The Roles of Systematic Skewness and Systematic Kurtosis in Asset Pricing

Total Page:16

File Type:pdf, Size:1020Kb

The Roles of Systematic Skewness and Systematic Kurtosis in Asset Pricing View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by RMIT Research Repository THE ROLES OF SYSTEMATIC SKEWNESS AND SYSTEMATIC KURTOSIS IN ASSET PRICING Minh Phuong Doan B Com (Hons) A thesis submitted in fulfilment of the requirements for the degree of Doctor of Philosophy (Economics and Finance) School of Economics, Finance and Marketing RMIT University March 2011 DECLARATION I, Minh Phuong Doan, declare that: a. except where due acknowledgement has been made, this work is that of myself alone; b. this work has not been submitted, in whole or part, to qualify for any other academic award; c. the content of the thesis is the result of work that has been carried out since the official commencement date of the approved research program; d. Ms Annie Ryan was paid for proofreading this work for grammar and clarity. Signed Date 10/03/2011 Minh Phuong Doan ii ACKNOWLEDGEMENTS This dissertation would not have been a real fulfilment without the backing and co- operation from various individuals through various means. First and foremost I offer my sincerest gratitude to my principal supervisor, Professor Heather Mitchell. She has inspired, guided and encouraged me throughout the difficult time of my PhD. Her exceptional intelligence and extraordinary experience have inspired and nourished my intellectual maturity, from which I will benefit for a long time to come. Heather has also given me her friendship, which is something much greater, in all the years I have known her. I have learnt so much from her and I am grateful to her in every possible way. I would also like to express my grateful thanks to my second supervisor, Professor Richard Heaney, for his valuable advice, generous supervision and continuous support. His encouragement for conference and journal submissions and his high regard for my work have made my study journey more meaningful and enjoyable. I wish him all the best for his new arrival at UWA and I hope to keep up our collaboration in the future. I would also like to express my sincere thanks to Dr Ashton De Silva, who has kindly accepted to take over the supervision from Richard since his departure from RMIT. Ashton‟s expertise in statistics has brought new light to my work and I thank him for the valuable advices he, as my colleague and supervisor, has given me in my PhD time. Further, I thank my professional supervisor, Professor Roslyn Russell, for giving me generous study leave to complete this study. She understood my frustration and has provided the iii best support I could have in my profession. She organised lunch and drink get-togethers to boost my spirits and celebrate some small achievement of my work in progress. I am also very grateful to my friends, Henry Bell and Nam Nguyen, for their help and support in completing this thesis. Henry has generously given his time to proofread my writing and has provided me valuable feedback. Nam helped me debug my code and provided generous assistance with computer-related problems. He also listened to my other problems and always trusted in my ability to achieve the best outcomes in my research. Finally and most importantly, words fail me to express my appreciation to my family for their love and support. I thank my parents for showing me the joy of intellectual pursuit and for doing the best they can to assist me with my learning journey. I thank my sister and brother for being supportive and caring siblings. iv TABLE OF CONTENTS LIST OF TABLES ..................................................................................................................... viii LIST OF FIGURES ...................................................................................................................... x ABSTRACT ................................................................................................................................... 1 CHAPTER 1. INTRODUCTION........................................................................................... 3 1.1 Understanding Skewness and Kurtosis .....................................................................................3 1.2 Causes of Skewness and Kurtosis in Asset Pricing ....................................................................5 1.3 Measures of Skewness and Kurtosis.........................................................................................6 1.4 Problems Investigated .............................................................................................................8 1.5 Motivation of the Study ..........................................................................................................9 1.6 Contribution of the Study ......................................................................................................10 1.7 Research Questions...............................................................................................................11 1.8 Methodology and Main Findings ...........................................................................................12 1.9 Structure of the Thesis ..........................................................................................................14 CHAPTER 2. LITERATURE REVIEW ............................................................................ 16 2.1 Introduction .........................................................................................................................16 2.2 Mean-Variance Efficiency Tests ............................................................................................17 2.2.1 Wald Test ......................................................................................................................18 2.2.2 Gibbons, Ross and Shanken (1989)Test of Mean-Variance Efficiency................................20 2.2.3 Using Bootstrap Method for Mean-Variance Efficiency Test in the Case of Multivariate Non-normal Errors......................................................................................23 2.3 The Relevance of Skewness and Kurtosis in Asset Pricing ......................................................25 2.3.1 Relationships between Beta Asymmetry and Higher Moments...........................................25 2.3.2 Asset Pricing Model in the Four-moment Framework .......................................................27 2.3.2.1 How Skewness Enters Asset Pricing ..........................................................................28 2.3.2.2 The Importance of Kurtosis in Asset Pricing...............................................................32 2.4 Applications of Skewness and Kurtosis ..................................................................................35 2.4.1 Performance Measures with Skewness and Kurtosis..........................................................35 2.4.2 Portfolio Optimisation with Skewness and Kurtosis ..........................................................37 2.5 Conclusions .........................................................................................................................38 CHAPTER 3. DATA AND SUMMARY STATISTICS..................................................... 40 3.1 Data.....................................................................................................................................40 3.2 Measures of Systematic Skewness and Systematic Kurtosis.....................................................41 v 3.3 Portfolio Construction...........................................................................................................42 3.4 Summary Statistics ...............................................................................................................44 3.5 Summary .............................................................................................................................49 CHAPTER 4. ARE ASSET RETURNS MEAN-VARIANCE EFFICIENT? ................. 50 4.1 Introduction .........................................................................................................................50 4.2 Methodology ........................................................................................................................52 4.2.1 Mean-Variance Efficiency Tests ......................................................................................52 4.2.2 Mean-Variance Efficiency with Multivariate Normal Errors .............................................54 4.2.2.1 The Wald Test ..........................................................................................................54 4.2.2.2 The Gibbon, Ross, Shanken (1989) Test of Zero Intercept ...........................................54 4.2.3 Bootstrap Tests with Multivariate Non-normal Errors .......................................................55 4.3 Empirical Results and Discussion ..........................................................................................57 4.3.1 Time-series Regression Analysis using the CAPM ............................................................57 4.3.2 Mean-Variance Efficiency Tests with Normal Errors ........................................................59 4.3.3 Bootstrap Test with Non-normal Errors ...........................................................................61 4.4 Conclusions .........................................................................................................................68 CHAPTER 5. ARE ASSET RETURNS MEAN-VARIANCE-SKEWNESS- KURTOSIS EFFICIENT? ........................................................................... 70 5.1 Introduction
Recommended publications
  • 4.2 Variance and Covariance
    4.2 Variance and Covariance The most important measure of variability of a random variable X is obtained by letting g(X) = (X − µ)2 then E[g(X)] gives a measure of the variability of the distribution of X. 1 Definition 4.3 Let X be a random variable with probability distribution f(x) and mean µ. The variance of X is σ 2 = E[(X − µ)2 ] = ∑(x − µ)2 f (x) x if X is discrete, and ∞ σ 2 = E[(X − µ)2 ] = ∫ (x − µ)2 f (x)dx if X is continuous. −∞ ¾ The positive square root of the variance, σ, is called the standard deviation of X. ¾ The quantity x - µ is called the deviation of an observation, x, from its mean. 2 Note σ2≥0 When the standard deviation of a random variable is small, we expect most of the values of X to be grouped around mean. We often use standard deviations to compare two or more distributions that have the same unit measurements. 3 Example 4.8 Page97 Let the random variable X represent the number of automobiles that are used for official business purposes on any given workday. The probability distributions of X for two companies are given below: x 12 3 Company A: f(x) 0.3 0.4 0.3 x 01234 Company B: f(x) 0.2 0.1 0.3 0.3 0.1 Find the variances of X for the two companies. Solution: µ = 2 µ A = (1)(0.3) + (2)(0.4) + (3)(0.3) = 2 B 2 2 2 2 σ A = (1− 2) (0.3) + (2 − 2) (0.4) + (3− 2) (0.3) = 0.6 2 2 4 σ B > σ A 2 2 4 σ B = ∑(x − 2) f (x) =1.6 x=0 Theorem 4.2 The variance of a random variable X is σ 2 = E(X 2 ) − µ 2.
    [Show full text]
  • An Empirical Analysis of Higher Moment Capital Asset Pricing Model for Karachi Stock Exchange (KSE)
    Munich Personal RePEc Archive An Empirical Analysis of Higher Moment Capital Asset Pricing Model for Karachi Stock Exchange (KSE) Lal, Irfan and Mubeen, Muhammad and Hussain, Adnan and Zubair, Mohammad Institute of Business Management, Karachi , Pakistan., Iqra University, Shaheed Benazir Bhutto University Lyari, Institute of Business Management, Karachi , Pakistan. 9 June 2016 Online at https://mpra.ub.uni-muenchen.de/106869/ MPRA Paper No. 106869, posted 03 Apr 2021 23:51 UTC An Empirical Analysis of Higher Moment Capital Asset Pricing Model for Karachi Stock Exchange (KSE) Irfan Lal1 Research Fellow, Department of Economics, Institute of Business Management, Karachi, Pakistan [email protected] Muhammad Mubin HEC Research Scholar, Bilkent Üniversitesi [email protected] Adnan Hussain Lecturer, Department of Economics, Benazir Bhutto Shaheed University, Karachi, Pakistan [email protected] Muhammad Zubair Lecturer, Department of Economics, Institute of Business Management, Karachi, Pakistan [email protected] Abstract The purpose behind this study to explore the relationship between expected return and risk of portfolios. It is observed that standard CAPM is inappropriate, so we introduce higher moment in model. For this purpose, the study taken data of 60 listed companies of Karachi Stock Exchange 100 index. The data is inspected for the period of 1st January 2007 to 31st December 2013. From the empirical analysis, it is observed that the intercept term and higher moments coefficients (skewness and kurtosis) is highly significant and different from zero. When higher moment is introduced in the model, the adjusted R square is increased. The higher moment CAPM performs cooperatively perform well. Keywords: Capital Assets Price Model, Higher Moment JEL Classification: G12, C53 1 Corresponding Author 1.
    [Show full text]
  • On the Efficiency and Consistency of Likelihood Estimation in Multivariate
    On the efficiency and consistency of likelihood estimation in multivariate conditionally heteroskedastic dynamic regression models∗ Gabriele Fiorentini Università di Firenze and RCEA, Viale Morgagni 59, I-50134 Firenze, Italy <fi[email protected]fi.it> Enrique Sentana CEMFI, Casado del Alisal 5, E-28014 Madrid, Spain <sentana@cemfi.es> Revised: October 2010 Abstract We rank the efficiency of several likelihood-based parametric and semiparametric estima- tors of conditional mean and variance parameters in multivariate dynamic models with po- tentially asymmetric and leptokurtic strong white noise innovations. We detailedly study the elliptical case, and show that Gaussian pseudo maximum likelihood estimators are inefficient except under normality. We provide consistency conditions for distributionally misspecified maximum likelihood estimators, and show that they coincide with the partial adaptivity con- ditions of semiparametric procedures. We propose Hausman tests that compare Gaussian pseudo maximum likelihood estimators with more efficient but less robust competitors. Fi- nally, we provide finite sample results through Monte Carlo simulations. Keywords: Adaptivity, Elliptical Distributions, Hausman tests, Semiparametric Esti- mators. JEL: C13, C14, C12, C51, C52 ∗We would like to thank Dante Amengual, Manuel Arellano, Nour Meddahi, Javier Mencía, Olivier Scaillet, Paolo Zaffaroni, participants at the European Meeting of the Econometric Society (Stockholm, 2003), the Sympo- sium on Economic Analysis (Seville, 2003), the CAF Conference on Multivariate Modelling in Finance and Risk Management (Sandbjerg, 2006), the Second Italian Congress on Econometrics and Empirical Economics (Rimini, 2007), as well as audiences at AUEB, Bocconi, Cass Business School, CEMFI, CREST, EUI, Florence, NYU, RCEA, Roma La Sapienza and Queen Mary for useful comments and suggestions. Of course, the usual caveat applies.
    [Show full text]
  • Sampling Student's T Distribution – Use of the Inverse Cumulative
    Sampling Student’s T distribution – use of the inverse cumulative distribution function William T. Shaw Department of Mathematics, King’s College, The Strand, London WC2R 2LS, UK With the current interest in copula methods, and fat-tailed or other non-normal distributions, it is appropriate to investigate technologies for managing marginal distributions of interest. We explore “Student’s” T distribution, survey its simulation, and present some new techniques for simulation. In particular, for a given real (not necessarily integer) value n of the number of degrees of freedom, −1 we give a pair of power series approximations for the inverse, Fn ,ofthe cumulative distribution function (CDF), Fn.Wealsogivesomesimpleandvery fast exact and iterative techniques for defining this function when n is an even −1 integer, based on the observation that for such cases the calculation of Fn amounts to the solution of a reduced-form polynomial equation of degree n − 1. We also explain the use of Cornish–Fisher expansions to define the inverse CDF as the composition of the inverse CDF for the normal case with a simple polynomial map. The methods presented are well adapted for use with copula and quasi-Monte-Carlo techniques. 1 Introduction There is much interest in many areas of financial modeling on the use of copulas to glue together marginal univariate distributions where there is no easy canonical multivariate distribution, or one wishes to have flexibility in the mechanism for combination. One of the more interesting marginal distributions is the “Student’s” T distribution. This statistical distribution was published by W. Gosset in 1908.
    [Show full text]
  • The Smoothed Median and the Bootstrap
    Biometrika (2001), 88, 2, pp. 519–534 © 2001 Biometrika Trust Printed in Great Britain The smoothed median and the bootstrap B B. M. BROWN School of Mathematics, University of South Australia, Adelaide, South Australia 5005, Australia [email protected] PETER HALL Centre for Mathematics & its Applications, Australian National University, Canberra, A.C.T . 0200, Australia [email protected] G. A. YOUNG Statistical L aboratory, University of Cambridge, Cambridge CB3 0WB, U.K. [email protected] S Even in one dimension the sample median exhibits very poor performance when used in conjunction with the bootstrap. For example, both the percentile-t bootstrap and the calibrated percentile method fail to give second-order accuracy when applied to the median. The situation is generally similar for other rank-based methods, particularly in more than one dimension. Some of these problems can be overcome by smoothing, but that usually requires explicit choice of the smoothing parameter. In the present paper we suggest a new, implicitly smoothed version of the k-variate sample median, based on a particularly smooth objective function. Our procedure preserves many features of the conventional median, such as robustness and high efficiency, in fact higher than for the conventional median, in the case of normal data. It is however substantially more amenable to application of the bootstrap. Focusing on the univariate case, we demonstrate these properties both theoretically and numerically. Some key words: Bootstrap; Calibrated percentile method; Median; Percentile-t; Rank methods; Smoothed median. 1. I Rank methods are based on simple combinatorial ideas of permutations and sign changes, which are attractive in applications far removed from the assumptions of normal linear model theory.
    [Show full text]
  • A Note on Inference in a Bivariate Normal Distribution Model Jaya
    A Note on Inference in a Bivariate Normal Distribution Model Jaya Bishwal and Edsel A. Peña Technical Report #2009-3 December 22, 2008 This material was based upon work partially supported by the National Science Foundation under Grant DMS-0635449 to the Statistical and Applied Mathematical Sciences Institute. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation. Statistical and Applied Mathematical Sciences Institute PO Box 14006 Research Triangle Park, NC 27709-4006 www.samsi.info A Note on Inference in a Bivariate Normal Distribution Model Jaya Bishwal¤ Edsel A. Pena~ y December 22, 2008 Abstract Suppose observations are available on two variables Y and X and interest is on a parameter that is present in the marginal distribution of Y but not in the marginal distribution of X, and with X and Y dependent and possibly in the presence of other parameters which are nuisance. Could one gain more e±ciency in the point estimation (also, in hypothesis testing and interval estimation) about the parameter of interest by using the full data (both Y and X values) instead of just the Y values? Also, how should one measure the information provided by random observables or their distributions about the parameter of interest? We illustrate these issues using a simple bivariate normal distribution model. The ideas could have important implications in the context of multiple hypothesis testing or simultaneous estimation arising in the analysis of microarray data, or in the analysis of event time data especially those dealing with recurrent event data.
    [Show full text]
  • Chapter 23 Flexible Budgets and Standard Cost Systems
    Chapter 23 Flexible Budgets and Standard Cost Systems Review Questions 1. What is a variance? A variance is the difference between an actual amount and the budgeted amount. 2. Explain the difference between a favorable and an unfavorable variance. A variance is favorable if it increases operating income. For example, if actual revenue is greater than budgeted revenue or if actual expense is less than budgeted expense, then the variance is favorable. If the variance decreases operating income, the variance is unfavorable. For example, if actual revenue is less than budgeted revenue or if actual expense is greater than budgeted expense, the variance is unfavorable. 3. What is a static budget performance report? A static budget is a budget prepared for only one level of sales volume. A static budget performance report compares actual results to the expected results in the static budget and reports the differences (static budget variances). 4. How do flexible budgets differ from static budgets? A flexible budget is a budget prepared for various levels of sales volume within a relevant range. A static budget is prepared for only one level of sales volume—the expected number of units sold— and it doesn’t change after it is developed. 5. How is a flexible budget used? Because a flexible budget is prepared for various levels of sales volume within a relevant range, it provides the basis for preparing the flexible budget performance report and understanding the two components of the overall static budget variance (a static budget is prepared for only one level of sales volume, and a static budget performance report shows only the overall static budget variance).
    [Show full text]
  • Random Variables Generation
    Random Variables Generation Revised version of the slides based on the book Discrete-Event Simulation: a first course L.L. Leemis & S.K. Park Section(s) 6.1, 6.2, 7.1, 7.2 c 2006 Pearson Ed., Inc. 0-13-142917-5 Discrete-Event Simulation Random Variables Generation 1/80 Introduction Monte Carlo Simulators differ from Trace Driven simulators because of the use of Random Number Generators to represent the variability that affects the behaviors of real systems. Uniformly distributed random variables are the most elementary representations that we can use in Monte Carlo simulation, but are not enough to capture the complexity of real systems. We must thus devise methods for generating instances (variates) of arbitrary random variables Properly using uniform random numbers, it is possible to obtain this result. In the sequel we will first recall some basic properties of Discrete and Continuous random variables and then we will discuss several methods to obtain their variates Discrete-Event Simulation Random Variables Generation 2/80 Basic Probability Concepts Empirical Probability, derives from performing an experiment many times n and counting the number of occurrences na of an event A The relative frequency of occurrence of event is na/n The frequency theory of probability asserts thatA the relative frequency converges as n → ∞ n Pr( )= lim a A n→∞ n Axiomatic Probability is a formal, set-theoretic approach Mathematically construct the sample space and calculate the number of events A The two are complementary! Discrete-Event Simulation Random
    [Show full text]
  • Comparison of the Estimation Efficiency of Regression
    J. Stat. Appl. Pro. Lett. 6, No. 1, 11-20 (2019) 11 Journal of Statistics Applications & Probability Letters An International Journal http://dx.doi.org/10.18576/jsapl/060102 Comparison of the Estimation Efficiency of Regression Parameters Using the Bayesian Method and the Quantile Function Ismail Hassan Abdullatif Al-Sabri1,2 1 Department of Mathematics, College of Science and Arts (Muhayil Asir), King Khalid University, KSA 2 Department of Mathematics and Computer, Faculty of Science, Ibb University, Yemen Received: 3 Jul. 2018, Revised: 2 Sep. 2018, Accepted: 12 Sep. 2018 Published online: 1 Jan. 2019 Abstract: There are several classical as well as modern methods to predict model parameters. The modern methods include the Bayesian method and the quantile function method, which are both used in this study to estimate Multiple Linear Regression (MLR) parameters. Unlike the classical methods, the Bayesian method is based on the assumption that the model parameters are variable, rather than fixed, estimating the model parameters by the integration of prior information (prior distribution) with the sample information (posterior distribution) of the phenomenon under study. By contrast, the quantile function method aims to construct the error probability function using least squares and the inverse distribution function. The study investigated the efficiency of each of them, and found that the quantile function is more efficient than the Bayesian method, as the values of Theil’s Coefficient U and least squares of both methods 2 2 came to be U = 0.052 and ∑ei = 0.011, compared to U = 0.556 and ∑ei = 1.162, respectively. Keywords: Bayesian Method, Prior Distribution, Posterior Distribution, Quantile Function, Prediction Model 1 Introduction Multiple linear regression (MLR) analysis is an important statistical method for predicting the values of a dependent variable using the values of a set of independent variables.
    [Show full text]
  • Skewness, Kurtosis and Convertible Arbitrage Hedge Fund Performance
    Skewness, kurtosis and convertible arbitrage hedge fund performance Mark Hutchinson* Department of Accounting and Finance University College Cork Liam Gallagher** Business School Dublin City University This Version: January 2006 Keywords: Arbitrage, Convertible bonds, Hedge funds, RALS *Address for Correspondence: Mark Hutchinson, Department of Accounting and Finance, University College Cork, College Road, Cork. Telephone: +353 21 4902597, E-mail: [email protected] **Address for Correspondence: Liam Gallagher, DCU Business School, Dublin City University, Dublin 9, Ireland. Telephone: +353 1 7005399, E-mail: [email protected] 1 Skewness, kurtosis and convertible arbitrage hedge fund performance Abstract Returns of convertible arbitrage hedge funds generally exhibit significant negative skewness and excess kurtosis. Failing to account for these characteristics will overstate estimates of performance. In this paper we specify the Residual Augmented Least Squares (RALS) estimator, a recently developed estimation technique designed to exploit non-normality in a time series’ distribution. Specifying a linear factor model, we provide robust estimates of convertible arbitrage hedge fund indices risks demonstrating the increase in efficiency of RALS over OLS estimation. Third and fourth moment functions of the HFRI convertible arbitrage index residuals are then employed as proxy risk factors, for skewness and kurtosis, in a multi-factor examination of individual convertible arbitrage hedge fund returns. Results indicate that convertible arbitrage hedge funds’ receive significant risk premium for bearing skewness and kurtosis risk. We find that 15% of the estimated abnormal performance from a model omitting higher moment risk factors is attributable to skewness and kurtosis risk. We are grateful to SunGard Trading and Risk Systems for providing Monis Convertibles XL convertible bond analysis software and convertible bond terms and conditions.
    [Show full text]
  • Do Hedge Funds Hedge? New Evidence from Tail Risk Premia Embedded in Options ∗
    Do Hedge Funds Hedge? New Evidence from Tail Risk Premia Embedded in Options ∗ Anmar Al Wakil1 and Serge Darolles y 1 1University Paris-Dauphine, PSL Research University, CNRS, DRM, France First version: November, 2016 This version: January, 2018 Incomplete version, please don't circulate without permission Abstract This paper deciphers tail risk in hedge funds from option-based dynamic trading strategies. It demonstrates multiple and tradable tail risk premia strategies as measured by pricing discrepancies between real-world and risk- neutral distributions are instrumental determinants in hedge fund perfor- mance, in both time-series and cross-section. After controlling for Fung- Hsieh factors, a positive one-standard deviation shock to volatility risk pre- mia is associated with a substantial decline in aggregate hedge fund returns of 25.2% annually. The results particularly evidence hedge funds that sig- nicantly load on volatility (kurtosis) risk premia subsequently outperform low-beta funds by nearly 11.7% (8.6%) per year. This nding suggests to what extent hedge fund alpha arises actually from selling crash insurance strategies. Hence, this paper paves the way for reverse engineering the per- formance of sophisticated hedge funds by replicating implied risk premia strategies. ∗The authors are grateful to Vikas Agarwal, Yacine Aït-Sahalia, Eser Arisoy, Andras Fulop, Matthieu Garcin, Raaella Giacomini, Christophe Hurlin, Marcin Kacperczyk, Bryan Kelly, Rachidi Kotchoni, Marie Lambert, Kevin Mullally, Ilaria Piatti, Todd Prono, Jeroen Rombouts, Ronnie Sadka, Sessi Topkavi, and Fabio Trojani for helpful comments and suggestions. I also appreciate the comments of conference participants at the Xth Hedge Fund Conference, the 2017 Econometric Society European Winter Meeting, the IXth French Econometrics Conference, the XIXth OxMetrics User Conference and the IInd Econometric Research in Finance Conference.
    [Show full text]
  • The Third Moment in Equity Portfolio Theory – Skew
    May 2020 Michael Cheung, Head of Quantitative Research & Portfolio Manager Michael Messinger, Member & Portfolio Manager Summary Richard Duff, President & Numbers are nothing more than an abstract way to describe and model natural phenomena. Portfolio Manager Applied to capital markets, historical numerical data is often utilized as a proxy to describe the Michael Sasaki, CFA, Analyst behavior of security price movement. Harry Markowitz proposed Modern Portfolio Theory (MPT) in 1952, and since then, it has been widely adopted as the standard for portfolio optimization based on expected returns and market risk. While the principles in MPT are important to portfolio Skew Portfolio Theory construction, they fail to address real-time investment challenges. In this primer, we explore the (SPT) utilizes statistical efficacy of statistical skew and its application to real-time portfolio management. What we find is skew to build a that statistical skew can be utilized to build a more dynamic portfolio with potential to capture dynamic weighted additional risk premia – Skew Portfolio Theory (SPT). We then apply SPT to propose a new portfolio with potential rebalancing process based on statistical skewness (Skew). Skew not only captures risk in terms to capture additional of standard deviation, but analyzing how skew changes over time, we can measure how risk premia. statistical trends are changing, thus facilitating active management decisions to accommodate the trends. The positive results led to the creation and management of Redwood’s Equity Skew Strategy that is implemented in real-time. In short: • Skew is a less commonly viewed statistic that captures the mean, standard deviation, and tilt of historical returns in one number.
    [Show full text]