Curriculum Vitae

Total Page:16

File Type:pdf, Size:1020Kb

Curriculum Vitae Functional Analysis of the Polymorphic Membrane Protein Family of Chlamydia Item Type dissertation Authors Grinblat-Huse, Valerie Publication Date 2013 Abstract Chlamydia trachomatis is the most common sexually transmitted bacterial pathogen and the leading cause of infectious blindness. It is an obligate intracellular pathogen that has a biphasic lifecycle encompassing infectious elementary bodies (EBs) and... Keywords adhesion; polymorphic; Chlamydia trachomatis; Membranes; Proteins Download date 03/10/2021 18:41:02 Link to Item http://hdl.handle.net/10713/3641 CURRICULUM VITAE NAME: Valerie Ann Grinblat-Huse EDUCATION: University of Maryland at Baltimore, Baltimore, Maryland June 2008 – October 2013 Ph.D. in Molecular Medicine Passed qualifying examination, July 2010 Johns Hopkins University, Baltimore, Maryland December 2003 – September 2007 M.S. in Biotechnology James Madison University, Harrisonburg, Virginia August 1999 – May 2003 B.S. in Computer Science, Minor in Spanish ACADEMIC AWARDS and COMMUNITY ACTIVITIES: 2012 – 2013 Graduate Student Association Representative 2012 – 2013 Graduate Assistant Advisory Council (to UMB Executive Board) 2012 – 2013 The Graduate Journal Editor/Contributor 2011 – 2012 Dental School Training Grant 2009 Travel Grant, Annual Conference on Microbial Genomics 2008 – 2009 Meyerhoff Scholars Fellowship 2008 – 2013 Meyerhoff Scholar 2006 – 2013 Homeward Trails Animal Rescue, Adoption Coordinator RESEARCH EXPERIENCE: Doctoral Research: Department of Microbial Pathogenesis, University of Maryland at Baltimore, Oct. 2010 – present . Research focuses on virulence factors and methods of pathogen infectivity . Interpretation of technical data to a non-scientific audience . Experience with writing and editing technical documents including grant writing . Development of research plan and use of innovative approaches and techniques . Data extraction, analysis, and translation of results . Implementation and instruction of techniques new to laboratory members and collaborators . Training of collaborators, research associates, and other graduate students . Hands-on experience with cloning and genetic manipulation, along with RNA, protein, and cell culture techniques . Gaining experience with fluorescent, confocal, and electron microscopy techniques . Maintaining knowledge of new technologies through research and attendance at national and local professional meetings Doctoral Research: Department of Microbiology and Immunology, University of Maryland at Baltimore, Jan. 2009 – Oct. 2010 . Studied biofilm formation in Halorubrum lacusprofundi . Microarray development and analysis . Bioinformatics analysis and script writing Research Associate III-MB: Research and Development Team in the Pathogen Functional Genomics Resource Center, The J. Craig Venter Institute, July 2005 – June 2008 . Provided analysis and assessment of research and development projects to the management team . Wrote and established Standard Operating Procedures (SOPs) to include an all- encompassing SOP designed to automate a tracking system and improve efficiency . Oversaw high-throughput pipeline operations from start to finish . Research and Development projects included isothermal amplification of rare transcripts and testing multiplex PCR for use in a high-throughput cloning process . Evaluated new technologies and optimized protocols . Maintained and programmed Biomek Beckman-Coulter liquid-handling robots for entire department . Trained new hires and research associates . Supplied data for grant application COMPUTER EXPERIENCE and SKILLS: . Familiar with several languages including: PERL, JAVA, C, C++, Visual Basic, Visual C++, HTML, and SQL . Experienced in Microsoft and Apple applications . Knowledge of UNIX and LINUX Computer Specialist: System Source, Hunt Valley, Maryland, Oct. 2003 – Jan. 2004 . Installed computer hardware; imaged computers and installed commercial software, set up labs for BlueCross/Blue Shield; Updated software and removed viruses to assure security was not compromised Billing Consultant/Technical Support: Nexpoint Technologies Inc., Harrisonburg, Virginia, 2002 – 2003 . Provided technical support to clients in regards to code problems and server issues . Reconsolidated billing issues . Designed and implemented billing manual to facilitate the training of new hires Technical Assistant: ECI Telecom (formerly Wavepacer division of Hubbell Pulsecom), Herndon, Virginia, Summer 2000, Winter 1999, Summer 1999 . Member of transition team; set up database of schematics to be transferred overseas . Tested Network Management Systems and ADSL software systems; Set up computers: installed Windows 95, 98, and NT PUBLICATIONS and PRESENTATIONS: Mlacha SZK, Peret TCT, Kumar N, Romero-Steiner S, Hotopp JCD, Ishmael N, Grinblat-Huse V, Riley DR, Erdman DD, Carlone GM, Sampson J, Scott JAG, Tettelin H. (2013). Transcriptional adaptation of pneumococci and human pharyngeal cells in the presence of a virus infection. BMC Genomics, 14:378. Huse V, Drabek EF, Creasy HH, Daugherty S, Jones KM, Santana-Cruz I, Tallon LJ, Read TD, Hatch TP, Bavoil P, Meyers GSA*. (2011). Genome sequences of the zoonotic pathogens Chlamydia psittaci 6BC and Cal10. Journal of Bacteriology, Aug;193(15):4039-40. Capes MD, Coker JA, Gessler R, Grinblat-Huse V, DasSarma SL, Jacob CG, Kim JM, DasSarma P, DasSarma S. (2011). The information transfer system of halophilic archaea, Plasmid, v. 65:2, p. 77-101. Grinblat-Huse V*, Marques P, Shou H, Bavoil P. (2011). Polymorphic Membrane Protein-Mediated Adherence of Chlamydia trachomatis to Epithelial Cells. Poster session presented at: The Annual Meeting of the NIAID STI Cooperative Research Centers; Nov 1-2; Chapel Hill, NC. Carrasco-Lopez JA*, Tan C, Kennard A, Huse V, Shou H, Rank R, Bavoil PM. (2011). Expression of the polymorphic membrane protein gene family of Chlamydia caviae under conditions of penicillin-induced persistence. Poster session presented at: 5th Biennial Meeting of the Chlamydia Basic Research Society; Mar 18 – 21; Redondo Beach, CA. DasSarma PD, Coker JA, Huse V, DasSarma S. (2010). Halophiles, Industrial Applications, in Flickinger MC, ed., Encyclopedia of Industrial Biotechnology, Bioprocess, Bioseparation, and Cell Technology, Wiley. Huse V, DasSarma S. (2009). Evaluation, Faculty 1000, http://f1000.com/1163626#evaluations DasSarma S, Coker JA*, Huse V*, Gessler R, Capes M, Kim JM, Han J, DasSarma P, DasSarma S, Tatusov R, Anderson IJ, and Kyrpides NC. (2009). Comparative Genomics of Halophilic Archaea: The Conserved Predicted Proteins. Poster session presented at: 17th Annual Microbial Genomics Conference; Oct 11-15; Rocky Gap State Park, MD. ABSTRACT Title of Dissertation: Functional Analysis of the Polymorphic Membrane Protein Family of Chlamydia Valerie Grinblat-Huse, Doctor of Philosophy, 2013 Dissertation Directed by: Dr. Patrik Bavoil, Professor and Chair, Department of Microbial Pathogenesis Chlamydia trachomatis is the most common sexually transmitted bacterial pathogen and the leading cause of infectious blindness. It is an obligate intracellular pathogen that has a biphasic lifecycle encompassing infectious elementary bodies (EBs) and metabolically active reticulate bodies (RBs). C. trachomatis encodes a polymorphic membrane protein (Pmp) gene family whose nine members are differentially expressed under in vitro growth conditions. The observed “phase-variation-like” phenotype of the autotransported Pmps is consistent with observed variable Pmp subtype-specific antibody profiles in patients infected with C. trachomatis. The autotransported Pmps display repeated, often alternating motifs GGA(I,L,V) and FXXN within the predicted “passenger” domain that have been proposed to mediate adhesion of Chlamydia pneumoniae to susceptible cells. The identification of a “magic bullet” adhesin responsible for attachment and subsequent internalization by epithelial cells has eluded researchers for several decades, owing to the inherent difficulties of the Chlamydia system, in particular the genetic intractability of these organisms. Others have established that Pmps of C. pneumoniae and PmpD of C. trachomatis function as adhesins and that PmpD-specific antibodies block attachment. I hypothesize that antibodies against each of the six Pmp subtypes (A, B/C, D, E/F, G/I & H) can neutralize a C. trachomatis infection, and that the application of multiple Pmp subtype-specific antibodies will have a cumulative negative impact on infection. I additionally hypothesize that Pmps of C. trachomatis facilitate adhesion to epithelial cells. For Aim 1, I will investigate the neutralizing effects of single Pmp subtype-specific antibodies by infecting epithelial cells with C. trachomatis serovar E EBs that have been preincubated with antibodies against each of the Pmp subtypes. The inclusions will be visualized using immunofluorescence. For Aim 2, I will investigate Pmp-mediated adherence to epithelial cells using a Pmp-coated latex bead-binding assay. The neutralization assay results cast doubt on the ability of Pmp-specific antibodies to neutralize a chlamydial infection on their own. It is possible that the Pmp-specific antibodies are necessary for complete neutralization, but are not sufficient. Additionally, the adhesion assay results suggest that other functions of Pmps should still be considered, however, their role in adhesion should not be ruled out. Functional Analysis of the Polymorphic Membrane Protein Family of Chlamydia by Valerie Grinblat-Huse Dissertation submitted to the Faculty
Recommended publications
  • Chlamydia Cell Biology and Pathogenesis
    HHS Public Access Author manuscript Author ManuscriptAuthor Manuscript Author Nat Rev Manuscript Author Microbiol. Author Manuscript Author manuscript; available in PMC 2016 June 01. Published in final edited form as: Nat Rev Microbiol. 2016 June ; 14(6): 385–400. doi:10.1038/nrmicro.2016.30. Chlamydia cell biology and pathogenesis Cherilyn Elwell, Kathleen Mirrashidi, and Joanne Engel Departments of Medicine, Microbiology and Immunology, University of California, San Francisco, California 94143, USA Abstract Chlamydia spp. are important causes of human disease for which no effective vaccine exists. These obligate intracellular pathogens replicate in a specialized membrane compartment and use a large arsenal of secreted effectors to survive in the hostile intracellular environment of the host. In this Review, we summarize the progress in decoding the interactions between Chlamydia spp. and their hosts that has been made possible by recent technological advances in chlamydial proteomics and genetics. The field is now poised to decipher the molecular mechanisms that underlie the intimate interactions between Chlamydia spp. and their hosts, which will open up many exciting avenues of research for these medically important pathogens. Chlamydiae are Gram-negative, obligate intracellular pathogens and symbionts of diverse 1 organisms, ranging from humans to amoebae . The best-studied group in the Chlamydiae phylum is the Chlamydiaceae family, which comprises 11 species that are pathogenic to 1 humans or animals . Some species that are pathogenic to animals, such as the avian 1 2 pathogen Chlamydia psittaci, can be transmitted to humans , . The mouse pathogen 3 Chlamydia muridarum is a useful model of genital tract infections . Chlamydia trachomatis and Chlamydia pneumoniae, the major species that infect humans, are responsible for a wide 2 4 range of diseases , and will be the focus of this Review.
    [Show full text]
  • Product Description EN Bactoreal® Kit Chlamydiaceae
    Product Description BactoReal® Kit Chlamydiaceae For research only, not for diagnostic use BactoReal® Kit Chlamydiaceae Order no. Reactions Pathogen Internal positive control DVEB03113 100 FAM channel Cy5 channel DVEB03153 50 FAM channel Cy5 channel DVEB03111 100 FAM channel VIC/HEX channel DVEB03151 50 FAM channel VIC/HEX channel Kit contents: Detection assay for Chlamydia and Chlamydophila species Detection assay for internal positive control (control of amplification) DNA reaction mix (contains uracil-N glycosylase, UNG) Positive control for Chlamydiaceae Water Background: The Chlamydiaceae family currently includes two genera and one candidate genus: genus Chlamydia (including the species Chlamydia muridarum, Chlamydia suis, Chlamydia trachomatis), genus Chlamydophila (including the species Chlamydophila abortus, Chlamydophila caviae Chlamydophila felis, Chlamydia pecorum, Chlamydophila pneumoniae, Chlamydophila psittaci), and candidatus Clavochlamydia. All Chlamydiaceae are obligate intracellular Gram-negative bacteria that cause diseases in humans and animals worldwide. Description: BactoReal® Kit Chlamydiaceae is based on the amplification and detection of the 23S rRNA gene of C. muridarum, C. suis, C. trachomatis, C. abortus, C. caviae, C. felis, C. pecorum, C. pneumoniae and C. psittaci using real-time PCR. It allows the rapid and sensitive detection of the 23S rRNA gene of Chlamydiaceae from DNA samples purified from different sample material (e.g. with the QIAamp DNA Mini Kit). For subtyping please contact ingenetix. PCR-platforms: BactoReal® Kit Chlamydiaceae is developed and validated for the ABI PRISM® 7500 instrument (Life Technologies), LightCycler® 480 (Roche) and Mx3005P® QPCR System (Agilent), but is also suitable for other real-time PCR instruments. Sensitivity and specificity: BactoReal® Kit Chlamydiaceae detects at least 10 copies/reaction.
    [Show full text]
  • Infection Genital Tract Chlamydia Muridarum Essential for Normal
    The Journal of Immunology CD4+ T Cell Expression of MyD88 Is Essential for Normal Resolution of Chlamydia muridarum Genital Tract Infection Lauren C. Frazer,*,† Jeanne E. Sullivan,† Matthew A. Zurenski,† Margaret Mintus,† Tammy E. Tomasak,† Daniel Prantner,‡ Uma M. Nagarajan,† and Toni Darville*,† Resolution of Chlamydia genital tract infection is delayed in the absence of MyD88. In these studies, we first used bone marrow chimeras to demonstrate a requirement for MyD88 expression by hematopoietic cells in the presence of a wild-type epithelium. Using mixed bone marrow chimeras we then determined that MyD88 expression was specifically required in the adaptive immune compartment. Furthermore, adoptive transfer experiments revealed that CD4+ T cell expression of MyD88 was necessary for normal resolution of genital tract infection. This requirement was associated with a reduced ability of MyD882/2CD4+ T cells to accumulate in the draining lymph nodes and genital tract when exposed to the same inflammatory milieu as wild-type CD4+ T cells. We also demonstrated that the impaired infection control we observed in the absence of MyD88 could not be recapitulated by deficiencies in TLR or IL-1R signaling. In vitro, we detected an increased frequency of apoptotic MyD882/2CD4+ T cells upon activation in the absence of exogenous ligands for receptors upstream of MyD88. These data reveal an intrinsic requirement for MyD88 in CD4+ T cells during Chlamydia infection and indicate that the importance of MyD88 extends beyond innate immune responses by directly influencing adaptive immunity. The Journal of Immunology, 2013, 191: 4269–4279. hlamydia trachomatis infections of the female repro- of an adaptive immune response (19), but overly robust innate ductive tract can result in serious pathophysiology in- immune activation results in tissue damage.
    [Show full text]
  • CHLAMYDIOSIS (Psittacosis, Ornithosis)
    EAZWV Transmissible Disease Fact Sheet Sheet No. 77 CHLAMYDIOSIS (Psittacosis, ornithosis) ANIMAL TRANS- CLINICAL FATAL TREATMENT PREVENTION GROUP MISSION SIGNS DISEASE ? & CONTROL AFFECTED Birds Aerogenous by Very species Especially the Antibiotics, Depending on Amphibians secretions and dependent: Chlamydophila especially strain. Reptiles excretions, Anorexia psittaci is tetracycline Mammals Dust of Apathy ZOONOSIS. and In houses People feathers and Dispnoe Other strains doxycycline. Maximum of faeces, Diarrhoea relative host For hygiene in Oral, Cachexy specific. substitution keeping and Direct Conjunctivitis electrolytes at feeding. horizontal, Rhinorrhea Yes: persisting Vertical, Nervous especially in diarrhoea. in zoos By parasites symptoms young animals avoid stress, (but not on the Reduced and animals, quarantine, surface) hatching rates which are blood screening, Increased new- damaged in any serology, born mortality kind. However, take swabs many animals (throat, cloaca, are carrier conjunctiva), without clinical IFT, PCR. symptoms. Fact sheet compiled by Last update Werner Tschirch, Veterinary Department, March 2002 Hoyerswerda, Germany Fact sheet reviewed by E. F. Kaleta, Institution for Poultry Diseases, Justus-Liebig-University Gießen, Germany G. M. Dorrestein, Dept. Pathology, Utrecht University, The Netherlands Susceptible animal groups In case of Chlamydophila psittaci: birds of every age; up to now proved in 376 species of birds of 29 birds orders, including 133 species of parrots; probably all of the about 9000 species of birds are susceptible for the infection; for the outbreak of the disease, additional factors are necessary; very often latent infection in captive as well as free-living birds. Other susceptible groups are amphibians, reptiles, many domestic and wild mammals as well as humans. The other Chlamydia sp.
    [Show full text]
  • Chlamydia Psittaci
    Open Archive Toulouse Archive Ouverte OATAO is an open access repository that collects the work of Toulouse researchers and makes it freely available over the web where possible This is an author’s version published in: http://oatao.univ-toulouse.fr/19685 To cite this version: Jouffroy, Sophie. Prévalence des Chlamydiales chez les rapaces de l'Oregon : identification d'une Rhabdochlamydia. Thèse d'exercice, Médecine vétérinaire, Ecole Nationale Vétérinaire de Toulouse - ENVT, 2017, 82 p. Any correspondence concerning this service should be sent to the repository administrator: [email protected] ANNEE 2017 THESE : 2017 – TOU 3 – 4061 PREVALENCE DES CHLAMYDIALES CHEZ LES RAPACES DE L’OREGON : IDENTIFICATION D’UNE RHABDOCHLAMYDIA _________________ THESE pour obtenir le grade de DOCTEUR VETERINAIRE DIPLOME D’ETAT présentée et soutenue publiquement devant l’Université Paul-Sabatier de Toulouse par JOUFFROY, Sophie Née, le 08/04/1992 à CHENOVE (21) ___________ Directeur de thèse : Mme Hélène DANIELS ___________ JURY PRESIDENT : M. Christophe PASQUIER Professeur à l’Université Paul-Sabatier de TOULOUSE ASSESSEURS : Mme Hélène DANIELS Maître de Conférences à l’Ecole Nationale Vétérinaire de TOULOUSE M. Guillaume LE LOC’H Maître de Conférences à l’Ecole Nationale Vétérinaire de TOULOUSE ANNEE 2017 THESE : 2017 – TOU 3 – 4061 PREVALENCE DES CHLAMYDIALES CHEZ LES RAPACES DE L’OREGON : IDENTIFICATION D’UNE RHABDOCHLAMYDIA _________________ THESE pour obtenir le grade de DOCTEUR VETERINAIRE DIPLOME D’ETAT présentée et soutenue publiquement devant l’Université Paul-Sabatier de Toulouse par JOUFFROY, Sophie Née, le 08/04/1992 à CHENOVE (21) ___________ Directeur de thèse : Mme Hélène DANIELS ___________ JURY PRESIDENT : M.
    [Show full text]
  • Plasmid-Cured Chlamydia Caviae Activates TLR2- Dependent Signaling and Retains Virulence in the Guinea Pig Model of Genital Tract Infection
    Plasmid-Cured Chlamydia caviae Activates TLR2- Dependent Signaling and Retains Virulence in the Guinea Pig Model of Genital Tract Infection Lauren C. Frazer1, Toni Darville1, Kumar Chandra-Kuntal1, Charles W. Andrews Jr.2, Matthew Zurenski1, Margaret Mintus1, Yasser M. AbdelRahman3,4, Robert J. Belland3, Robin R. Ingalls5, Catherine M. O’Connell1* 1 Department of Pediatrics, Children’s Hospital of Pittsburgh of UPMC, Pittsburgh, Pennsylvania, United States of America, 2 Milstead Pathology Group, Conyers, Georgia, United States of America, 3 Department of Microbiology, Immunology, and Biochemistry, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America, 4 Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo, Egypt, 5 Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, United States of America Abstract Loss of the conserved ‘‘cryptic’’ plasmid from C. trachomatis and C. muridarum is pleiotropic, resulting in reduced innate inflammatory activation via TLR2, glycogen accumulation and infectivity. The more genetically distant C. caviae GPIC is a natural pathogen of guinea pigs and induces upper genital tract pathology when inoculated intravaginally, modeling human disease. To examine the contribution of pCpGP1 to C. caviae pathogenesis, a cured derivative of GPIC, strain CC13, was derived and evaluated in vitro and in vivo. Transcriptional profiling of CC13 revealed only partial conservation of previously identified plasmid-responsive chromosomal loci (PRCL) in C. caviae. However, 2-deoxyglucose (2DG) treatment of GPIC and CC13 resulted in reduced transcription of all identified PRCL, including glgA, indicating the presence of a plasmid- independent glucose response in this species. In contrast to plasmid-cured C.
    [Show full text]
  • Discovery of Genetic Correlates Important for Chlamydia Infection and Pathogenesis
    DISCOVERY OF GENETIC CORRELATES IMPORTANT FOR CHLAMYDIA INFECTION AND PATHOGENESIS By Kelly S. Harrison Submitted to the graduate degree program in Molecular Biosciences and the Graduate Faculty of the University of Kansas in partial fulfillment of the requirements for the degree Doctor of Philosophy. _________________________________ Chairperson (P. Scott Hefty, Ph.D.) ________________________________* (Lynn E. Hancock, Ph.D.) ________________________________* (Susan M. Egan, Ph.D.) ________________________________* (David J. Davido, Ph.D.) ________________________________* (Mario Rivera, Ph.D.) *Committee Members Date Defended: July 5th 2017 The Dissertation Committee for Kelly S. Harrison certifies that this is the approved version of the following dissertation: DISCOVERY OF GENETIC CORRELATES IMPORTANT FOR CHLAMYDIA INFECTION AND PATHOGENESIS _________________________________ Chairperson (P. Scott Hefty, Ph.D.) Date Approved: July 25th, 2017 ii ABSTRACT Chlamydia species are responsible for over 1.2 million reports of bacterial sexually transmitted infections in the United States; a number that has been steadily increasing for the past decade. Worldwide, a cumulative 131 million new cases of Chlamydia trachomatis are estimated among individuals between ages 15-49. In most individuals, chlamydial infections are asymptomatic, resulting in long-term sequelae such as pelvic inflammatory disease, salpingitis and infertility. Along with genitourinary infections, Chlamydia is also the leading cause of blinding trachoma, affecting nearly 1.9 million people across 42 different countries. While current treatment with antibiotics remains successful in combating infections, evidence of persistent infections, acquisition of antibiotic resistances, and recurring exposure intensifies the necessity for enhanced prophylactic approaches, including the development of a vaccine. In order to develop these advances, species-specific targets, as well as mechanisms the bacterium uses to establish infection must be identified.
    [Show full text]
  • Chlamydia Trachomatis Strains and Virulence: Rethinking Links to Infection Prevalence and Disease Severity
    SUPPLEMENT ARTICLE Chlamydia trachomatis Strains and Virulence: Rethinking Links to Infection Prevalence and Disease Severity Gerald I. Byrne Department of Molecular Sciences, University of Tennessee Health Science Center, Memphis An unanswered question concerning prevalence and disease severity of Chlamydia trachomatis genital infection is whether more prevalent strains or strains more likely to cause serious disease complications are causally associated with specific virulence attributes. The major method for distinguishing chlamydial strains is based on differences in the major outer membrane protein (MOMP). A subset of MOMP serovars (D and E serovars) are easily the most prevalent strains identified worldwide, but MOMP serovar and genovar analyses have not yielded consistent strain-dependent virulence distinctions. Expansion of the definitions of chlamydial strains beyond the MOMP paradigm are needed to better understand virulence properties for this pathogen and how these properties reflect disease severity. Substantive genetic and phenotypic differences have emerged for the 2 major C. trachomatis pathobiotypes associated with either trachoma or sexually transmitted diseases, but differences within the sexually transmitted disease group have not yielded reliable disease severity attributes. A number of candidate virulence factors have been identified, including the polymorphic outer membrane autotransporter family of proteins, the putative large cytotoxin, type III secretion effectors, stress response proteins, and proteins or other regulatory factors produced by the cryptic plasmid. Continued work on development of a chlamydial gene transfer system and application of genomic approaches to large collections of clinical isolates will be required to associate key chlamydial virulence factors with prevalence and disease severity in a definitive way. Identification and sorting of different Chlamydia tra- ease in women or other serious complications of chla- chomatis genital tract isolates have been central to ep- mydial genital tract infection [1].
    [Show full text]
  • Chlamydia Muridarum the Obligate Intracellular Pathogen Protects
    A MyD88-Dependent Early IL-17 Production Protects Mice against Airway Infection with the Obligate Intracellular Pathogen Chlamydia muridarum This information is current as of September 25, 2021. Xiaoyun Zhang, Lifen Gao, Lei Lei, Youmin Zhong, Peter Dube, Michael T. Berton, Bernard Arulanandam, Jinshun Zhang and Guangming Zhong J Immunol 2009; 183:1291-1300; Prepublished online 19 June 2009; Downloaded from doi: 10.4049/jimmunol.0803075 http://www.jimmunol.org/content/183/2/1291 http://www.jimmunol.org/ References This article cites 75 articles, 44 of which you can access for free at: http://www.jimmunol.org/content/183/2/1291.full#ref-list-1 Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists by guest on September 25, 2021 • Fast Publication! 4 weeks from acceptance to publication *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2009 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology A MyD88-Dependent Early IL-17 Production Protects Mice against Airway Infection with the Obligate Intracellular Pathogen Chlamydia muridarum1 Xiaoyun Zhang,*‡ Lifen Gao,* Lei Lei,* Youmin Zhong,* Peter Dube,* Michael T.
    [Show full text]
  • Mutational Analysis of the Chlamydia Muridarum Plasticity Zone
    Mutational Analysis of the Chlamydia muridarum Plasticity Zone Krithika Rajaram,a* Amanda M. Giebel,a Evelyn Toh,b Shuai Hu,b Jasmine H. Newman,c* Sandra G. Morrison,d Laszlo Kari,e Richard P. Morrison,d David E. Nelsonb Department of Biology, Indiana University, Bloomington, Indiana, USAa; Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USAb; Department of Biochemistry and Molecular Biology, Indiana University, Bloomington, Indiana, USAc; Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USAd; Laboratory of Intracellular Parasites, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USAe Pathogenically diverse Chlamydia spp. can have surprisingly similar genomes. Chlamydia trachomatis isolates that cause tra- Downloaded from choma, sexually transmitted genital tract infections (chlamydia), and invasive lymphogranuloma venereum (LGV) and the mu- rine strain Chlamydia muridarum share 99% of their gene content. A region of high genomic diversity between Chlamydia spp. termed the plasticity zone (PZ) may encode niche-specific virulence determinants that dictate pathogenic diversity. We hypothe- sized that PZ genes might mediate the greater virulence and gamma interferon (IFN-␥) resistance of C. muridarum compared to C. trachomatis in the murine genital tract. To test this hypothesis, we isolated and characterized a series of C. muridarum PZ nonsense mutants. Strains with nonsense mutations in chlamydial cytotoxins, guaBA-add, and a phospholipase D homolog de- veloped normally in cell culture. Two of the cytotoxin mutants were less cytotoxic than the wild type, suggesting that the cyto- toxins may be functional. However, none of the PZ nonsense mutants exhibited increased IFN-␥ sensitivity in cell culture or http://iai.asm.org/ were profoundly attenuated in a murine genital tract infection model.
    [Show full text]
  • "Cd1d-Restricted Natural Killer T Cells" In
    CD1d-Restricted Natural Advanced article Article Contents Killer T Cells • Introduction • CD1d Structure Dictates Lipid Ligand Timothy M Hill, Department of Pathology, Microbiology and Immunology, Van- Presentation derbilt University School of Medicine, Nashville, Tennessee, USA and Department of Chem- • NKT-Cell Development istry and Life Science, United States Military Academy, West Point, New York, USA • NKT-Cell Functions • Conclusions Jelena S Bezbradica, Institute for Molecular Bioscience, The University of • Acknowledgements Queensland, Brisbane, Queensland, Australia th Luc Van Kaer, Department of Pathology, Microbiology and Immunology, Vander- Online posting date: 15 January 2016 bilt University School of Medicine, Nashville, Tennessee, USA Sebastian Joyce, Veterans Administration Tennessee Valley Healthcare System, Murfreesboro, Tennessee, USA and Department of Pathology, Microbiology and Immunol- ogy, Vanderbilt University School of Medicine, Nashville, Tennessee, USA Based in part on the previous version of this eLS article ‘Natural Killer T Cells’ (2007) by Jelena S Bezbradica, Luc Van Kaer and Sebastian Joyce. Natural killer T (NKT) cells that express the Introduction semi-invariant T-cell receptor are innate-like lymphocytes whose functions are controlled by The immune system, as a constituent of the ten physiologic sys- self and foreign glycolipid ligands. Such ligands tems of the body, has evolved to sense perturbations in the milieu are presented by the antigen-presenting, MHC intérieur (homeostasis) and to actuate an appropriate response class I-like molecule CD1d, which belongs to a so as to restore a set homeostatic state unique to an organism. family of lipid antigen-presenting molecules col- Homeostasis can be disrupted by both internal and external lectively called CD1.
    [Show full text]
  • Identification of Cytokine Profiles Associated with Endometrial Chlamydia Infection
    IDENTIFICATION OF CYTOKINE PROFILES ASSOCIATED WITH ENDOMETRIAL CHLAMYDIA INFECTION De’Ashia Elizabeth Lee A thesis submitted to the faculty of the University of North Carolina at Chapel Hill in partial fulfillment of the requirements for the degree of Master of Science in the Department of Microbiology and Immunology in the School of Medicine. Chapel Hill 2018 Approved by: Toni Darville Nilu Goonetilleke Jason Whitmire Barbara Salvodo © 2018 De’Ashia Elizabeth Lee ALL RIGHTS RESERVED ii ABSTRACT De’Ashia Elizabeth Lee: Identification of Cytokine Profiles Associated with Endometrial Chlamydia Infection (Under the direction of Toni Darville and Nilu Goonetilleke) Chlamydia trachomatis (CT) infection can lead to reproductive tract morbidities when it ascends to the upper genital tract of women, and repeated infections worsen disease. Cervical cytokines associated with disease or infection susceptibility in women are unknown. Forty-eight cytokines were measured in cervical secretions of 160 women with CT infection, 68 who had endometrial infection, and 92 with cervical infection only. Participants were monitored for repeat CT infections over the following year. Multivariable stepwise regression examined whether cytokines were associated with endometrial infection at the enrollment visit or reinfection. IL-16, was associated with decreased risk of endometrial infection while CXCL10, CXCL13, and TNFα, were associated with increased risk of endometrial infection. Although we did not identify cytokines significantly associated with an altered risk of repeat infection, VEGF, a T cell chemokine, and IL-14, a B cell chemokine, were associated with decreased and increased risk of reinfection by univariable analysis, respectively. iii ACKNOWLEDGEMENTS To my family and friends, thank you for all the unconditional love and support throughout my life.
    [Show full text]