name, and chert a fi southern limits (South-Pyrenean Thrust). speci c variety of siliceous rock with particular characteristics. The geological BCB was the main supplier of flint in the northern Iberian Peninsula, as a necessary lithic resource to satisfy the 5.1. Carboniferous Black Cherts and Lidites from the Cantabrian technological requirement of the prehistoric societies. It is a “small” sedimentary basin, which is composed of Mesozoic and Cenozoic This is a set of black flint and/or lidites that crop out in the sediments, 15,000 m thick (Lotze, 1960; Ramírez del Pozo, 1971). Its Cantabrian Mountains, that are strongly fissured and with an length, between Asturian Paleozoic Massifs and Pyrenean Massifs, aptitude for knapping that is, in general mediocre. This is why they is 200 km, while its modal width between the South-Pyrenean were seldom employed in the archaeological sites of the area. thrust and the Cantabrian Sea is around 80 km (Fig. 1). Various Carboniferous geological formations containing these The presence of sedimentary series in this region has led to the cherts in the Cantabrian Mountains have been described (Martínez- existence of many and varied geological formations with significant García, 1981; Barba et al., 1991). They have a wide geographic dis- silicifications. In the sedimentary record flints are found in almost tribution (Fig. 2). all the sediments from the Paleozoic to the Cenozoic (Paleogene and Neogene). The sedimentary environments vary from oceanic 5.1.1. Vegamian formation chert basin to continental basin (lacustrine-palustrine). Table 1 shows a These are black cherts included in dark shales and lutites formed list of the silicification families organized by the depositional in a marine platform with anoxic conditions. They contain nodules sedimentary environment and geological age. of phosphate, lidites and pyrite. The age varies from the latest Tournaisian to the Visean (Lower Carboniferous).

Table 1 Occurrence of Flint in the Cantabrian Mountains-Western Pyrenees. 5.1.2. Barcaliente formation chert These are black cherts included in very dark limestones, with a Silicification groups Geological age fetid odour. They have been formed in marine carbonate platform 1 Pelagic Flint Paleozoic-Paleogene sediments, with limited fossil content, of Namurian age (Middle 2 Flysch Flint Cretaceous-Paleogene 3 External Marine Platform Flint Paleozoic-Paleogene Carboniferous). 4 Recifal Platform Flint (Urgonian Flint) Lower Cretaceous 5 Internal Marine Platform Flint Upper Cretaceous-Paleogene 5.1.3. Lois-Ciguera formation chert 6 Continental Flint (Palustrine-Lacustrine) Paleogene-Neogene They are black cherts that appear in nodules in the lower part of the Bachende Member, formed by marls and calcareous lutites with strata of bioclastic limestones. This formation originated in a ma- Each of these sedimentary environments normally has several rine environment and contains marine algae, echinoderms, bryo- types of flint (Tarrino,~ 2006a). Totalling the geological formations zoans, and corals. The age of the formation is Bashkiriense (Lower with flint exposed in the Cantabrian-Western Pyrenean Region, Carboniferous). there are fifteen different units with flint with at least fifty varieties and countless outcrops. 5.1.4. Ricacabiello formation chert The fact that there are so many types of silicifications exposed They are black cherts included in a formation of lutites and does not mean that all have been used in prehistoric times. Of these limestones with ferruginous and manganese nodules. It is formed .Tarri A. oe l utrayItrainl34(05 94 (2015) 364 International Quaternary / al. et no ~ e 108

Fig. 2. Flint formations map of Cantabrian Mountains, Basque-Cantabrian Basin, Sud-Aquitanian Basin and Western Pyrenees, ordered by geological age and geological environments: Jurassic Marine Platform flint: 1. Aralar; 2. Montoria. Urgonian Recifal Platform flint (Lower Cretaceous): 3. Santander, 4. Castro Urdiales, 5. Lekeitio, 6. Rentería, 7. Gorbea, 8. Aralar. Upper Cretaceous Flysch flint (primary position): 9. Barrika (Plentzia Fm), 10. Behobia-St. Jean-de-Luz, 11. Bidache. Upper Cretaceous Flysch flint (megabreccia position): 12. Kurtzia megabreccia (Eibar fm), 13. Gaintxurizketa megabreccia, 14. Mouguerre megabreccia. Upper Cretaceous Pelagic flint: 15. Tercis, 16. Salies de Bearn. Upper Cretaceous Marine Platform flint: 17. Cueva Fm, 18. Ribera Alta Fm, 19. Fuente Kristaran, 20. Molino de Oteo. 21. Infiesto. Maastrichtian External Marine Platform flint (Chalosse): 22. -, 23. Audignon. Maastrichtian-Paleocene Internal Marine Platform flint: 24. Monte Picota 25. Bozoo, 26. Moraza. Peleocene Flysch flint: 27. Artxilondo. Paleocene External Marine Platform flint: 28. Urbasa. Paleocene Internal Marine Platform flint: 29. Loza. Paleogene continental flint (Oviedo Basin): 30. Piedramuelle, 31. Pilona~ (“Pudinga de Posada”). Eocene External Marine Platform flint: 32. Virgen del Mar. Miocene Lacustrine-Palustrine flint: 33. Trevino,~ 34. Ablitas (Ebre Evaporitic flint). 97 98 A. Tarrino~ et al. / Quaternary International 364 (2015) 94e108

Fig. 3. General view of nodular Urgonian Flint (Orin~on, Cantabria). Fig. 5. Turbiditic lamination silicificated in the Upper Cretaceous Flysch Flint of Barrika (Bizkaia). with contributions of terrigenous fine materials in the distal zones of the platforms. The age of the formation is Bashkirian (Lower 5.1.7. Radiolarite Carboniferous). These are siliceous rocks, fine-grained and smooth texture, formed by radiolarians. They appear in layers and ellipsoidal nod- “ ~ ” 5.1.5. Calizas de Montana Flint ules in the rose-colored limestones of “Griotte” type of the Alba fl They are ints of dark colours (black-grey) included in the wide Formation, with Lidite strata (IGME, 1981). The characteristic colour “ ~ ” formation of the Calizas de Montana that outcrops in the Canta- is maroon, of opaque appearance, with two main varieties, reddish fl brian Mountains. The int is found in the highest part of the for- and greenish. The age dates from the Lower Carboniferous (Upper “ ” mation and in the banded member , with alternation of banks of Tournaisian-Visean) (Martínez-García, 1981). Their outcrops have fi black limestones, ne-grained and fetid (Marquínez, 1978; also a vast geographic distribution (Fig. 2). Martínez-García, 1981; Barba et al., 1991). It appears with a high Of all the siliceous Paleozoic rocks of the Cantabrian Region, the quantity of fauna that permits dating the formation to Westphalian radiolarites constitute the most exploited flints during the Middle (Lower Carboniferous). Recently, two varieties have been differen- and Upper Palaeolithic in Asturias. In general, this raw material was tiated in this group (Arias Cabal et al., 2009). Its prehistoric used more frequently in the Paleolithic sites of eastern Asturias: as exploitation is limited. Llonín, Cueto de la Mina, La Riera, and Los Canes (Santamaría et al., 2011). 5.1.6. Pendueles chert In Vidiago beach (Pendueles, Asturias), this outcrop is defined as 5.2. Jurassic Marine Platform Flint a turbidtic succession in which basal flint layers outcrop (IGME, 1981). It is white and dark banded, very deformed with a thick- The Jurassic system is fundamentally represented by sedimen- ness of about 40 m (Martínez-García et al., 1971). Its aptitude for tary formations of a carbonate marine platform environment. They knapping is, generally, mediocre and the only confirmed archaeo- are the oldest BCB flints. They usually appear in the Bajocian logical evidence until today dates from the Neolithic-Chalcolithic (Arias, 1990; Arias et al., 2009). The outcrop is marked in Fig. 2.

Fig. 6. Panoramic view of the cliff where the outcrop/workshop of the Upper Creta- Fig. 4. Detail of nodular Urgonian Flint (Orin~on, Cantabria). ceous Flysch Flint in Kurtzia (Bizkaia). A. Tarrino~ et al. / Quaternary International 364 (2015) 94e108 99

5.4. Pyrenean Flysch Flint

This designation includes turbidite geological formations deposited in deep environments (Marine Basin Slope). Those from the Upper Cretaceous have ages from the Cenomanian to the Campanian. The host rocks are composed of bioclastic calcarenites alternating with fragments of molluscs and sponge spicules. Pel- letoides, planctonic foraminifera, detrital quartz and heavy min- erals can be distinguished. They often have parallel and wavy laminations characteristic of turbidites in primary position (Fig. 5). The most important ones appear in the Upper Cretaceous out- crops both north and south of the Pyrenees. They are also outcrops in the Paleocene of the Navarre Pyrenees. Distinguishing the different varieties is difficult. The main varieties of the Flysch flint detected in the archaeological sites are listed below.

5.4.1. Kurtzia Flysch Flint This has been described by Tarrino~ (2006a,b): in the surround- Fig. 7. Detail of flint from the Kurtzia olistostrome, the block is included in the ings of Barrika (Bizkaia) a megabreccia of about 40 m width that olistostrome. comprises a block chaos (megabreccias or olistostrome) (Fig. 2) included in the Eibar Formation, Flysch (Cenomanian-Santonian, (middle Jurassic, Dogger) although they are cited in the Bathonian ~ Upper Cretaceous) intersecting the coastline in the cliff (Figs. 6 and (Villalobos and RamArez del Pozo, 1971) and at the bottom of the 7). Erosion detached the flint fragments that are included in a Malm (Ramírez del Pozo, 1971). marine-argillaceous matrix and the blocks can be easily collected. fi They are homogeneous silici cations which are fractured as a Evidence of strong marine abrasion is common in the external result of the tectonic processes suffered during its geological his- zones of the pebbles. Near the outcrops in the coastal plateau, be- tory. This fragmentation prevents obtaining usable blocks and, tween Punta Galea and the Bay of Plentzia, a set of open-air fl therefore this type of int has not been detected in any of the archaeological sites/workshops generated by works of acquisition archaeological sites. and use of this resource are located, since the Mousterian. Barandiaran et al. (1960) called them the “Prehistoric station of ” 5.3. Lower Cretaceous recifal Platforms Flint; Urgonian Flint Kurtzia . There are other similar megabreccias in the area between these outcrops and Urizar, west of Gorliz (Bizkaia). These flints are We find these silicifications in the Recifal carbonate Platforms of present in almost all the palaeolithic sites analyzed in the Western ~ ~ the Urgonian Complex of the lower Cretaceous (Aptian-Albian) Pyrenees Region, including Antolinako Koba (Bizkaia) (Tarrino and ~ (Figs. 3 and 4). Except for some isolated cases, the presence of these Aguirre, 2002), Aitzbitarte (Gipuzkoa) (Tarrino, 2011a,b), Ametza- flints does not a significant representation in the geological record. gaina (Gipuzkoa) (Arrizabalaga et al., 2014), Alkerdi (Navarre) ~ Taking into account that each carbonate urgonian platform can (Tarrino and Elorrieta, 2012), Las Caldas (Asturias) (Corchon et al., ~ have between one and three units with silicifications, and that in 2007) and Altamira (Cantabria) (Tarrino et al., 2013a) and many the Basin there are 11 main carbonate urgonian platforms, more others. than twenty could be catalogued. They are flints which have been used occasionally as raw material in Prehistory (Tarrino,~ 2006a). 5.4.2. Gaintxurizketa Flysch Flint They have two different origins, silicifications of diagenetic origin In the corridor of Deva-Irún in the vicinity of Gaintxurizketa and hydrothermal silicifications associated with mineralization (Gipuzkoa) there are also brecciated formations with abundant flint (Aranburu, 1998), and their outcrops have a vast geographical dis- (Campanian, Upper Cretaceous) (Fig. 2). Tarrino~ and Mujika (2003) tribution (Fig. 2). identified the outcrops and the possible existence of associated

Fig. 8. Outcrop/workshop of Chalosse Flint in Aucamps (Landes, France). 100 A. Tarrino~ et al. / Quaternary International 364 (2015) 94e108

Fig. 9. Chalosse Flint in rock, Carriere de Berduc (Landes, France). Fig. 11. Botroidal Ribera Alta Flint. Cantera del Portillo de Techa (Subijana-Morillas, Alava). workshops. In this case, the megaturbidites are associated with (Tarrino~ and Normand, 2002; Elorrieta, in press) and is also relevant calcareous/limestone Flysch. Evidence of this variety is found in in prehistoric sites of Western Pyrenees such as Antolinako~ Koba numerous archaeological sites of regional scope, such as Aitzbitarte (Bizkaia) (Tarrino~ and Aguirre, 2002), Aitzbitarte (Gipuzkoa) (Gipuzkoa) (Tarrino,~ 2011a,b), Ametzagaina (Gipuzkoa) (Tarrino,~ 2011), Ametzagaina (Gipuzkoa) (Arrizabalaga et al., 2014), (Arrizabalaga et al., 2014) and Alkerdi (Navarre) (Tarrino~ and Alkerdi (Navarre) (Tarrino~ and Elorrieta, 2012), Las Caldas (Asturias) Elorrieta, 2012). The provenance study of the site of Ametzagaina (Corchon et al., 2007) and Altamira (Cantabria) (Tarrino~ et al., (Gipuzkoa), located in the outcrop, revealed the exploitation of 2013a). The proximity to the outcrops of other Palaeolithic sites Gaintxurizketa flint (Arrizabalaga et al., 2014). such as Le Baste( Chauchat, 1968; Chauchat and Thibault, 1968) and Arancou suggests that their lithic industries have been supplied 5.4.3. Bidache Flysch Flint with these materials. This is a variety of Flysch flint (Campanian, Upper Cretaceous) exposed between the coast (Biarritz area) and Bidache (Pyren ees- Atlantiques). An important outcrop/workshop of flint is located in 5.4.4. Montgaillard-Hibarrette Flysch Flint Mouguerre near Bayonne (France), and the flint has been described These outcrops are located in secondary sites of “Pudingues de by Normand (2002). On these outcrops, important flint workshops Palassou” with eroding limestone of the Flysch (Turonian-Santo- have been recognized with timelines from Ancient Palaeolithic to nian, Upper Cretaceous) with flint near Tarbes (Hautes-Pyren ees, recent Prehistory. One of its outstanding features is that the parallel France). Their primary outcrops have been identified in Mont- turbiditic laminations are usually very evident when patinated. In gaillard, and the workshops where this flint was exploited in these formations there are also other important flint outcrops/ Hibarrette (Barrague et al., 2001; Foucher et al., 2002). workshops, including Senix, Pavillon Royal and Chabiague on the coast, and Cote^ 151, between Behobia and Bidache (Fig. 2). It is the 5.4.5. Artxilondo Flysch Flint main flint type identified in the archaeological site of Isturitz Its primary outcrops (Thanetian, Paleocene) are located in the north of the reservoir of Irabia in the forest of Irati between Navarre and Pyren ees-Atlantiques (Fig. 2). It has been described by Tarrino~ (2006a,b), and although prehistoric workshops have not been

Fig. 10. Panoramic view of Rivera Alta Formation, Portillo de Techa (Subijana-Morillas, Alava). Fig. 12. Gran-Carriere of Tercis (Landes, France). A. Tarrino~ et al. / Quaternary International 364 (2015) 94e108 101

Fig. 13. Detail of bedded nodular Tercis Flint. Fig. 15. Detail of Urbasa Flint. discovered, it was the fundamental flint employed in the Aizpea site depressions at the foot of the small topographic relief originated in Navarre (Tarrino,~ 2006a). from the limestones that include silicifications. This flint has also been identified in Palaeolithic sites in the southern Pyrenees such as Antolinako~ Koba (Bizkaia) (Tarrino~ and Aguirre, 2002), Aitzbi- 5.5. Upper Cretaceous marine carbonate platform Flint tarte (Gipuzkoa) (Tarrino,~ 2011), Ametzagaina (Gipuzkoa) (Arrizabalaga et al., 2014), Alkerdi (Navarre) (Tarrino~ and Elorrieta, 5.5.1. Chalosse Flint 2012), Las Caldas (Asturias) (Corchon et al., 2007) and Altamira fl This bioclastic int is formed in Upper Cretaceous carbonate (Cantabria) (Tarrino~ et al., 2013a). platforms. It crops out in the area of the Audignon-Montaut anti- cline and in the edges of the Diapir of Bastennes-Gaujacq (southern 5.5.2. Ribera Alta Flint Landes) (Fig. 2). It usually is translucent with colour ranging from The bioclastic limestones of Ribera Alta Formation (Alava) and fl blackish to greyish. When patinated, ints acquire white-yellowish Cueva Formation (Burgos) presents silicifications inside the set of fl fi colours, zoned in many cases. The int is ne-grained with abun- carbonate platforms of the Upper Cretaceous in the Navarre Can- dant bioclastic inclusions emphasizing bryozoans and macro- tabrian Domain (Amiot, 1982)(Fig. 2). The unit is composed of thin foraminiferous (Lepidorbitoides). The bioclastic composition is massive bioclastic limestones (pelbiosparites), bluish gray, of the fl more perceptible in the int of the area of Audignon-Montaut Lower Coniacian (Upper Cretaceous) including incipient dolomiti- fi (Fig. 8). It has been described by Bon et al. (1996). It is dif cult to zation. They are massive limestones of about 120 and 150 m thick fi fl nd primary outcrops where the int was included in its host rock where the silicifications crop out (Fig. 10). The following mor- (Fig. 9). Surveys conducted in the summer of 2003 with the team of phologies can be observed (Tarrino,~ 2006a): F. Bon recognized flint which comes from Maastrichtian (Upper Cretaceous) outcrops (Chalard et al., 2010).  Botryoidal nodules of sizes of about 10 cm, bluish gray (Fig. 11). It is the principal raw material in the site of (Bon,  Nodules with liesegang rings, ovoid or circular. The presence of fl 2002). Numerous int prehistoric workshops/outcrops where this these “cerebroid rings” makes the flint very easy to differentiate siliceous material was exploited are known (Bon et al., 2002). macroscopically (Fig. 10). It is the only type that has been Usually they appear included in the alterites that cover the little recognized in archaeological sites of the Middle Palaeolithic generally.  Large, strongly altered nodules with light colours and ellipsoidal morphologies. Their sizes can range from 20 cm to 50 cm. They were rarely employed because of the alteration.

5.5.3. Molino de Oteo Flint Discrete silicifications occasionally shown as nodules included in the calcareous limestones (arenaceous calcarenites) of Santonian age (IGME, 1978; Tarrino,~ 2006a). They outcrop near the village of Oteo (Alava) (Fig. 2). No evidence of the use of this flint is found in prehistoric sites.

5.5.4. Fuente de Kristaran Flint This dark bluish grey flint is included in the arenaceous calcar- enites with Lacazinas, of Santonian-Campanian age (IGME, 1979; Tarrino,~ 2006a). Their outcrops are located near the village of Loza (Alava) (Fig. 2). The data collected shows that this flint was not Fig. 14. Urbasa outcrop (forest). exploited during prehistoric times. 102 A. Tarrino~ et al. / Quaternary International 364 (2015) 94e108

5.5.5. Infiesto Flint This flint appears in the Campanian (Upper Cretaceous) massive sandy limestones of the Oviedo Formation (Bernardez, 1994), with nodular flints and miliolids (Lacazina) appearing near the Infiesto (Asturias) (Fig. 2). They seem to be primary flints that, once rese- dimented in the Oligocene conglomerates of the Oviedo Basin, formed the Pilona~ flints (Tarrino~ et al., 2013b). Evidence of pre- historic exploitation has not been identified.

5.6. Upper Cretaceous Pelagic Flint

5.6.1. Salies de Bearn Flint They are flints that outcrop in the northern Pyrenees in the re- gion of Bearn (Pyren ees-Atlantiques) (Fig. 2). They appear as irregular nodules with abundant bioturbations rich in carbonate relicts, giving them a zoned appearance. It is common to find planktonic foraminifera (usually globotruncanids) that reveal that their depositional environment was a deep marine basin. It has been described by Normand (2002). The shortage of outcrops has Fig. 17. Detail of Monte Picota nodular Flint. not allowed the location of the host rocks of the silicifications. Plotting the workshops on the geological map (1: 50,000 scale) Flints appear in the Hontarede unit (base) and in Les Vignes unit indicates that the host rocks correspond to a wide Campanian (top). Hontarede includes dark flint nodules distributed in beds carbonate series exposed in the anticline of near through the whole unit, about 15 m thick, of Campanian age. Les Orthez (Pyrenees-Atlantiques). Vignes is much thicker, about 100 m, with two types of flint: a gray It is usual to find it in the north Pyrenean archaeological sites flint that appears in the lowest 30 m, and dark flint nodules in the ~ such as Isturitz (Tarrino and Normand, 2002; Elorrieta, in press), upper 70 m. The Campanian-Maastrichtian boundary is in the area and it has been identified in some Palaeolithic sites in the southern of the clear flints, so these flints can be of either age. The dark flints ~ ~ Pyrenees: Antolinako Koba (Bizkaia) (Tarrino and Aguirre, 2002), of this unit are Maastrichtian. ~ ~ Aitzbitarte (Gipuzkoa) (Tarrino, 2011a), Santimamine (Bizkaia) They are quite translucent, dark flints, and can have small ~ (Tarrino, 2011b), Ametzagaina (Gipuzkoa) (Arrizabalaga et al., planktonic and benthic foraminifera (0.1e0.5 mm). Flints are ~ 2014), Alkerdi (Navarre) (Tarrino and Elorrieta, 2012), and Alta- described by Normand (2001, 2002). In the surroundings of the ~ mira (Cantabria) (Tarrino et al., 2013a). The prehistoric workshops outcrop are prehistoric workshops such as Les Vignes (Normand, that exploited this type of flint are abundant in the region of Bearn. 1984). It is common to find this flint in prehistoric sites of the north-Pyrenean area. This flint has been detected in the sites of 5.6.2. Tercis Flint Antolinako~ Koba (Bizkaia) (Tarrino~ et al., 1998; Tarrino~ and Aguirre, This type of flint has been defined thanks to the information 2002) and in Mugarduia (Navarre) (Tarrino,~ 2013) kilometres away from the prehistoric workshops located in the vicinity of the Grand- from the outcrop. Carriere or Carriere d'Avezac (Fig. 12) in the village of Tercis-les- Bains near Dax (South Landes) (Fig. 2). The quarry has been used 5.7. Paleocene carbonate marine Platforms Flint as a GSSP (Global boundary Stratotype Section and Point). In the section exposed in the quarry (310 m thick), the silicifications can 5.7.1. Urbasa Flint be observed (Fig. 13). Odin (2001) divided the outcrop into five They are flints exposed in the karst of the Sierra of Urbasa units from lower to upper: 1) Lacave, 2) Hontarede, 3) D'Avezac, 4) (Navarre) (Figs. 2 and 14). They are silicifications located in the Les Vignes, and 5) Bedat. depositional sequence SD-6 defined by Baceta (1996). They have

Fig. 16. Panoramic view from the Monte Picota area (Pas River estuary, Cantabria). Fig. 18. Conglomerates view of Pudinga de Posada (Oviedo Basin, Asturias). A. Tarrino~ et al. / Quaternary International 364 (2015) 94e108 103

distances that can exceed 300 km is noted at Las Caldas (Asturias) (Corchon et al., 2007), or over 150 km northeastward, as at Isturitz (Pyren ees-Atlantiques). Distribution covered a vast territory including the Cantabrian Coast (Tarrino~ et al., 2013a), Antolinako~ Koba (Bizkaia) (Tarrino~ and Aguirre, 2002), Aitzbitarte (Gipuzkoa) (Tarrino,~ 2011), Ametzagaina (Gipuzkoa) (Arrizabalaga et al., 2014), the Western Pyrenees (Tarrino,~ 2006a)(Tarrino~ and Elorrieta, 2012) and also the southern Aquitain Basin (Tarrino~ and Normand, 2002) or most distant sites such as Las Caldas (Asturias) (Corchon et al., 2007) and Altamira (Cantabria) (Tarrino~ et al., 2013a).

5.7.2. Loza Flint These flints belong to the calcareous-dolomitics geological for- mation inside the Paleogene (Upper Thanetian e Lower Ilerdian). The outcrops are found along the reliefs of Loza-Moraza-Tobera (northern Sierra of Cantabria, Alava) (Fig. 2). Tarrino~ (2006a,b) described these outcrops as generally stratiform silcretes, slightly dolomitized and sometimes fractured. Their formation environ- Fig. 19. Detail of Pilona~ Flint in conglomerate (El Sidron, Asturias). ments correspond to platforms that could vary between shallow marine and continentals. Although being relatively varied flints, been dated to the Middle Thanetian (Paleocene) by foraminifera they are included in the same group, considering that all represent (Fig. 15): discocyclina (D. seunesi), and nummulites (N. heberti). restricted environments (chalcedonitic flint and presence of pseu- fl Urbasa ints were formed in external marine platform environ- domorphs of gypsum). In other cases, incipient dolimitization on a ments. Macroforaminifera, as well as many remains of echinoderms chalcedonitic matrix is characteristic. Loza flint appears as a raw and a very characteristic incipient microdolomitization, appear material in many Palaeolithic and Neolithic sites of the Basque- ~ (Tarrino et al., 2007). Silicifications are presented in nodular mor- Cantabrian Basin, including Mendandia (Tarrino,~ 2006b) and Kan- fl phologies. These primary int outcrops were unknown until our panoste (Tarrino,~ 2006a). investigations (Tarrino~ and Aguirre, 1997; Tarrino,~ 2001a,b). The karstification suffered by the carbonate formation host rock 5.7.3. Monte Picota Flint is responsible for the use during Prehistory of those silicifications. These flints are equivalent to the Loza, but they are formed in The meteoric action dissolves the limestones and frees the flint the Maastrichtian and appear in the San Roman syncline, near nodules that accumulate in the depression zones and bottoms of Monte Picota (Cantabria) in the vicinity of Santander (Fig. 16). They dolines (Knauth, 1994) and that could be easily acquired by pre- are local flints, mainly employed in the lithic industry of Altamira historic people. (Tarrino~ et al., 2013a) and Cobrante (Tarrino,~ 2009). It is a silicification that has been intensely exploited in Prehis- Loza and Monte Picota are flints that were not regularly toric times. In the area of the Sierra of Urbasa, much archaeological employed in prehistoric times, because of the poor quality for evidence has been found associated to the lower Palaeolithic, as knapping. Occasionally they can be observed in nodular morphol- Aranzaduia (Barandiaran and Vallespí, 1984), to the Upper Palae- ogies (Fig. 17). olithic, as Urb.11 (Cava, 1986, 1988) or Portugain (Cava and Barandiaran, 2008), the important flint workshop of Mugarduia Sur (Barandiaran et al., 2013;; Tarrino,~ 2013) or the numerous 5.8. Paleogene conglomerate Flint megalithic monuments of the last periods of Prehistory ~ (Barandiaran and Vegas, 1990). 5.8.1. Pilona Flint fl Urbasa flint is one of the main flints that prehistoric groups They are ints that have formed in continental environments of exploited in the Cantabrian Mountains and in the Western Pyr- the Oviedo Basin (Oviedo, Asturias) (Fig. 2), in the conglomerate of enees. It is one of the “lithic tracers” of the Cantabrian and Western Pyrenean Region. The transport of Urbasa flint westward over

Fig. 20. 3D Model of “Sierra de Araico” with the line of the nodular flint layer exploited in the Prehistory. In the box is marked the place where there are half-moon dumps. Fig. 21. Nodular Trevino~ Flint. 104 A. Tarrino~ et al. / Quaternary International 364 (2015) 94e108

Fig. 22. Trevino~ Silcrete. Fig. 24. Interrelation between the different lithic analysis structures with the Petrology for the study of Raw materials. the “Pudinga de Posada” (Fig. 18), dated from Eocene-Oligocene (Alonso-Gavilan et al., 2004). The flint pebbles are concentrated discordantly situated above the Paleocene, in the village of Pie- along the contact with the Upper Cretaceous. In the conglomerates dramuelle and in the territories occupied by the city of Oviedo. It the flint appears included as pebbles (Fig. 19), presumably derived has been used as local raw material in nearby sites such as Las from the fossiliferous calcarenite (Santonian). The greatestt con- Caldas (Corchon et al., 2007). centration of flint is between Tresali (Nava) and Miyares (Pilona).~ It is a micro-cryptocrystalline flint with occasional cementations 5.9.2. Trevino~ Flint of megaquartz and chalcedony (fibrous silica). The bioclastic con- Trevino~ flints occur in Miocene terrains (Aquitanian, Continental tent is characterized by the sporadic presence of macroforaminifera Cenozoic) of the Miranda-Trevino~ Depression (South of Alava e (Lacazinas), miliolides, bryozoans, molluscs, and calcareous algae North of Burgos) (Fig. 2). Their more accessible outcrops are in the (Tarrino~ et al., 2013). reliefs generated by the Sierra of Araico (Berantevilla-Trevino,~ This flint has been detected in the Asturias sites: Sidron Cave, La Alava-Burgos) and its extension to the north of the Sierra of Cucho- Vina~ and Llonín (Tarrino~ and Mujika, 2003) and Las Caldas (Corchon Busto (Trevino,~ Burgos) (Fig. 20). They are flints formed in et al., 2007). Recently, it has been recognized in Cantabrian sites, lacustrine-palustrine environments, with compact limestones and and in archaeological sites of the Basque-Country. dolomites, dolomitic limestones, and calcareous dolomites. The fossils of continental environments predominate (gastropods, os- 5.9. Cenozoic Lacustrine-Palustrine Flint tracodes, etc.) (Fig. 21). Silcretes (siliceous crust of stratiform morphologies) are the most common silicifications (Fig. 22). Four 5.9.1. Piedramuelle Flint siliceous microfacies have been differentiated (Tarrino,~ 2006a): These flints are located in Cenozoic carbonates, of palustrine- lacustrine origin, in Piedramuelle (southeast of Oviedo) (Fig. 2). - Nodular flints with bioclasts. They usually have liesegang rings. The Cenozoic is represented in this area by very small isolated - Clotted silcretes with fenestral porosity, in stratiform outcrops less than 1 km2 (Truyols et al., 1991). disposition. They are flints formed in carbonate continental environments of - Brecciated silcretes with footprints of roots and porosity with the Oviedo Basin (Asturias). They are massive silcrete silicifications vadose cementations, in stratiform disposition. above the whitish brecciated limestone. They are exposed along the - Banded micrites with algae lamination and occasionally western boundary of the Basin in small outcrops that are ostracodes.

Fig. 23. Half-moon dump of Araico. A. Tarrino~ et al. / Quaternary International 364 (2015) 94e108 105

A high number of hammerstones (ophite) and flint mining  Local flint: its use can be substantial (more than 90%) or major, exploitation structures have been discovered, in trenches and representing more than half of the lithic industry, if it has good dumps (Fig. 23)(Tarrino,~ 2004; Tarrino~ et al., 2011; Benito-Calvo knapping quality. Generally, it is transported a maximum dis- et al., 2010). Recently, these flint mines have been dated to the tance of around 20e30 km from the outcrops. Sometimes there Neolithic (Tarrino~ et al., 2011, 2014). are outcrops near the site but they are not exploited regularly or In almost all the archaeological sites of the Cantabrian Moun- substantially, because they are bad quality. In local flint pro- tains and Western Pyrenees that have been studied these flints duction, all the stages of the chaîne operatoire are represented. have been identified, for example in the Pleistocene sites:  Regional flint: is not representative in the site. It can be carried a Antolinako~ Koba (Gauteguiz-Arteaga, Bizkaia) (Tarrino,~ 2001a,b), distance of 30e60 km and exceptionally 120 km from the out- Bolinkoba (Bizkaia) (Tarrino~ and Aguirre, 1997), Urratxa-III (Biz- crops. They are flints with a discrete quality napping. The lithic kaia) (Tarrino,~ 1997); Labeko Koba (Gipuzkoa) (Tarrino,~ 2000), remains in regional raw material generally correspond to in- Isturitz (Pyren ees-Atlantiques) (Tarrino~ and Normad, 2002), Por- termediate and later stages of the production sequence. This tugain (Navarre) (Tarrino,~ 2008), Mugarduia (Navarra) (Tarrino,~ flint covers a relatively large area. 2013), El Linar, Las Aguas, Cualventi, Altamira (Cantabria)  Tracer flint: These types are the ones that define the territories (Tarrino,~ in press) and Las Caldas (Asturias) (Corchon et al., 2006) because of their quality and diffusion. They appear in low per- and in Holocene sites: Mendandia (Trevino),~ Tarrino~ (2006b); centages in the lithic industries and in exceptional elements, as Kanpanoste Goikoa and Atxoste (Alava) (Tarrino,~ 1998), and Las retouched artefacts. This flint can travel a distance of Yurdinas-II (Alava) (Tarrino,~ 2003). 60e120 km, exceptionally exceeding 200 km. They are flints of Its diffusion, similarly to Urbasa flint, Flysch flint and Chalosse good and very good quality for knapping. There is another flint, reaches emblematic sites. It is one of the most important category that should be included in this group; the Super-Tracer tracer flints in the Cantabrian and Western Pyrenean Region. flint: exceptional for its very good quality for knapping and must be available as large exploitable blocks. Apart from defining the 6. Classification of flints from the management perspective territories as the tracer flints, they are the most employed for making highly regarded lithic objects, such as “Great Blades”, In order to classify lithic industries from the management Halberds, etc. perspective, the first step is petrological study. Interrelation of petrology with the different analysis structures proposed by the Analithic Typology (Laplace, 1973; Fernandez-Eraso and García- 7. Conclusions Rojas, 2013): modal-morphological (retouching mode), the tech- nical (how the artefacts are configured) and the typometrical The Basque-Cantabrian Basin was a fundamental flint supply (linked to sizes and proportions) allows understanding of the region. Flint is a necessary lithic resource satisfying technological management dynamic for the raw material. Relating the manage- requirements of the prehistoric societies of the northern Iberian ment and diffusion allows understanding the lithic industries' Peninsula. With the expounded data in the previous sections, from socio-economic values (Fig. 24). the six “Groups” of geological formation that host the silicifica- With the available data and accordance with the flint utilization tions of the Cantabrian Mountains-Western Pyrenees it has been in prehistoric times, we propose a classification from the point of possible to define at least 14 Classes of flint that have been view of the diffusion in relation to the production and the use in the employed by the prehistoric people to a greater or lesser extent site. (Table 2).

Table 2 Flint types of the Cantabrian Mountains and Western Pyrenees.

Flint group Flint age/Family Flint type Difussion model

Pelagic Flint Carboniferous “Black Cherts” Vegamian Formation Chert Local Barcaliente Formation Chert Local Lois-Ciguera Formation Chert Local Ricacabiello Formation Chert Local Facies “Griotte” Radiolarite Alba Formation Radiolarite Regional Upper Creta-ceous Flint Salies de Bearn Flint Regional Tercis Flint Regional Flysch Flint Paleozoic Flysch Flint Pendueles Chert Local Cretaceous Flysch Flint Kurtzia/Barrika Flysch Flint Trazer Gaintxurizketa Flysch Flint Regional Bidache/Behobia/Mouguerre Flysch Flint Trazer Montgaillard-Hibarrette Flysch Flint Trazer Tertiary Flysch Flint Artxilondo Flysch Flint Local External Marine Platform Flint Paleozoic Flint “Calizas de Montana~ ” Flint Local/Regional Jurassic Flint Aralar/Montoria Flint Local Upper Cretaceous Flint Chalosse (Audignon/Bastennes) Flint Trazer Ribera Alta/Cueva Flint Local Molino de Oteo Flint Local Fuente de Kristaran Flint Local Infiesto Flint Local Paleocene Flint Virgen del Mar Flint Local/Regional Urbasa Flint Trazer Recifal Platform Flint Lower Cretaceous Flint Urgonian (Santander/Castro Local Urdiales/Lekeitio/Gorbea/Rentería/Aralar) Flint Internal Marine Platform Flint Upper Cretaceous Flint Monte Picota Flint Regional (continued on next page) 106 A. Tarrino~ et al. / Quaternary International 364 (2015) 94e108

Table 2 (continued )

Flint group Flint age/Family Flint type Difussion model

Moraza Flint Local Bozoo Flint Local Paleocene Flint Loza Flint Regional Continental Flint Tertiary Lacustrine-Palustrine Flint Pilona~ Flint Regional Piedramuelle Flint Local/Regional Trevino~ Flint Trazer/Super-Trazer Ablitas Flint (Ebre Evaporitic Flint) Trazer/Super-Trazer

From these 14 classes, at least, 30 flint types can be defined, hunter-gatherers in the Western Pyrenees. Journal of Anthropological Research e associated to a huge number of outcrops distributed along the 70, 233 261. Aubry, T., 1991. L'exploitation des ressources en matieres premieres lithiques dans Cantabrian and Western Pyrenean Region. The number may in- les gisements solutreens et badegouliens du bassin versant de la Creuse crease with future investigations. The characterization of all of (France). These de Doctorat en Prehistoire. Universite de Bordeaux I. them from a petrological approach is basic work that should be Baceta, J.I., 1996. El Maastrichtiense superior, Paleoceno e Ilerdiense inferior de la Region Vasco-Cantabrica: secuencias deposicionales, facies y evolucion paleo- done in order to understand the management of this important grafica. Ph. D. Thesis. University of the Basque-Country. mineral resource in Prehistory. Barandiaran, I., Vegas, J.I., 1990. Los grupos humanos de Encía-Urbasa: analisis For the Cantabrian and Western Pyrenean Region, there are cultural de asentamientos, sistemas de explotacion, modos de vida y ritos desde el Neolítico hasta el final de la Edad Antigua. In: Eusko Ikaskuntza-Sociedad de four Tracer Flints: three South-Pyrenean, in the Basque- Estudios Vascos, San Sebastian . Cantabrian Basin (Flysch Flint, Urbasa Flint and Trevino~ Flint) Barandiara, I., Vallespí, E., 1984. Prehistoria de Navarra. Trabajos de Arqueología de and the other North-Pyrenean, in the southern Navarra 2, 1e253. fl Barandiaran, I., Cava, A., Aguirre, M., 2013. El de sílex de Mugarduia Sur: una (Chalosse Flint). Since the Neolithic a new Super-tracer int va- ocupacion de Urbasa (Navarra) durante el Gravetiense. Servicio Editorial de la riety entered the region, the Ebro Evaporitic Flint. These outcrops Universidad del País Vasco. and workshops are located out of our territory, in the Depression Barba, P., Heredia, N., Villa, E., 1991. Estratigrafía y edad del Grupo Lena en el Sectro ~ of the Ebro River (the nearest outcrops/workshops in Ablitas, de Lois-Ciguera (Cuenca Carbonífera Central, NO de Espana). Revista de la Sociedad Geologica de Espana~ 4, 61e77. Navarre) and in the Intra-Iberian Basin of Calatayud-Teruel, in the Barnolas, A., Pujalte, V., 2004. Pirineos: Rasgos distintivos y subdivision. In: Jiloca River Valley, tributary of the Ebro where the main out- Vera, J.A. (Ed.), Geología de Espana.~ SGE-IGME, Madrid, pp. 233e237. crops/workshops are found (Royo et al., 2009). By application of Barrague, J., Jarry, E., Foucher, P., Simonnet, R., 2001. Le silex de Montgaillard et son exploitation sur les ateliers de Paleolithique superieur a Hibarrette (Hautes- this recent and novel methodology and investigation, as long as Pyren ees). Paleo 13, 29e51. more precise information is obtained about the geological for- Bazile, F., 26 mai 1999. Le Paleolithique superieur en Languedoc Oriental De 35000 a … … … mation that contains the silicifications, it could be possible to 12000 ans avant le present Le milieu Les Hommes Memoire en vue de l'habilitation a diriger les recherches. Universite de Perpignan. continue specifying, adding or/and modifying the quantity and Benito-Calvo, A., Tarrino,~ A., Lobo, P.J., Junguitu, I., Larreina, D., 2010. Geo- terminology regarding flint types and their varieties. morphology and prehistoric flint mining evidence in the Sierra de Araico (Basque-Cantabrian Basin), Burgos-Alava, Spain. Journal of Maps 6 (1), 584e590. Acknowledgments Bernaldo de Quiros, F., Cabrera, V., 1996. Raw material in the Palaeolithic of Cueva del Castillo and in the Cantabria Region. In: Moloney, N., Raposo, L., Santonja, M. (Eds.), Non Flint Stone Tools and the Palaeolithic Occupation of the Iberia This work is part of the work of the “Grupo Consolidado de Peninsula, British Archaeological Reports, vol. 649, pp. 21e32. Investigacion en Prehistoria (IT-622-13) Area de Prehistoria, Bernardez, E., 1994. Unidades litoestratigraficas del Cretacico de la Depresion Dpto de Geografía, Prehistoria y Arqueología (UPV/EHU)”.The Central Asturiana. Cuadernos de Geología Iberica 18, 11e25. fl projects: HAR2011-26956 of the “Ministerio de Economía y Bon, F., 2002. L'Aurignacien entre Mer et Ocean. Re exion sur l'unite des phases anciennes de l'Aurignacien dans le sud de la France. Memoire de la Societ e Competitividad (MINECO)”, the Magdatis project (ANR project Prehistorique Française 29. 2011 BSH3 0005) and Prehistopyr (CTP10-R04) and Palmesopyr Bon, F., Chauvaud, D., Dartiguepeyrou, S., Gardere, Ph, Mensan, R., 1996. La car- e (CTP2012-R1) research networks, were funded by the CTP. We acterisation du silex de Chalosse. Antiquites nationales 28, 33 38. Bon, F., Chauvaud, D., Dartiguepeyrou, S., Gardere, Ph, Klaric, L., Mensan, R., 2002. want to thank the reviewers for their corrections and com- Les ressources en silex de la Chalosse centrale: gîtes et ateliers du dome^ diapir ments to improve this paper. de Bastennes-Gaujacq et de l'anticlinal d'Audignon. In: Cazals, N. (Ed.), Com- portements techniques et economiques des societ es du Paleolithique superieur dans le contexte pyren een, Projet Collectif de Recherche Service Regional de References l'Archeologie de Midi-Pyren ees, pp. 47e63. Bressy, C., 2003. Caracterisation et gestion du silex des sites mesolithiques et Alonso-Gavilan, G., Armenteros, I., Carballeira, J., Corrochano, A., Huerta, P., neolithiques du Nord-Ouest de l'arc alpin. In: Une approche petrographique et Rodríguez, J.M., 2004. Cuencas cenozoicas del Macizo Iberico. In: Vera, J.A. (Ed.), geochimique. BAR International Series, vol. 1114. e Geología de Espana.~ Instituto Geologico y Minero de Espana,~ Madrid, Briois, F., 1997. Les industries lithiques en Languedoc mediterraneen (6000 2000 pp. 581e584. avant J-C). Rythmes et evolutions dans la fabrication des outillages de pierre Amiot, M., 1982. El Cretacico Superior en la Region Navarro-Cantabra. In: El taillee neolithique entre mer et continent. Ph. D. thesis. EHESS de Toulouse. Cretacico de Espana.~ Universidad Complutense, pp. 88e111. Cava, A., 1986. Un asentamiento neolítico en la Sierra de Urbasa Urb.11. Trabajos de e Aranburu, A., 1998. El Aptiense-Albiense de Trucíos-Güenes~ (Oeste de Bizkaia). Ph. Arqueología Navarra 5, 19 75. D. thesis. University of the Basque-Country. Cava, A., 1988. Ocupaciones de la Prehistoria reciente en Urbasa (Navarra). Trabajos e Arias, P., 1990. Utilisation differentielle des varietes de silex au Chalcolithique dans de Arqueología Navarra 7, 25 117. les Asturies orientales (Espagne). In: Seronie-Vivien, M.R., Lenoir, M. (Eds.), Le Cava, A., Barandiaran, I. (Eds.), 2008. Cazadores y tallistas en el abrigo de Portugain, una silex de sa genese a l'outil, Cahiers du Quaternaire, vol. 17, pp. 449e452. ocupacion de Urbasa durante el Tardiglaciar. Fundacion Jose Miguel de Barandiaran. Arias, P., 1992. Estrategias de aprovechamiento de las materias primas líticas en la Chalard, P., Briois, F., Lacombe, S., Servelle, Ch, 1996. Lithotheque des matieres costa oriental de Asturias. In: Mora, R., Terradas, X., Parpal, A., Plana, C. (Eds.), premieres siliceuses. Rapport de synthese de P.C.R. Service Regional de Tecnología y cadenas operativas líticas, Treballs d'Arqueologia, vol. 1, pp. 37e56. l'Archeologie de Midi-Pyrenees. Arias Cabal, P., Fernandez, P., Marcos, C., Rodríguez, I., 2009. The elusive flint: raw Chalard, P., Ducasse, S., Bon, F., Bruxelles, L., Teyssandier, N., Renard, C., Gardere, P., materials and lithic technology in the Mesolithic of eastern Asturias, Spain. In: Guillermin, P., Lacombe, S., Langlais, M., Mensan, R., Normand, C., Simonnet, R., ~ Woodman, P., Schulting, R. (Eds.), Mesolithic Horizons: Papers Presented at the Tarrino, A., 2010. Chalosse-type Flint: exploitation and distribution of a Litho- Seventh International Conference on the Mesolithic in Europe. Belfast 2009. logic tracer during the Upper Paleolithic, Southern France. In: Brewer- Oxbow Books. Oxford, pp: 860e672. LaPorta, M., Burke, A., Field, D. (Eds.), Ancient Mines and Quarries: a Trans- e Arrizabalaga, A., Calvo, A., Elorrieta, I., Tapia, J., Tarrino,~ A., 2014. Where to and what Atlantic Perspective. Oxbow books, Oxford, pp. 13 22. for ? Mobility patterns and the management of lithic resources by Gravettian A. Tarrino~ et al. / Quaternary International 364 (2015) 94e108 107

Chauchat, C., 1968. Les industries prehistoriques de la region de Bayonne du Lenoir, M., Obry, O., Seronie-Vivien, M.R., 1997. Occurence of Allochtonous Flint in Perigordien ancien a l'Asturien. Ph. D. thesis. Universite de Bordeaux. an Upper-Palaeolithic Site near Bordeaux. In: Ramos-Millan, A., Bustillo, M.A. Chauchat, C., Thibault, C., 1968. La station de plein air de Baste a Saint-Pierre d'Irube (Eds.), Siliceous Rocks and Culture. Universidad de Granada, pp. 385e390. (Basses Pyren ees). Geologie. Etude archeologique preliminaire. Bulletin de la Lotze, F., 1960. Zur gliederung der oberkreide in der Baskischen depression Societ ePr ehistorique Française 65, 295e318. (Nordspanien). Neues Jahrbuch Geologie Palaontologie€ Monatshefte 3, Corchon, M.S., Tarrino,~ A., Martínez, X., 2007. Mobilite, territoires et relations cul- 132e144. turelles au debut du Magdalenien moyen cantabrique : nouvelles perpectives. Mandado, J., Tilo, M.A., 1995. Analisis de las materias primas líticas utilizadas en el In: Djindjian, F., Kozlowski, J., Bicho, N. (Eds.), Le concept de territoires dans le yacimiento de Olvena. Bolskan 12, 87e103. Paleolithique suerieur europeen. Actes du XV Congres Mondial UISPP (Lis- Mangado, X., 2005. La caracterizacion y el aprovisionamiento de los recursos bonne, 4-9 septembre 2006), British Archaeological Reports International Series abioticos en la Prehistoria de Cataluna:~ las materias primas silíceas del Paleo- 1938, Oxford, vol. 3, pp. 217e230. lítico Superior Final y el Epipaleolítico. In: British Archaeological Reports In- Damour, A., 1865. Sur la composition des Haches en Pierre trouvees Dans les ternational Series 1420, Oxford. monuments celtiques et chez les sauvages. In: Comptes Rendus de l'Academie Martínez-García, E., 1981. El Paleozoico de la Zona Cantabrica Oriental (Noroeste de des Sciences, LXI, seances du 21 et 28 août 1865, pp. 1e13. Espana).~ Tabajos de Geología 11, 95e127. Demars, P.-Y., 1982. L'utilisation du silex au Paleolithique superieur: choix, appro- Mazo, C., Cuchí, J.A., 1992. Sílex y Prehistoria. Analisis mineralogico de muestras visionnement, circulation. L'exemple du Bassin de Brive. Cahiers du Quaternaire silíceas de Huesca y Zaragoza. Bolskan 9, 9e50. 5, 1e253. Montes Barquín, R., Sanguino-Gonzalez, J., 1998. Diferencias en las estrategias de Demars, P.-Y., 1994. L'economie du silex au Paleolithique superieur dans le nord de adquisicion de Recursos líticos entre el Paleolítico inferior y medio en el centro l'Aquitaine. Memoire de Doctorat d'Etat. Universite de Bordeaux I. de la Region Cantabrica: implicaciones economicas y territoriales. In: Elorrieta, I., 2014. Los artefactos retocados del nivel C4d1j de Isturitz: estudio Bernabeu, J., Orozco, T., Terradas, X. (Eds.), Los recursos abioticos en la Pre- arqueopetrologico desde la Tipología Analítica. In: Seis decadas de Tipología historia. Caracterizacion, aprovisionamiento e intercambio, 1ª Reunion de Tra- Analítica. Actas en homenaje a Georges Laplace (in press). bajo sobre Aprovisionamiento de Recursos Líticos en la Prehistoria (1994), Elorza, J.J., Arriortua, M.I., 1985. Silicificacion de fragmentos de coníferas en las pp. 55e72. arenas de la “Formacion Utrillas” (Norte de Burgos). Boletín Sociedad Espanola~ Morala, A., 1984. Perigordien et Aurignacien en Haut.-Agenais. Etude d'ensembles de Mineralogía 8, 73e82. lithiques. In: Archives d'Ecologie Prehistorique. EHESS. Elorza, J.J., Bustillo, M.A., 1989. Early and Late Diagenetic Chert in Carbonate Tur- Normand, C., 1984. Fouilles de sauvetage au lieu-dit “Les Vignes” a Tercis. Bulletin bidites of the Senonian Flysch, Northeast Bilbao, Spain. In: Hein, J.R., de la Societ e de Borda 393, 193e219. Obradovic, J. (Eds.), Siliceous Deposits of the Tethys and Pacific Region. Normand, C., 1986. Inventaire des gîtes a silex de la Chalosse. In: Arambourou, R., Springer-Verlag, New York, pp. 93e106. Straus, L.G., Normand, C. (Eds.), Recherches de Prehistoire dans les Landes en Elorza, J.J., García-Garmilla, F., 1997. Chert Types in the Cueva Carbonate Platform 1985, Bulletin de la Societ e de Borda, vol. 402, pp. 121e140. (Upper Cretaceous, Northern Spain). In: Ramos-Millan, A., Bustillo, M.A. (Eds.), Normand, C., 1987. Le gisement paleolithique de plein air du Vignes a Tercis Siliceous Rocks and Culture. Universidad de Granada, pp. 57e74. (Landes). Bulletin de la Societ e d'Anthropologie du Sud-Ouest 22, 71e80. Elorza, J.J., Arriortua, M.I., Amigo, J.M., 1985. Indices de Cristalinidad en los sílex de Normand, C., 1993. Un atellier de taille de pieces a dos a Tercis (Landes). Archeologie caracter turbidítico de Barrika (NE de Bilbao). Boletín Geologico y Minero de des Pyren ees occidentales et des Landes 12, 25e51. Espana~ 96, 74e81. Normand, C., 2002. Les ressources en matieres premieres siliceuses dans la basse Fernandez-Eraso, J., García-Rojas, M., 2013. Tipología Analítica. In: García-Diez, M., vallee de l'Adour et de ses affluents. In: Cazals, N. (Ed.), Comportements tech- Zapata, L. (Eds.), Metodos y tecnicas de analisis y estudio en arqueología pre- niques et economiques des societ es du Paleolithique superieur dans le contexte historica. De lo tecnico a la reconstruccion de los grupos humanos. Servicio pyren een. Project Collectif de Recherche 2002. Service Regional de l'Arch- Editorial de la Universidad del País Vasco, Bilbao, pp. 470e497. eologie de Midi-Pyren ees, pp. 26e46. Foucher, P., 2004. Les industries lithiques du complexe Gravettien-Solutreen dans Normand, C., Odin, P.L., Odin, G.S., 2001. Prehistoire et Protohistoire sur le territoire les Pyren ees. Techno-typologie et circulation des matieres siliceuses de part et de Tercis-les-Bains (France). In: Odin, G.S. (Ed.), The Campanian-Maastrichtian d'autre de l'axe Pyren ees-Cantabres. Ph. D. thesis. Universite de Toulouse-Le stage boundary. Characterisation at Tercis les Bains (France) and correlation Mirail. with Europe and other continents, Developments in Palaeontology and Stra- Foucher, P., Simonnet, R., Jarry, M., 2002. L'atelier de taille solutreen de Coustaret tigraphy Series, vol. 19. Elsevier Sciences Publications, Amsterdam, pp. 14e22. (Saint-Martin, Hautes-Pyren ees). Paleo 14, 49e62. Odin, G.S., 2001. Descriptive lithostratigraphy of the Campanian-Maastrichtian Fouer e, P., 1994. Les industries en silex dans le Nord du Bassin aquitain, entre succession at Tercis les Bains (SW France). In: The Campanian-Maastrichtian Neolithique moyen et Campaniforme: approche methodologique, significations stage boundary. Characterisation at Tercis les Bains (France) and correlation culturelles de l'economie des matieres premieres, du debitage et des produits with Europe and other continents. Developments in Palaeontology and Stra- retouches. Ph. D. thesis. Universite de Bordeaux. tigraphy Series, vol. 19. Elsevier Sciences Publications, Amsterdam, pp. 85e109. Geneste, J.-M., 1985. Analyse lithique d'industries mousteriennes du Perigord: une Ortí, F., Rosell, L., Salvany, J.M., Ingles, M., 1997. Chert in Continental Evaporites of approche technologique du comportement des groupes humains au the Ebro and Calatayud Basins (Spain): distribution and Significance. In: Ramos- Paleolithique Moyen. Ph. D. thesis. Universite de Bordeaux I. Millan, A., Bustillo, M.A. (Eds.), Siliceous Rocks and Culture. Universidad de Geneste, J.-M., 1988. Systemes d'approvisionnement en matieres premieres au Granada, pp. 75e90. Paleolithique moyen et au Paleolithique superieur en Aquitaine. In: Otte, M. Ortiz, L., Vivanco, J.J., Ferreira, A., Lobo, P.J., Munoz,~ M.D., Pinillos, R., Tarrino,~ J.M., (Ed.), L'Homme de Neandertal, La mutation, Colloque de Liege, vol. 8, Tarrino,~ A., 1990. El Habitat en la Prehistoria en el valle del Río Rojo (Alava), 3, pp. 61e70. pp. 1e315. Cuadernos de seccion de Eusko-Ikaskuntza (Prehistoria- Geneste, J.-M., Rigaud, J-Ph, 1989. Matieres premieres lithiques et occupation de Arqueología). l'espace. In: CNRS (Ed.), Variations des paleomilieux et peuplement Ramírez del Pozo, J., 1971. Síntesis geologica de la provincia de Alava. In: Caja de prehistorique, Cahiers du Quaternaire, vol. 13, pp. 205e218. Ahorros Municipal de la ciudad de Vitoria. Gonzalez, J.E., Ibanez,~ J.J., 1992. La tecnología de talla laminar en la ocupacion Rissetto, J., 2009. Late Pleistocene Hunter-Gatherer Mobility Patterns and Lithic epipaleolítica de Berniollo (Subijana-Morillas, Alava). In: Mora, R., Terradas, X., Exploitation in Eastern Cantabria (Spain) (Unpublished, Ph. D. thesis). Univer- Parpal, A., Plana, C. (Eds.), Tecnología y cadenas operativas líticas, Treballs sity of New Mexico. d'Arqueologia, vol. 1, pp. 201e221. Royo, J.I., Gomez-Lecumberri, F., Cebolla, J.L., 2009. La produccion de grandes Gonzalez Sainz, C., 1992. Algunas reflexiones sobre las materias primas líticas y la laminas en los yacimientos líticos de Monton de Jiloca (Zaragoza) y el contexto variabilidad tecnica y tipologica, al termino del Paleolítico superior de la region de su hallazgo en niveles prehistoricos de Catalayud. In: Gibaja, J., Terradas, X., cantabrica. In: Mora, R., Terradas, X., Parpal, A., Plana, C. (Eds.), Tecnología y Palomo, A., Clop, X. (Eds.), Les grans fulles de sílex Europa al final de la pre- cadenas operativas líticas, Treballs d'Arqueologia, vol. 1, pp. 57e72. historia: actes, pp. 119e129. Gregoire, S., 1998. Origine des matieres premieres des industries lithiques du Santamaría, D., Rasilla, M., Martínez, L., Tarrino,~ A., 2011. Las herramientas y su Paleolithique pyren een et mediterran een. Contribution a la connaissance des interpretacion cultural y economica. In: de la Rasilla, M., Rosas, A., aires de circulations humaines. Ph. D. thesis. Universite de Perpignan. Canaveras,~ J.C., Lalueza-Fox, C. (Eds.), La cueva de El Sidron (Borines, Pilona,~ IGME, 1978. Mapa Geologico de Espana,~ 1/50.000. Hoja núm. 170-Haro. Ministerio Asturias). Investigacion interdisciplinar de un grupo neandertal, Oviedo. Con- de Industria y Energía, Madrid. sejería de Cultura y Turismo y Ediciones Trabe SLU, pp. 135e144. IGME, 1979. Mapa Geologico de Espana,~ 1/50.000. Hoja núm. 139-Eulate. Ministerio Sarabia, P.M., 1990a. Approche de l'etude de la distribution stratigraphique du silex de Industria y Energía, Madrid. de la province de Cantabria (Espagne du Nord). In: Seronie-Vivien, M.R., IGME, 1981. Mapa Geologico de Espana,~ 1/50.000. Hoja núm. 32-Llanes. Ministerio Lenoir, M. (Eds.), Le silex de sa genese a l'outil, Cahiers du Quaternaire, vol. 17, de Industria y Energía, Madrid. pp. 141e148. Knauth, L.P., 1994. Petrogenesis of Chert. In: Heaney, P.J., Prewitt, C.T., Gibbs, G. Sarabia, P.M., 1990b. L'utilisation du silex dans les industries du Paleolithique de (Eds.), Silica. Physical Behavior, Geochemistry and Materials Applications, Re- Cantabria (Espagne du Nord). In: Seronie-Vivien, M.R., Lenoir, M. (Eds.), Le silex views in Mineralogy, vol. 29, pp. 232e258. de sa genese a l'outil, Cahiers du Quaternaire, vol. 17, pp. 443e448. Lacombe, S., 1999. Strategies d'approvisionnement en silex au Tardiglaciaire. Sarabia, P.M., 1999a. Aprovechamiento y utilizacion de materias primas líticas en los L'exemple des Pyren ees centrales françaises. Bulletin de la Societ epr ehistoire tecnocomplejos del Paleolítico en Cantabria. Tesis doctoral. Universidad de Ariege-Pyr en ees 52, 223e266. Cantabria. Laplace, G., 1973. La typologie analythique et structurale : basse rationnelle d'etude Sarabia, P.M., 1999b. Notas sobre los modelos de aprovisionamiento de materias des industries lithiques et osseuses. Banques de Donnees Archeologiques 932, primas líticas en el Paleolítico superior de Cueva Morín (Villanueva de 91e143. 108 A. Tarrino~ et al. / Quaternary International 364 (2015) 94e108

Villaescusa, Cantabria). Estudios en homenaje al profesor Dr. García Guinea. Tarrino,~ A., Aguirre, M., 2002. Datos preliminares sobre la procedencia de los sílex Sautuola 6, 145e154. recuperados en el yacimiento de Antolinako~ Koba (Bizkaia, País Vasco). In: Seronie-Vivien, M.R., 2003. Atribution stratigraphique d'un silex et microfacies. Cazals, N. (Ed.), Comportements techniques et economiques des societ es du Prehistoire du Sud-Ouest 5, 297e304. Paleolithique superieur dans le contexte pyren een, Projet Collectif de Recherche Seronie-Vivien, M.R., Lenoir, M. (Eds.), 1990. Le silex de sa genese a l'outil. Cahiers Service Regional de l'Archeologie de Midi-Pyren ees, pp. 6e25. du Quaternaire, vol. 17. Tarrino,~ A., Elorrieta, I., 2012. La explotacion de los recursos abioticos durante el Seronie-Vivien, M., Seronie-Vivien, M.R., 1987. Le silex du Mesozoïque nord- Gravetiense cantabrico. Primeros datos sobre el Pirineo occidental y la Cuenca aquitain. Approche geologique de l'etude des silex pour servir a la recherche Vasco-Cantabrica. In: de las Heras, C., Lasheras, J.A., Arrizabalaga, A., de la prehistorique. Societ e Lineenne de Bordeaux 15. Rasilla, M. (Eds.), Pensando el Gravetiense: nuevos datos para la region can- Simonnet, R., 1981. Carte de gîtes a silex des Pre-Pyr en ees. In: Societ epr ehistorique tabrica en su contexto peninsular y pirenaico, Monografía 23. Museo Nacional y française (Ed.), La Prehistoire en Quercy dans le contexte de Midi- Pyren ees, Centro de Investigacion de Altamira, pp. 330e346. pp. 308e323. Tarrino,~ A., Mujika, J.A., 2003. Informe del proyecto de delimitacion de zonas con Simonnet, R., 1999. De la geologie alaPr ehistoire: le silex des Prepyr en ees. recursos de rocas o minerales susceptibles de aprovechamiento por el hombre Resultats et reflexions sur les perspectives et les limites de l'etude des matieres prehistorico. In: 1ª Campana:~ Gaintxurizketa. Diputacion Foral de Gipuzkoa premieres lithiques. Paleo 11, 71e88. (Unpublished). Simonnet, R., 2002. Le silex dans le bassin sous-pyren een de la Garonne. Comple- Tarrino,~ A., Normand, C., 2002. Procedencia de los restos líticos en el Aurinaciense~ ments. Bulletin de la Societ ePr ehistorique Ariege-Pyr en ees 57, 113e170. Antiguo (C 4b1) de Isturitz (Pyren ees-Atlantiques, Francia). In: Maíllo, J.M. (Ed.), Straus, L.G., Clark, G.A., 1986. La Riera Cave. Stone Age Hunters-gatherers Adapta- Autour des concepts de Protoaurignacien, d'Aurignacien initial et ancien, tions in Northern Spain. Anthropological Research Papers, 36. Arizona State Espacio Tiempo y Forma, Serie I, Prehistoria y Arqueología 15, pp. 135e143. University. Tarrino,~ A., Terradas, X., 2013. Materias primas líticas. In: García-Diez, M., Zapata, L. Surmely, F., Barrier, P., Bracco, J.-P., Charly, N., Liabeuf, R., 1998. Caracterisation des (Eds.), Metodos y tecnicas de analisis y estudio en arqueología prehistorica. De matieres premieres siliceuses par l'etude des microfacies et application ala lo tecnico a la reconstruccion de los grupos humanos. Servicio Editorial de la connaissance du peuplement prehistorique de l'Auvergne. Comptes rendus de Universidad del País Vasco, Bilbao, pp. 439e452. l'Academie des Sciences de Paris 326, 595e601. Tarrino,~ A., Arriortúa, M.I., Elorza, J.J., 1989. Estudio geologico del area Tarrino,~ A., 1997. Analisis de restos líticos silíceos del yacimiento arqueologico de de Penacerrada~ (Alava): petrografía y cristalografía de las silicificaciones exis- Urratxa III (Orozko, Bizkaia). In: Munoz-Salvatierra,~ M., Berganza, E. (Eds.), El tentes. Cuadernos de Seccion de Eusko-Ikaskuntza (Ciencias Naturales) 5, yacimiento de la cueva de Urratxa III (Orozko, Bizkaia). Universidad de Deusto, 45e135. Bilbao, pp. 93e121. Tarrino,~ A., Olivares, M., Etxebarria, N., Baceta, J.I., Larrasoana,~ L.C., Yusta, I., Tarrino,~ A., 1998. Analisis de restos líticos silíceos del yacimiento arqueologico de Pizarro, J.L., Cava, A., Barandiaran, I., Murelaga, X., 2007. El sílex de tipo Kanpanoste Goikoa. In: Alday, A. (Ed.), El deposito prehistorico de Kanpanoste “Urbasa”. Caracterizacion petrologica y geoquímica de un marcador litologico Goikoa (Vírgala, Alava). Memoria de las actuaciones arqueologicas. 1992-1993, en yacimientos arqueologicos del Suroeste europeo durante el Pleistoceno su- Memorias de yacimientos alaveses, 5, pp. 105e110. perior y Holoceno inicial. Geogaceta 43, 127e130. Tarrino,~ A., 2000. Estudio de la procedencia de los sílex recuperados en el yaci- Tarrino,~ A., Benito-Calvo, A., Lobo, P.J., Junguitu, I., Larreina, D., 2011a. Evidence of miento de Labeko Koba (Arrasate, País Vasco). In: Arrizabalaga, A., Altuna, A. Flint mining in the Trevino~ syncline (Basque-Cantabrian Basin, Western Pyr- (Eds.), Labeko Koba (País Vasco). Hienas y Humanos en los albores del Paleo- enees, Spain). In: Capote, M., Consuegra, S., Díaz-del-Río, P., Terradas, X. (Eds.), lítico superior, Munibe (Antropologia - Arkeologia), 52, pp. 345e354. Proceedings of the 2nd International Conference of the UISPP Commission on Tarrino,~ A., 2001a. El sílex en la Cuenca Vasco-Cantabrica y el Pirineo Navarro: Flint Mining in Pre- and Protohistoric Times, 14-17 October, 2009 Madrid, caracterizacion y su aprovechamiento en la Prehistoria. Ph. D. thesis. Uni- British Archaeological Reports International Series, vol. 2260. Archaeopress, versidad del País Vasco. pp. 171e182. Tarrino,~ A., 2001b. Procedencia de los sílex de la industria lítica del yacimiento de Tarrino,~ A., Lobo, P.J., García-Rojas, M., Elorrieta, I., Orue, I., Benito-Calvo, A., Aizpea (Arive, Navarra). In: Baradiaran, I., Cava, A. (Eds.), Cazadores-recolectores Karampaglidis, T., 2011b. Introduccion al. estudio de las minas neolíticas de en el Pirineo navarro, El sitio de Aizpea entre 8000 y 6000 anos~ antes de ahora. sílex de la sierra de Araico (Condado de Trevino).~ In: Campana~ de excavacion Veleia, Anejos, Series Maior, vol. 10, pp. 51e61. del 2011. Estudios de Arqueología Alavesa, vol. 27, pp. 7e48. Tarrino,~ A., 2003. El estudio de la procedencia de los efectivos líticos del yacimiento Tarrino,~ A., Cava, A., Barandiaran, I., 2013. Recursos líticos en las industrias del arqueologico de las Yurdinas II (Penacerrada-Urizaharra,~ Alava). In: Fernandez- Solutrense Cantabrico: el caso de Altamira (Cantabria, Espana).~ In: Le Sol- Eraso, J. (Ed.), Las Yurdinas II: Un deposito funerario entre finales del IV y utreen … 40 ans apres Smith'66. 47 Supplement a la Revue Archeologique du comienzos del III milenio BC, Memorias de yacimientos alaveses, 8, pp. 93e100. Centre de la France. Sous la direction de la Societ ed' Etudes et de Recherches Tarrino,~ A., 2004. Indicios de minería de sílex en Trevino~ (Sur de la Cuenca Vasco- Archeologiques sur le Paleolithique de la Valle de la Claise, pp. 261e272. Cantabrica). In: Santonja, M., Perez-Gonz alez, A., Machado, M.J. (Eds.), Geo- Tarrino,~ A., Cava, A., Barandiaran, I., 2013a. Recursos líticos en las industrias del arqueología y conservacion del patrimonio, pp. 415e424. Solutrense Cantabrico : El caso de Altamira (Cantabria, Espana).~ In: Le Sol- Tarrino,~ A., 2006a. El sílex en la Cuenca Vasco-Cantabrica y Pirineo navarro: utreen … 40 ans apres Smith'66, Actes du Colloque de Preuilly-Sur-Claise, caracterizacion y su aprovechamiento en la Prehistoria. In: Monografía n 21. pp. 261e272. Museo Nacional y Centro de Investigacion de Altamira. Tarrino,~ A., Duarte, E., Santamaría, D., Martínez-Fernandez, L., Fernandez de la Tarrino,~ A., 2006b. Fuentes de aprovisionamiento de los sílex del yacimiento Vega, J., Suarez, P., Rodríguez, V., Forcelledo, E., de la Rasilla, M., 2013b. El Sílex arqueologico de Mendandia (Saseta, Condado de Trevino).~ In: Alday, A. (Ed.), El de Pilona.~ Caracterizacion de una nueva fuente de materia prima lítica en la legado arqueologico de Mendandia: los modos de vida de los últimos cazadores Prehistoria de Asturias. In: de la Rasilla, M. (Ed.), F.Javier Fortea Perez. Uni- en la Prehistoria de Trevino,~ pp. 473e494. versitatis Ovetensis Magister. Estudios en homenaje. Mensula Ediciones, Tarrino,~ A., 2008. Procedencia de los sílex de la industria lítica de Portugain. In: Oviedo, pp. 115e132. Barandiaran, I. (Ed.), Cazadores y Tallistas en el abrigo de Portugain: una Tarrino,~ A., 2014. Procedencia de los sílex del proyecto: “Los tiempos de Altamira” ocupacion de Urbasa durante el Tardiglaciar, Coleccion Barandiaran, vol. 12, (yacimientos de: El Linar, Cualventi y Las Aguas). In: Monografía del Museo de pp. 185e192. Altamira. Museo Nacional y Centro de Investigacion de Altamira (in press). Tarrino,~ A., 2009. Procedencia de los sílex de la industria lítica del yacimiento de Terradas, X., 1996. La gestio dels recursos minerals entre les comunitats caçadores- Cobrante. Sautuola 15, 149e153. recol.lectores: vers una representacio de les estrategies de proveïment de Tarrino,~ A., 2011a. Procedencia de los sílex de la cueva de Aitzbitarte-III (Rentería, materies primers. Tesis Doctoral. Universitat Autonoma de Barcelona. Gipuzkoa). In: Altuna, J., Mariezkurrena, K., Ríos, J. (Eds.), Ocupaciones humanas Terradas, X., Plana, F., Chinchon, J.S., 1991. Aplicacion de tecnicas analíticas para el en Aitzbitarte III (País Vasco) 33.600-18.400 BP (Zona de entrada a la cueva), estudio de las materias primas líticas prehistoricas. In: Vila, A. (Ed.), Arqueo- pp. 353e374. logía. CSIC, Madrid, pp. 272e278. Tarrino,~ A., 2011b. Procedencia de los sílex de la industria lítica del yacimiento en Truyols, J., García-Ramos, C., Casanovas-Cladellas, M.L., y Santafe-Llopis, J.V., 1991. El cueva de Santimamine~ (Kortezubi, Bizkaia). In: Lopez-Quintana, J.C. (Ed.), La Terciario de los alrededores de Oviedo. Acta Geologica Hispanica 26 (3e4), cueva de Santimamine:~ revision y actualizacion (2004-2006), Kobie: Serie 229e233. Excavaciones arqueologicas en Bizkaia, vol. 1, pp. 1e8. Turq, A., 1989. Exploitation des matieres premieres lithiques et l'occupation du sol: Tarrino,~ A., 2013. Los sílex de Mugarduia sur. In: Barandiaran, I., Cava, A., Aguirre, M. l'exemple du Mousterien entre Dordogne et Lot. In: CNRS (Ed.), Variations des (Eds.), El taller de sílex de Mugarduia Sur. Una ocupacion de Urbasa (Navarra) paleo-milieux et peuplement prehistorique, Cahiers du Quaternaire, vol. 13, durante el Gravetiense, Anejos de Veleia, Series Maior 13. Servicio Editorial EHU pp. 179e204. Press, Vitoria, pp. 525e548. Turq, A., 2000. Paleolithique inferieur et moyen entre Dordogne et Lot. Paleo, vol. 2. Tarrino,~ A., Aguirre, M., 1997. Datos preliminares sobre fuentes de aprovisiona- Urtiaga, M.K., Arriortua, M.I., Elorza, J., 1990. Estudio de las manifestaciones silíceas miento de rocas silíceas en algunos yacimientos paleolíticos del sector oriental del Noreste de la provincia de Navarra. Cuadernos de Seccion de Eusko- de la Cuenca Vasco-Cantabrica. Veleia 14, 101e106. Ikaskuntza (Ciencias Naturales) 7, 259e279. ~ Tarrino,~ A., Yusta, I., Aguirre, M., 1998. Indicios de circulacion a larga distancia de Villalobos, L., RamArez del Pozo, J., 1971. Estratigrafía del Jurasico del NW. de sílex en el Pleistoceno superior. Datos petrograficos y geoquímicos de materi- Navarra. Cuadernos de Geología Iberica 2, 541e560. ales arqueologicos de Antolinako~ Koba. Boletín de la Sociedad Espanola~ de Mineralogía 21-A, 200e201.