Plasmid-Cured Chlamydia Caviae Activates TLR2- Dependent Signaling and Retains Virulence in the Guinea Pig Model of Genital Tract Infection
Plasmid-Cured Chlamydia caviae Activates TLR2- Dependent Signaling and Retains Virulence in the Guinea Pig Model of Genital Tract Infection Lauren C. Frazer1, Toni Darville1, Kumar Chandra-Kuntal1, Charles W. Andrews Jr.2, Matthew Zurenski1, Margaret Mintus1, Yasser M. AbdelRahman3,4, Robert J. Belland3, Robin R. Ingalls5, Catherine M. O’Connell1* 1 Department of Pediatrics, Children’s Hospital of Pittsburgh of UPMC, Pittsburgh, Pennsylvania, United States of America, 2 Milstead Pathology Group, Conyers, Georgia, United States of America, 3 Department of Microbiology, Immunology, and Biochemistry, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America, 4 Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo, Egypt, 5 Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, United States of America Abstract Loss of the conserved ‘‘cryptic’’ plasmid from C. trachomatis and C. muridarum is pleiotropic, resulting in reduced innate inflammatory activation via TLR2, glycogen accumulation and infectivity. The more genetically distant C. caviae GPIC is a natural pathogen of guinea pigs and induces upper genital tract pathology when inoculated intravaginally, modeling human disease. To examine the contribution of pCpGP1 to C. caviae pathogenesis, a cured derivative of GPIC, strain CC13, was derived and evaluated in vitro and in vivo. Transcriptional profiling of CC13 revealed only partial conservation of previously identified plasmid-responsive chromosomal loci (PRCL) in C. caviae. However, 2-deoxyglucose (2DG) treatment of GPIC and CC13 resulted in reduced transcription of all identified PRCL, including glgA, indicating the presence of a plasmid- independent glucose response in this species. In contrast to plasmid-cured C.
[Show full text]