Reproductive Biology of Isolated Fern Gametophytes Carol Jacobs Peck Iowa State University

Total Page:16

File Type:pdf, Size:1020Kb

Reproductive Biology of Isolated Fern Gametophytes Carol Jacobs Peck Iowa State University Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 1985 Reproductive biology of isolated fern gametophytes Carol Jacobs Peck Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Botany Commons Recommended Citation Peck, Carol Jacobs, "Reproductive biology of isolated fern gametophytes " (1985). Retrospective Theses and Dissertations. 8762. https://lib.dr.iastate.edu/rtd/8762 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. INFORMATION TO USERS This reproduction was made from a copy of a manuscript sent to us for publication and microfilming. While the most advanced technology has been used to pho­ tograph and reproduce this manuscript, the quality of the reproduction is heavily dependent upon the quality of the material submitted. Pages in any manuscript may have indistinct print. In all cases the best available copy has been Slmed. The following explanation of techniques is provided to help clarify notations which may appear on this reproduction. 1. Manuscripts may not always be complete. When it is not possible to obtain missing pages, a note appears to indicate this. 2. When copyrighted materials are removed from the manuscript, a note ap­ pears to indicate this. 3. Oversize materials (maps, drawings, and charts) are photographed by sec­ tioning the original, beginning at the upper left hand comer and continu­ ing from left to right in equal sections with small overlaps. E)ach oversize page is also filmed as one exposure and is available, for an additional charge, as a standard 35mm slide or in black and white paper format. * 4. Most photographs reproduce acceptably on positive microfilm or micro­ fiche but lack clarity on xerographic copies made from the microfilm. For an additional charge, all photographs are available in black and white standard 35mm slide format.* *Fcr more information about black and white slides or enlarged paper reproductions, please contact the Dissertations Customer Services Department. IMversity Microfilms loternadonal 8604509 Peck, Carol Jacobs REPRODUCTIVE BIOLOGY OF ISOLATED FERN GAMETOPHYTES Iowa State University PH.D. 1985 University Microfilms I ntBrnSltiOnâl 300 N. zeeb Road, Ann Arbor, Ml 48106 PLEASE NOTE: In all cases this material has been filmed in the best possible way from the available copy. Problems encountered with this document have been identified here with a check mark •/ . 1. Glossy photographs or pages 2. Colored illustrations, paper or print 3. Photographs with dark background 4. Illustrations are poor copy 5. Pages with black marks, not original copy 6. Print shows through as there is text on both sides of page 7. Indistinct, broken or small print on several pages 8. Print exceeds margin requirements 9. Tightly bound copy with print lost in spine 10. Computer printout pages with indistinct print 11. Page(s) lacking when material received, and not available from school or author. 12. Page(s) seem to be missing in numbering only as text follows. 13. Two pages numbered . Text follovfs. 14. Curling and wrinkled pages 15. Dissertation contains pages with print at a slant, filmed as received 16. Other University Microfilms international Reproductive biology of isolated fern gametophytes ...z:s1/ by /9g'~ ;°33~ Carol Jacobs Peck <! • ·~:2/ A Dissertation Submitted to the Graduate Faculty in Partial Fulfillment of the Requirements for the Degree of DOCTOR OF PHILOSOPHY Major: Botany Signatures have been redacted for privacy Iowa State University Ames, Iowa 1985 ii TABLE OF CONTENTS Page INTRODUCTION 1 LITERATURE REVIEW II MATERIALS AND METHODS 87 RESULTS AND DISCUSSION I: SPECIES ACCOUNTS 95 RESULTS AND DISCUSSION II: REPRODUCTIVE PHENOMENA 180 CONCLUDING REMARKS 210 REFERENCES 213 ACKNOWLEDGEMENTS 236 1 INTRODUCTION Ferns are pteridophytes, land plants with two distinct plant forms which alternate in the life cycle. The more conspicuous form is the diploid generation, consisting of a vascularized sporophyte plant which meiotically produces large numbers of wind dispersed spores. Derived from those spores is the haploid generation, consisting of a non-vascularized gametophyte plant that produces gametes by mitosis. Male and female gametes fuse to form a zygote which develops into a new sporophyte plant. Within the ferns, there are two variations of this basic life cycle; heterospory and homospory. The heterosporous ferns, like seed plants, produce two types of spores, smaller microspores which give rise to strictly male gametophytes which bear antheridia with sperm cells, and larger megaspores which give rise to female gametophytes which bear archegonia, each containing an egg cell. For heterosporous ferns, two gametophytes are required for reproduction and establishment of new populations by sexual reproduction. Homosporous ferns produce a single kind of spore which gives rise to a gametophyte that is viewed as potentially bisexual. Theoretically, a single gametophyte of a homosporous fern could self-fertilize to establish a new population. Three distinct types of mating are possible in homosporous pteridophytes (Klekowski, 1969a), each representing a different 2 level of inbreeding. Mating between male and female gametes from the same gametophyte has been termed intragametophytic mating or intragametophytic selfing (Klekovski, 1969a). Because gametes are produced mitotically, this type of mating will result in a totally homozygous sporophyte. This level of inbreeding is unparalleled in heterosporous plants. There are two requirements for the success of this type of reproduction. Male and female sex organs must be produced simultaneously, and the gametophyte genotype must be free of any lethal genetic defects. If these requirements are met, the resultant sporophyte will be entirely free of genetic load. If mating occurs between male and female gametes derived from two gametophytes descended from the same parent sporophyte, this is referred to as intergametophytic selfing (Klekowski, 1969a). Because gametes are derived from separate meiotic events, this type of mating is equivalent to the highest level of inbreeding possible in heterosporous plants. Although such inbreeding tends to lower the level of heterozygosity, total homozygosity is not very likely to be attained in a single generation. Finally, mating between gametes derived from gametophytes descended from two different sporophyte plants is referred to as intergametophytic crossing (Klekowski, 1969a). This is equivalent to outbreeding in heterosporous plants. The more general term intergametophytic mating is used if 3 gametes are derived from separate gametophytes, but the parentage of the gametophytes is not specified (Klekowski, 1969a). In populations where intergametophytic mating predominates, some level of heterozygosity and genetic load will probably be maintained due to sheltering of recessive genes, including lethals, in the heterozygous condition. If some deleterious or lethal genes are favored in the heterozygous state (heterosis), the level of genetic load maintained in the population will be even higher (Goodenough, 1978). Because the unit of dispersal is the spore, the establishment of new sporophyte populations is dependent upon spore dispersal and upon the subsequent establishment, growth, and reproductive potential of the gametophyte generation. Two kinds of dispersal may be considered, multispore dispersal close to the spore source and single spore dispersal some greater distance from the spore source. Sites near parent sporophyte plants are likely to be saturated with spores. Conditions favorable for gametophyte growth may result in development of dense gametophyte populations, and sporophytes nay result from intergametophytic mating. As the distance from the spore source increases, spore density decreases rapidly, such that for most species, colonization of distant sites is probably by single spores. Although there are some spectacular instances of long distance dispersal in ferns, most families and genera of ferns 4 have the same basic geographic patterns as flowering plants (Smith, 1972; Wagner, 1972). Thus, the advantage of producing a large number of wind dispersed spores, each theoretically capable of initiating a new fern population, has not been sufficient to give fern species a significant dispersal advantage over seed plants. This apparent contradiction may be explained in part by ineffectiveness of single spore reproduction. The consequences of a fern species relying on the success of a single, isolated spore to initiate a new population are far- reaching in terms of genetics, development, sexuality, and ecology. The isolated spore must germinate and develop into a bisexual gametophyte free of genetic load. Since any sporophyte produced from such a gametophyte will be load free, and may have inherited a tendency toward bisexuality, such sporophytes would initially have a high probability of reproductive success by isolated spores. However, genetic load may develop in populations over time. The sources of genetic load include somatic mutations which may be accumulated in long-lived individuals or clones. These mutations, along with mutations originating during the meiotic
Recommended publications
  • Natural Heritage Program List of Rare Plant Species of North Carolina 2016
    Natural Heritage Program List of Rare Plant Species of North Carolina 2016 Revised February 24, 2017 Compiled by Laura Gadd Robinson, Botanist John T. Finnegan, Information Systems Manager North Carolina Natural Heritage Program N.C. Department of Natural and Cultural Resources Raleigh, NC 27699-1651 www.ncnhp.org C ur Alleghany rit Ashe Northampton Gates C uc Surry am k Stokes P d Rockingham Caswell Person Vance Warren a e P s n Hertford e qu Chowan r Granville q ot ui a Mountains Watauga Halifax m nk an Wilkes Yadkin s Mitchell Avery Forsyth Orange Guilford Franklin Bertie Alamance Durham Nash Yancey Alexander Madison Caldwell Davie Edgecombe Washington Tyrrell Iredell Martin Dare Burke Davidson Wake McDowell Randolph Chatham Wilson Buncombe Catawba Rowan Beaufort Haywood Pitt Swain Hyde Lee Lincoln Greene Rutherford Johnston Graham Henderson Jackson Cabarrus Montgomery Harnett Cleveland Wayne Polk Gaston Stanly Cherokee Macon Transylvania Lenoir Mecklenburg Moore Clay Pamlico Hoke Union d Cumberland Jones Anson on Sampson hm Duplin ic Craven Piedmont R nd tla Onslow Carteret co S Robeson Bladen Pender Sandhills Columbus New Hanover Tidewater Coastal Plain Brunswick THE COUNTIES AND PHYSIOGRAPHIC PROVINCES OF NORTH CAROLINA Natural Heritage Program List of Rare Plant Species of North Carolina 2016 Compiled by Laura Gadd Robinson, Botanist John T. Finnegan, Information Systems Manager North Carolina Natural Heritage Program N.C. Department of Natural and Cultural Resources Raleigh, NC 27699-1651 www.ncnhp.org This list is dynamic and is revised frequently as new data become available. New species are added to the list, and others are dropped from the list as appropriate.
    [Show full text]
  • Gymnosperms the MESOZOIC: ERA of GYMNOSPERM DOMINANCE
    Chapter 24 Gymnosperms THE MESOZOIC: ERA OF GYMNOSPERM DOMINANCE THE VASCULAR SYSTEM OF GYMNOSPERMS CYCADS GINKGO CONIFERS Pinaceae Include the Pines, Firs, and Spruces Cupressaceae Include the Junipers, Cypresses, and Redwoods Taxaceae Include the Yews, but Plum Yews Belong to Cephalotaxaceae Podocarpaceae and Araucariaceae Are Largely Southern Hemisphere Conifers THE LIFE CYCLE OF PINUS, A REPRESENTATIVE GYMNOSPERM Pollen and Ovules Are Produced in Different Kinds of Structures Pollination Replaces the Need for Free Water Fertilization Leads to Seed Formation GNETOPHYTES GYMNOSPERMS: SEEDS, POLLEN, AND WOOD THE ECOLOGICAL AND ECONOMIC IMPORTANCE OF GYMNOSPERMS The Origin of Seeds, Pollen, and Wood Seeds and Pollen Are Key Reproductive SUMMARY Innovations for Life on Land Seed Plants Have Distinctive Vegetative PLANTS, PEOPLE, AND THE Features ENVIRONMENT: The California Coast Relationships among Gymnosperms Redwood Forest 1 KEY CONCEPTS 1. The evolution of seeds, pollen, and wood freed plants from the need for water during reproduction, allowed for more effective dispersal of sperm, increased parental investment in the next generation and allowed for greater size and strength. 2. Seed plants originated in the Devonian period from a group called the progymnosperms, which possessed wood and heterospory, but reproduced by releasing spores. Currently, five lineages of seed plants survive--the flowering plants plus four groups of gymnosperms: cycads, Ginkgo, conifers, and gnetophytes. Conifers are the best known and most economically important group, including pines, firs, spruces, hemlocks, redwoods, cedars, cypress, yews, and several Southern Hemisphere genera. 3. The pine life cycle is heterosporous. Pollen strobili are small and seasonal. Each sporophyll has two microsporangia, in which microspores are formed and divide into immature male gametophytes while still retained in the microsporangia.
    [Show full text]
  • California's Native Ferns
    CALIFORNIA’S NATIVE FERNS A survey of our most common ferns and fern relatives Native ferns come in many sizes and live in many habitats • Besides living in shady woodlands and forests, ferns occur in ponds, by streams, in vernal pools, in rock outcrops, and even in desert mountains • Ferns are identified by producing fiddleheads, the new coiled up fronds, in spring, and • Spring from underground stems called rhizomes, and • Produce spores on the backside of fronds in spore sacs, arranged in clusters called sori (singular sorus) Although ferns belong to families just like other plants, the families are often difficult to identify • Families include the brake-fern family (Pteridaceae), the polypody family (Polypodiaceae), the wood fern family (Dryopteridaceae), the blechnum fern family (Blechnaceae), and several others • We’ll study ferns according to their habitat, starting with species that live in shaded places, then moving on to rock ferns, and finally water ferns Ferns from moist shade such as redwood forests are sometimes evergreen, but also often winter dormant. Here you see the evergreen sword fern Polystichum munitum Note that sword fern has once-divided fronds. Other features include swordlike pinnae and round sori Sword fern forms a handsome coarse ground cover under redwoods and other coastal conifers A sword fern relative, Dudley’s shield fern (Polystichum dudleyi) differs by having twice-divided pinnae. Details of the sori are similar to sword fern Deer fern, Blechnum spicant, is a smaller fern than sword fern, living in constantly moist habitats Deer fern is identified by having separate and different looking sterile fronds and fertile fronds as seen in the previous image.
    [Show full text]
  • Fungi-Rhizopus
    Characters of Fungi Some of the most important characters of fungi are as follows: 1. Occurrence 2. Thallus organization 3. Different forms of mycelium 4. Cell structure 5. Nutrition 6. Heterothallism and Homothallism 7. Reproduction 8. Classification of Fungi. 1. Occurrence: Fungi are cosmopolitan and occur in air, water soil and on plants and animals. They prefer to grow in warm and humid places. Hence, we keep food in the refrigerator to prevent bacterial and fungal infestation. 2. Thallus organization: Except some unicellular forms (e.g. yeasts, Synchytrium), the fungal body is a thallus called mycelium. The mycelium is an interwoven mass of thread-like hyphae (Sing, hypha). Hyphae may be septate (with cross wall) and aseptate (without cross wall). Some fungi are dimorphic that found as both unicellular and mycelial forms e.g. Candida albicans. 3. Different forms of mycelium: (a) Plectenchyma (fungal tissue): In a fungal mycelium, hyphae organized loosely or compactly woven to form a tissue called plectenchyma. It is two types: i. Prosenchyma or Prosoplectenchyma: In these fungal tissue hyphae are loosely interwoven lying more or less parallel to each other. ii. Pseudoparenchyma or paraplectenchyma: In these fungal tissue hyphae are compactly interwoven looking like a parenchyma in cross-section. (b) Sclerotia (Gr. Skleros=haid): These are hard dormant bodies consist of compact hyphae protected by external thickened hyphae. Each Sclerotium germinates into a mycelium, on return of favourable condition, e.g., Penicillium. (c) Rhizomorphs: They are root-like compactly interwoven hyphae with distinct growing tip. They help in absorption and perennation (to tide over the unfavourable periods), e.g., Armillaria mellea.
    [Show full text]
  • Classifications of Fungi
    Chapter 24 | Fungi 675 Sexual Reproduction Sexual reproduction introduces genetic variation into a population of fungi. In fungi, sexual reproduction often occurs in response to adverse environmental conditions. During sexual reproduction, two mating types are produced. When both mating types are present in the same mycelium, it is called homothallic, or self-fertile. Heterothallic mycelia require two different, but compatible, mycelia to reproduce sexually. Although there are many variations in fungal sexual reproduction, all include the following three stages (Figure 24.8). First, during plasmogamy (literally, “marriage or union of cytoplasm”), two haploid cells fuse, leading to a dikaryotic stage where two haploid nuclei coexist in a single cell. During karyogamy (“nuclear marriage”), the haploid nuclei fuse to form a diploid zygote nucleus. Finally, meiosis takes place in the gametangia (singular, gametangium) organs, in which gametes of different mating types are generated. At this stage, spores are disseminated into the environment. Review the characteristics of fungi by visiting this interactive site (http://openstaxcollege.org/l/ fungi_kingdom) from Wisconsin-online. 24.2 | Classifications of Fungi By the end of this section, you will be able to do the following: • Identify fungi and place them into the five major phyla according to current classification • Describe each phylum in terms of major representative species and patterns of reproduction The kingdom Fungi contains five major phyla that were established according to their mode of sexual reproduction or using molecular data. Polyphyletic, unrelated fungi that reproduce without a sexual cycle, were once placed for convenience in a sixth group, the Deuteromycota, called a “form phylum,” because superficially they appeared to be similar.
    [Show full text]
  • Information and Care Instructions Mother Fern
    Information and Care Instructions Mother Fern Quick Reference Botanical Name - Asplenium bulbiferum Detailed Care Exposure - Shade to bright, indirect Your Mother Fern was grown in a plastic pot. Depending on the item, it may then have been Indoor Placement - Bright location but not in direct afternoon sun transplanted into a decorative pot before sale or simply “dropped” into a container while still in the USDA Hardiness - Zone 10a to 11 plastic pot. Inside Temperature - 50-70˚F WATERING Min Outside Temperature - 30˚F 1. Let the top of the soil dry out slightly before Plant Type - Evergreen Fern watering; check frequently, especially if kept in a hot, dry spot. Mother Ferns like to be kept evenly moist, Watering - Allow soil to dry out slightly before watering. Do not allow but not soggy. the pot to sit in standing water for more than a few minutes 2. When watering, use the recommended amount of water for your pot size (See Quick Reference Guide) Water Amount Used - 4” Pot = 1/3 cup of water poured directly on the soil. In order not to damage 6 1/2” Pot = 1 1/4 cups of water your furniture, countertop or floor, place your Mother Fertilizing - Fertilize monthly Fern in a saucer, bowl or sink when watering. Allow the water to drain for 5 minutes. Do not allow the soil to sit in water for any more than 5 minutes or damage to the roots may occur. Avoid continuous use of softened water as the sodium in it can build up to damaging levels in the soil.
    [Show full text]
  • Natural Heritage Program List of Rare Plant Species of North Carolina 2012
    Natural Heritage Program List of Rare Plant Species of North Carolina 2012 Edited by Laura E. Gadd, Botanist John T. Finnegan, Information Systems Manager North Carolina Natural Heritage Program Office of Conservation, Planning, and Community Affairs N.C. Department of Environment and Natural Resources 1601 MSC, Raleigh, NC 27699-1601 Natural Heritage Program List of Rare Plant Species of North Carolina 2012 Edited by Laura E. Gadd, Botanist John T. Finnegan, Information Systems Manager North Carolina Natural Heritage Program Office of Conservation, Planning, and Community Affairs N.C. Department of Environment and Natural Resources 1601 MSC, Raleigh, NC 27699-1601 www.ncnhp.org NATURAL HERITAGE PROGRAM LIST OF THE RARE PLANTS OF NORTH CAROLINA 2012 Edition Edited by Laura E. Gadd, Botanist and John Finnegan, Information Systems Manager North Carolina Natural Heritage Program, Office of Conservation, Planning, and Community Affairs Department of Environment and Natural Resources, 1601 MSC, Raleigh, NC 27699-1601 www.ncnhp.org Table of Contents LIST FORMAT ......................................................................................................................................................................... 3 NORTH CAROLINA RARE PLANT LIST ......................................................................................................................... 10 NORTH CAROLINA PLANT WATCH LIST ..................................................................................................................... 71 Watch Category
    [Show full text]
  • Growth of Fern Gametophytes After 20 Years of Storage in Liquid Nitrogen
    FERN GAZ. 20(8): 337-346. 2018 337 GROWTH OF FERN GAMETOPHYTES AFTER 20 YEARS OF STORAGE IN LIQUID NITROGEN V. C. Pence Center for Conservation and Research of Endangered Wildlife (CREW) Cincinnati Zoo & Botanical Garden, 3400 Vine Street, Cincinnati, OH 45220, USA email: [email protected] Key words: cryopreservation, ex situ conservation, gametophyte; in vitro; long-term storage ABSTRACT In vitro grown gametophytes of six species of ferns, which had been cryopreserved using the encapsulation dehydration procedure, were evaluated for survival after 20 yrs of storage in liquid nitrogen. Tissues were rewarmed and transferred to a recovery medium with the same methods originally used to test pre-storage viability. All six species resumed growth. Post-storage viability was not consistently higher or lower than pre-storage viability of LN exposed tissues, likely reflecting the small sample sizes. However, these results demonstrate that long-term storage in liquid nitrogen is a viable option for preserving gametophytes of at least some fern species and could be utilized as an additional tool for preserving valuable gametophyte collections and for the ex situ conservation of fern biodiversity. INTRODUCTION For many species of ferns, gametophyte tissues have proven to be highly adaptable to growth in vitro (Table 1) . Most of these have been initiated through the aseptic germination of spores, although the aseptic germination of gemmae has also been demonstrated (Raine & Sheffield, 1997). As in vitro cultures, gametophytes can provide tissues for research and for propagation, both for ornamental ferns as well as for ferns of conservation concern. The ex situ conservation of ferns has traditionally relied on living collections and spore banks (Ballesteros, 2011).
    [Show full text]
  • Pinery Provincial Park Vascular Plant List Flowering Latin Name Common Name Community Date
    Pinery Provincial Park Vascular Plant List Flowering Latin Name Common Name Community Date EQUISETACEAE HORSETAIL FAMILY Equisetum arvense L. Field Horsetail FF Equisetum fluviatile L. Water Horsetail LRB Equisetum hyemale L. ssp. affine (Engelm.) Stone Common Scouring-rush BS Equisetum laevigatum A. Braun Smooth Scouring-rush WM Equisetum variegatum Scheich. ex Fried. ssp. Small Horsetail LRB Variegatum DENNSTAEDIACEAE BRACKEN FAMILY Pteridium aquilinum (L.) Kuhn Bracken-Fern COF DRYOPTERIDACEAE TRUE FERN FAMILILY Athyrium filix-femina (L.) Roth ssp. angustum (Willd.) Northeastern Lady Fern FF Clausen Cystopteris bulbifera (L.) Bernh. Bulblet Fern FF Dryopteris carthusiana (Villars) H.P. Fuchs Spinulose Woodfern FF Matteuccia struthiopteris (L.) Tod. Ostrich Fern FF Onoclea sensibilis L. Sensitive Fern FF Polystichum acrostichoides (Michaux) Schott Christmas Fern FF ADDER’S-TONGUE- OPHIOGLOSSACEAE FERN FAMILY Botrychium virginianum (L.) Sw. Rattlesnake Fern FF FLOWERING FERN OSMUNDACEAE FAMILY Osmunda regalis L. Royal Fern WM POLYPODIACEAE POLYPODY FAMILY Polypodium virginianum L. Rock Polypody FF MAIDENHAIR FERN PTERIDACEAE FAMILY Adiantum pedatum L. ssp. pedatum Northern Maidenhair Fern FF THELYPTERIDACEAE MARSH FERN FAMILY Thelypteris palustris (Salisb.) Schott Marsh Fern WM LYCOPODIACEAE CLUB MOSS FAMILY Lycopodium lucidulum Michaux Shining Clubmoss OF Lycopodium tristachyum Pursh Ground-cedar COF SELAGINELLACEAE SPIKEMOSS FAMILY Selaginella apoda (L.) Fern. Spikemoss LRB CUPRESSACEAE CYPRESS FAMILY Juniperus communis L. Common Juniper Jun-E DS Juniperus virginiana L. Red Cedar Jun-E SD Thuja occidentalis L. White Cedar LRB PINACEAE PINE FAMILY Larix laricina (Duroi) K. Koch Tamarack Jun LRB Pinus banksiana Lambert Jack Pine COF Pinus resinosa Sol. ex Aiton Red Pine Jun-M CF Pinery Provincial Park Vascular Plant List 1 Pinery Provincial Park Vascular Plant List Flowering Latin Name Common Name Community Date Pinus strobus L.
    [Show full text]
  • Palaeogeograph Y, Palaeoclimatology, Palaeoecology , 17(1975): 157--172 © Elsevier Scientific Publishing Company, Amsterdam -- Printed in the Netherlands
    Palaeogeograph y, Palaeoclimatology, Palaeoecology , 17(1975): 157--172 © Elsevier Scientific Publishing Company, Amsterdam -- Printed in The Netherlands CLIMATIC CHANGES IN EASTERN ASIA AS INDICATED BY FOSSIL FLORAS. II. LATE CRETACEOUS AND DANIAN V. A. KRASSILOV Institute of Biology and Pedology, Far-Eastern Scientific Centre, U.S.S.R. Academy of Sciences, Vladivostok (U.S.S.R.) (Received June 17, 1974; accepted for publication November 11, 1974) ABSTRACT Krassilov, V. A., 1975. Climatic changes in Eastern Asia as indicated by fossil floras. II. Late Cretaceous and Danian. Palaeogeogr., Palaeoclimatol., Palaeoecol., 17:157--172. Four Late Cretaceous phytoclimatic zones -- subtropical, warm--temperate, temperate and boreal -- are recognized in the Northern Hemisphere. Warm--temperate vegetation terminates at North Sakhalin and Vancouver Island. Floras of various phytoclimatic zones display parallel evolution in response to climatic changes, i.e., a temperature rise up to the Campanian interrupted by minor Coniacian cooling, and subsequent deterioration of cli- mate culminating in the Late Danian. Cooling episodes were accompanied by expansions of dicotyledons with platanoid leaves, whereas the entire-margined leaf proportion increased during climatic optima. The floristic succession was also influenced by tectonic events, such as orogenic and volcanic activity which commenced in Late Cenomanian--Turonian times. Major replacements of ecological dominants occurred at the Maastrichtian/Danian and Early/Late Danian boundaries. INTRODUCTION The principal approaches to the climatic interpretation of fossil floras have been outlined in my preceding paper (Krassilov, 1973a). So far as Late Creta- ceous floras are concerned, extrapolation (i.e. inferences from tolerance ranges of allied modern taxa) is gaining in importance and the entire/non-entire leaf type ratio is no less expressive than it is in Tertiary floras.
    [Show full text]
  • The Origin of Alternation of Generations in Land Plants
    Theoriginof alternation of generations inlandplants: afocuson matrotrophy andhexose transport Linda K.E.Graham and LeeW .Wilcox Department of Botany,University of Wisconsin, 430Lincoln Drive, Madison,WI 53706, USA (lkgraham@facsta¡.wisc .edu ) Alifehistory involving alternation of two developmentally associated, multicellular generations (sporophyteand gametophyte) is anautapomorphy of embryophytes (bryophytes + vascularplants) . Microfossil dataindicate that Mid ^Late Ordovicianland plants possessed such alifecycle, and that the originof alternationof generationspreceded this date.Molecular phylogenetic data unambiguously relate charophyceangreen algae to the ancestryof monophyletic embryophytes, and identify bryophytes as early-divergentland plants. Comparison of reproduction in charophyceans and bryophytes suggests that the followingstages occurredduring evolutionary origin of embryophytic alternation of generations: (i) originof oogamy;(ii) retention ofeggsand zygotes on the parentalthallus; (iii) originof matrotrophy (regulatedtransfer ofnutritional and morphogenetic solutes fromparental cells tothe nextgeneration); (iv)origin of a multicellularsporophyte generation ;and(v) origin of non-£ agellate, walled spores. Oogamy,egg/zygoteretention andmatrotrophy characterize at least some moderncharophyceans, and arepostulated to represent pre-adaptativefeatures inherited byembryophytes from ancestral charophyceans.Matrotrophy is hypothesizedto have preceded originof the multicellularsporophytes of plants,and to represent acritical innovation.Molecular
    [Show full text]
  • Jan Ptáček, Tomáš Urfus: Vyřešení Poslední Biosystematické Záhady U Kapradin? Příběh Z Evoluce Rodu Puchýřník (Živa 2020, 4: 173–176)
    Jan Ptáček, Tomáš Urfus: Vyřešení poslední biosystematické záhady u kapradin? Příběh z evoluce rodu puchýřník (Živa 2020, 4: 173–176) Citovaná a doporučená literatura Blasdell R. F. (1963): A Monographic Study of the Fern Genus Cystopteris. – Mem. Torrey Bot. Club 21: 1–102. Dostál J. (1984): Cystopteris. In Kramer K.U. & Hegi G. (eds.), Illustrierte Flora von Mitteleuropa. Band I, Teil 1. Pteridophyta., pp. 192–201. – Verlag Paul Parey, Berlin, Hamburg, Germany. Dyer A. F., Parks J. C., & Lindsay S. (2000): Historical review of the uncertain taxonomic status of Cystopteris dickieana R. Sim (Dickie’s bladder fern). – Edinburgh J. Bot. 57: 71–81. Gamperle E. & Schneller J. J. (2002): Phenotypic and isozyme variation in Cystopteris fragilis (Pteridophyta) along an altitudinal gradient in Switzerland. – Flora 197: 203–213. Gastony G. J. (1986): Electrophoretic Evidence for the Origin of Fern Species by Unreduced Spores. – Am. J. Bot. 73: 1563–1569. Hadinec J. & Lustyk P. (2012): Additamenta ad floram Reipublicae Bohemicae. X. – Zprávy České Bot. společnosti 47: 43–158. Haufler C. H. & Ranker T. A. (1985): Differential Antheridiogen Response and Evolutionary Mechanisms in Cystopteris. – Am. J. Bot. 72: 659–665. Haufler C. H. & Windham M. D. (1991): New species of North American Cystopteris and Polypodium, with Comments on Their Reticulate Relationships. – Am. Fern J. 81: 7–23. Haufler C. H., Windham M. D., Britton D. M., & Robinson S. J. (1985): Triploidy and its evolutionary significance in Cystopteris protrusa. – Can. J. Bot. 63: 1855–1863. Haufler C. H., Windham M. D., & Ranker T. A. (1990): Biosystematic Analysis of the Cystopteris tennesseensis (Dryopteridaceae) Complex. – Ann.
    [Show full text]