Of Warning Colour Dines

Total Page:16

File Type:pdf, Size:1020Kb

Of Warning Colour Dines Heredity 56 (1986) 191-202 The Genetical Society of Great Britain Received 12 July 1985 Hybrid zones of Heliconius butterflies in Panama and the stability and movement of warning colour dines James MaIIet* Department of Zoology, University of Texas, Austin, Tx. 78712, U.S.A. Heliconius erato and H. melpomene are warningly coloured tropical butterflies that show mimetic covariation throughout the neotropics. Central American, West Colombian, and North Colombian colour pattern races of both species meet and form hybrid zones in Panama. These hybrid zones were sampled along a transect. The major colour pattern changes are determined by three alleles at a single locus in each species. There is no evidence for hybrid breakdown or mating incompatibility between any of the phenotypes in Panama, and local genotypic frequencies are not significantly different from Hardy-Weinberg expectation. I simulated a single-locus, two-allele warning colour hybrid zone (dine) with dominance. Predator selection on warning colour patterns was assumed to be frequency-dependent, so that, at any point in the dine, a rare phenotype has lower fitness than a common phenotype. Simulation shows that such a dine rapidly reaches a stable slope. Since the model does not depend on selection caused by the abiotic environment, the dine is positionally unstable. Even if the two phenotypes are equally fit "dominance drive" tends to increase the area in which the dominant allele is present. Differences in fitness of the phenotypes and density gradients can also cause dine movement. Hybrid zone movement might either be rapid enough to obliterate patterns that were formed in Pleistocene refugia, or so slow as to make secondary contact a requirement for the existence of hybrid zones. A third possibility is that local variations in population density will normally prevent hybrid zone movement, even if this is potentially rapid. Better estimates of dispersal and selection are needed to resolve this issue. INTRODUCTION Species of the butterfly genus Heliconius often have large numbers of colour-pattern races with Manygroups of closely related taxa are distributed parapatric distributions, connected by hybrid in patchwork patterns, with their ranges abutting. zones (Brown and Mielke, 1972; Brown eta!., 1974; These "parapatric" forms are often separated by reviewed by Brown, 1976; 1982; Turner, 1982). The narrow zones of hybridisation. For the purposes standard explanation has been that this raciation of this paper, I define hybridisation as the process occurred in allopatric Neotropical refugia during of obtaining offspring (hybrids) in natural or Pleistocene dry periods (Turner, 1965; Brown et artificial crosses between genetically distinct strains, a!., 1974; Brown, 1982; Turner, 1982). Recently, a and hybrid zone as a narrow zone of genetic change number of authors have suggested that parapatric (where natural hybrids occur) between the ranges of differentiation is equally consistent with the avail- two parapatric, genetically distinct forms. These able evidence from Heliconius (Endler, 1977; 1982; definitions are useful because they are based on White, 1978; Benson, 1982). Much of this work the phenomena themselves rather than on the has centred on Heliconius erato and H. melpomene, unknown causes of the phenomena. I use neither which are common, well collected, and have very history (Mayr, 1970: 69), nor fitness or stability well-known biology (Emsley, 1964; Brown, 1981; (e.g., Endler, 1977; Barton, 1979; Barton and Turner, 1981). These two species have phenomenal Hewitt, 1981) to define hybridisation and hybrid parallel geographic variation in colour pattern, zones. which provides one of the best pieces of evidence *Present address: GaltonLaboratory, Department of Genetics for the existence of mimicry (see Turner, 1982). and Biometry, University College of London, 4 Stephenson Major colour pattern differences between races of Way, London NWI 2HE. both species are usually controlled by a few Men- 192 J. MALLET delian factors (Turner, 1982; Sheppard et a!., gotes (shown schematically in fig. 1). In H. mel- 1985). Both species are distasteful to birds, and pomene, the West Colombian yellow bar (on under- their colour patterns are almost certainly selected side only) is dominant to the Central American for warning coloration and Müllerian mimicry bar (on upper and underside), and recessive to (Brower et a!., 1963; Brower and Brower, 1964; lack of bar, but the inheritance of the West Colom- Benson, 1972). Widths of hybrid zones in H. erato bian pattern is not known for H. erato. and H. melpomene have been reported to be 10- The purposes of this study were to obtain data 200km wide (Benson, 1982; Brown and Mielke, on the shapes, widths, and genetics of hybrid zones 1972; Turner, 197 Ia), but detailed transects have of H. erato and H. melpomene in Panama, and to not been made, and the genetics of the zones is investigate the fitnesses of hybrids and the stability often not known. The lack of detailed work in of interactions in the zones. Heliconius hybrid zones makes it hard to guess how they originated and how they are maintained. MATERIALSAND METHODS Three races of H. erato meet in Panama (See fig. 1): (1) a "Central American" race which has Thestudy was carried out in three parts: (1) a red forewing band and a yellow hindwing bar phenotypes of H. erato from the hybrid zone were (distributed from Northern Mexico south to intercrossed to determine the inheritance of colour Eastern Panama); (2) a "North Colombian" race pattern; (2) samples of H. erato and H. melpomene which is similar to the Central American race but were taken along a transect through the hybrid which lacks the yellow bar (distributed from the zones; and (3) a simulation model of a hybrid zone Guianas east through Venezuela to North-Central was constructed and used to analyse the genetic Colombia); and (3) a "West Colombian" race data. which is also similar to the Central American race, except that its yellow bar is expressed on the under- Laboratory crosses of H. erato. Since the known surface only (distributed in Colombia west of the genetics of hybridisation had been deduced from Western Cordillera of the Andes). For simplicity, allopatric crosses (e.g., Mexico x Trinidad), and the currently accepted scientific names of the races since some of the genetics were not known for H. are not used here, but are given in table 1. There erato, I performed crosses of H. era to using hybrid are also minor colour pattern differences between zone stock. Adults were kept in outdoor insectaries the races (see Results). The distributions of these in Panama City, using techniques given by Turner races are shown in fig. 2. Heliconius melponiene (1974). The eggs were separated individually and has an overall pattern of racial variation similar their hatch rate recorded. Larvae were reared to to that of H. erato (see fig. 1 for phenotypes), maturity, and the adults were scored for the follow- which is almost certainly due to Müllerian mimicry ing: sex; yellow hindwing bar (presence, shadow (Brown et a!., 1974). The minor color pattern ele- or absence); yellow bar type if present (Central ments in H. melpomene also track their analogues American or West Colombian); upperside blue in H. erato. The genetics of some of the colour iridescence (scale 0—1); markedness of distal white pattern differences between these races has been fringes (scale 0—1); and size (forewing length). studied by Sheppard et al. (1985) and Mallet et a!. Wild-mated female parents were collected in (unpubl.). In both species the presence of the hind- Garachiné for broods PA1-PA2; and in TortI for wing yellow bar is determined by a single allele broods PA3-PA6 (table 2). They were allowed to which is almost completely recessive to absence of deposit eggs until their first progeny began to yellow, although a shadow can be seen in the black enclose from the pupa. Females of these progeny, pigment of the underside bar region of heterozy- and females reared from field-collected larvae were then mated to field-collected males chosen to test Table1 Trinomial nomenclature of Heliconius races in hypotheses of colour pattern inheritance (table 2: Panama hybrid zones broods PA7-PA12). The following parents in table 2 were reared from earlier broods: the female Heliconius Heliconius Name of race used erato melpomene parent of PA8 is from PA2; female parents of PAl 0, inthis paper subspecies subspecies PAll and PA12 are from brood PA!. The female parent of PA7 was reared from a larva collected Central American petiverana rosina in Puerto Obaldia, that of PA9 from a larva collec- West Colombian venus vulcanus North Colombian ted in PiriatI. A single male from Torti fathered hydara melpomene broods PA8, PA9, PAll, and PA12, and the male Source: Brown (1976; 1979) parents of PA7 and PAlO were also from TortI. HELICONIUS HYBRID ZONES 193 under upper North Colombian or or'T'Ywc Yyco Ca __l Heterozygote Central American Me/porn ene Era to Figure1 Phenotypes and genotypes of Heliconius melpomene and H. erato found in the Panama hybrid zone. The phenotypes correspond to races as follows: A, North Colombian race. B, Heterozygote between West Colombian or Central American, and North Colombian races. C, West Colombian race. D, Central American race. Genotypes shown conform to the results obtained in crosses. 194 J. MALLET CARIBBEAN SEA Transect 7 9 Race / PACIFIC OCEAN 0 km 00 W. Colombian Race Figure 2 Distribution of colour pattern races of H. eratoinPanama, showing sample sites and transect. See table 4 for exact locations and names of sample sites. Heliconius females are almost monandrous (Boggs, tional samples from sites away from the transect 1979), and show sperm precedence for their last were also collected. Precise collecting locality data mating (L. Gilbert, pers. comm.), so it was possible is given in table 4.
Recommended publications
  • A Major Locus Controls a Biologically Active Pheromone Component in Heliconius Melpomene
    bioRxiv preprint doi: https://doi.org/10.1101/739037; this version posted August 19, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. 1 A major locus controls a biologically active pheromone component in Heliconius melpomene 2 Kelsey J.R.P. Byers1,2,9, Kathy Darragh1,2,9, Jamie Musgrove2, Diana Abondano Almeida2,3, Sylvia Fernanda 3 Garza2,4, Ian A. Warren1, Pasi Rastas5, Marek Kucka6, Yingguang Frank Chan6, Richard M. Merrill7, Stefan 4 Schulz8, W. Owen McMillan2, Chris D. Jiggins1,2,10 5 6 1 Department of Zoology, University of Cambridge, Cambridge, United Kingdom 7 2 Smithsonian Tropical Research Institute, Panama, Panama 8 3 Present address: Institute for Ecology, Evolution and Diversity, Goethe Universität, Frankfurt, Germany 9 4 Present address: Department of Collective Behaviour, Max Planck Institute of Animal Behaviour, 10 Konstanz, Germany & Centre for the Advanced Study of Collective Behaviour, University of Konstanz, 11 Konstanz, Germany 12 5 Institute of Biotechnology, University of Helsinki, Helsinki, Finland 13 6 Friedrich Miescher Laboratory of the Max Planck Society, Tuebingen, Germany 14 7 Division of Evolutionary Biology, Ludwig-Maximilians-Universität München, Munich, Germany 15 8 Institute of Organic Chemistry, Department of Life Sciences, Technische Universität Braunschweig, 16 Braunschweig, Germany 17 9 These authors contributed equally to this work 18 10 To whom correspondence should be addressed: [email protected] 19 Running title: Genetics of bioactive pheromones in Heliconius 20 1 bioRxiv preprint doi: https://doi.org/10.1101/739037; this version posted August 19, 2019.
    [Show full text]
  • The Genetics and Evolution of Iridescent Structural Colour in Heliconius Butterflies
    The genetics and evolution of iridescent structural colour in Heliconius butterflies Melanie N. Brien A thesis submitted in partial fulfilment of the requirements for the degree of Doctor of Philosophy The University of Sheffield Faculty of Science Department of Animal & Plant Sciences Submission Date August 2019 1 2 Abstract The study of colouration has been essential in developing key concepts in evolutionary biology. The Heliconius butterflies are well-studied for their diverse aposematic and mimetic colour patterns, and these pigment colour patterns are largely controlled by a small number of homologous genes. Some Heliconius species also produce bright, highly reflective structural colours, but unlike pigment colour, little is known about the genetic basis of structural colouration in any species. In this thesis, I aim to explore the genetic basis of iridescent structural colour in two mimetic species, and investigate its adaptive function. Using experimental crosses between iridescent and non-iridescent subspecies of Heliconius erato and Heliconius melpomene, I show that iridescent colour is a quantitative trait by measuring colour variation in offspring. I then use a Quantitative Trait Locus (QTL) mapping approach to identify loci controlling the trait in the co-mimics, finding that the genetic basis is not the same in the two species. In H. erato, the colour is strongly sex-linked, while in H. melpomene, we find a large effect locus on chromosome 3, plus a number of putative small effect loci in each species. Therefore, iridescence in Heliconius is not an example of repeated gene reuse. I then show that both iridescent colour and pigment colour are sexually dimorphic in H.
    [Show full text]
  • The Speciation History of Heliconius: Inferences from Multilocus DNA Sequence Data
    The speciation history of Heliconius: inferences from multilocus DNA sequence data by Margarita Sofia Beltrán A thesis submitted for the degree of Doctor of Philosophy of the University of London September 2004 Department of Biology University College London 1 Abstract Heliconius butterflies, which contain many intermediate stages between local varieties, geographic races, and sympatric species, provide an excellent biological model to study evolution at the species boundary. Heliconius butterflies are warningly coloured and mimetic, and it has been shown that these traits can act as a form of reproductive isolation. I present a species-level phylogeny for this group based on 3834bp of mtDNA (COI, COII, 16S) and nuclear loci (Ef1α, dpp, ap, wg). Using these data I test the geographic mode of speciation in Heliconius and whether mimicry could drive speciation. I found little evidence for allopatric speciation. There are frequent shifts in colour pattern within and between sister species which have a positive and significant correlation with species diversity; this suggests that speciation is facilitated by the evolution of novel mimetic patterns. My data is also consistent with the idea that two major innovations in Heliconius, adult pollen feeding and pupal-mating, each evolved only once. By comparing gene genealogies from mtDNA and introns from nuclear Tpi and Mpi genes, I investigate recent speciation in two sister species pairs, H. erato/H. himera and H. melpomene/H. cydno. There is highly significant discordance between genealogies of the three loci, which suggests recent speciation with ongoing gene flow. Finally, I explore the phylogenetic relationships between races of H. melpomene using an AFLP band tightly linked to the Yb colour pattern locus (which determines the yellow bar in the hindwing).
    [Show full text]
  • Genomic Architecture of Adaptive Color Pattern Divergence and Convergence in Heliconius Butterflies
    Downloaded from genome.cshlp.org on September 29, 2021 - Published by Cold Spring Harbor Laboratory Press Research Genomic architecture of adaptive color pattern divergence and convergence in Heliconius butterflies Megan A. Supple,1,2 Heather M. Hines,3,4 Kanchon K. Dasmahapatra,5,6 James J. Lewis,7 Dahlia M. Nielsen,3 Christine Lavoie,8 David A. Ray,8 Camilo Salazar,1,9 W. Owen McMillan,1,10 and Brian A. Counterman8,10,11 1Smithsonian Tropical Research Institute, Panama City, Republic of Panama; 2Biomathematics Program, North Carolina State University, Raleigh, North Carolina 27695, USA; 3Department of Genetics, North Carolina State University, Raleigh, North Carolina 27695, USA; 4Department of Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA; 5Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT, United Kingdom; 6Department of Biology, University of York, York YO10 5DD, United Kingdom; 7Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, New York 14853, USA; 8Department of Biological Sciences, Mississippi State University, Mississippi State, Mississippi 39762, USA; 9Facultad de Ciencias Naturales y Matema´ticas, Universidad del Rosario, Bogota´ DC, Colombia Identifying the genetic changes driving adaptive variation in natural populations is key to understanding the origins of biodiversity. The mosaic of mimetic wing patterns in Heliconius butterflies makes an excellent system for exploring adaptive variation using next-generation sequencing. In this study, we use a combination of techniques to annotate the genomic interval modulating red color pattern variation, identify a narrow region responsible for adaptive divergence and con- vergence in Heliconius wing color patterns, and explore the evolutionary history of these adaptive alleles.
    [Show full text]
  • Disruptive Sexual Selection Against Hybrids Contributes to Speciation Between Heliconius Cydno and Heliconius Melpomene Russell E
    doi 10.1098/rspb.2001.1753 Disruptive sexual selection against hybrids contributes to speciation between Heliconius cydno and Heliconius melpomene Russell E. Naisbit1*, Chris D. Jiggins1,2 and James Mallet1,2 1The Galton Laboratory, Department of Biology, University College London, 4 Stephenson Way, London NW1 2HE, UK 2SmithsonianTropical Research Institute, Apartado 2072, Balboa, Panama Understanding the fate of hybrids in wild populations is fundamental to understanding speciation. Here we provide evidence for disruptive sexual selection against hybrids between Heliconius cydno and Heliconius melpomene. The two species are sympatric across most of Central and Andean South America, and coexist despite a low level of hybridization. No-choice mating experiments show strong assortative mating between the species. Hybrids mate readily with one another, but both sexes show a reduction in mating success of over 50% with the parental species. Mating preference is associated with a shift in the adult colour pattern, which is involved in predator defence through MÏllerian mimicry, but also strongly a¡ects male courtship probability. The hybrids, which lie outside the curve of protection a¡orded by mimetic resemblance to the parental species, are also largely outside the curves of parental mating prefer- ence. Disruptive sexual selection against F1 hybrids therefore forms an additional post-mating barrier to gene £ow, blurring the distinction between pre-mating and post-mating isolation, and helping to main- tain the distinctness of these hybridizing species. Keywords: Lepidoptera; Nymphalidae; hybridization; mate choice; post-mating isolation; pre-mating isolation Rather less experimental work has investigated mate 1. INTRODUCTION choice during speciation and the possibility of the third Studies of recently diverged species are increasingly type of selection against hybrids: disruptive sexual select- producing examples of sympatric species that hybridize in ion.
    [Show full text]
  • Genetic Differentiation Without Mimicry Shift in a Pair of Hybridizing Heliconius Species (Lepidoptera: Nymphalidae)
    bs_bs_banner Biological Journal of the Linnean Society, 2013, 109, 830–847. With 5 figures Genetic differentiation without mimicry shift in a pair of hybridizing Heliconius species (Lepidoptera: Nymphalidae) CLAIRE MÉROT1, JESÚS MAVÁREZ2,3, ALLOWEN EVIN4,5, KANCHON K. DASMAHAPATRA6,7, JAMES MALLET7,8, GERARDO LAMAS9 and MATHIEU JORON1* 1UMR CNRS 7205, Muséum National d’Histoire Naturelle, 45 rue Buffon, 75005 Paris, France 2LECA, BP 53, Université Joseph Fourier, 2233 Rue de la Piscine, 38041 Grenoble Cedex, France 3Smithsonian Tropical Research Institute, Apartado 2072, Balboa, Panama 4Department of Archaeology, University of Aberdeen, St. Mary’s Building, Elphinstone Road, Aberdeen AB24 3UF, UK 5UMR CNRS 7209, Muséum National d’Histoire Naturelle, 55 rue Buffon, 75005 Paris, France 6Department of Biology, University of York, Wentworth Way, Heslington, York YO10 5DD, UK 7Department of Genetics, Evolution and Environment, University College London, Gower Street, London WC1E 6BT, UK 8Department of Organismic and Evolutionary Biology, Harvard University, 16 Divinity Avenue, Cambridge, MA 02138, USA 9Museo de Historia Natural, Universidad Nacional Mayor San Marcos, Av. Arenales, 1256, Apartado 14-0434, Lima-14, Peru Received 22 January 2013; revised 25 February 2013; accepted for publication 25 February 2013 Butterflies in the genus Heliconius have undergone rapid adaptive radiation for warning patterns and mimicry, and are excellent models to study the mechanisms underlying diversification. In Heliconius, mimicry rings typically involve distantly related species, whereas closely related species often join different mimicry rings. Genetic and behavioural studies have shown how reproductive isolation in many pairs of Heliconius taxa is largely mediated by natural and sexual selection on wing colour patterns.
    [Show full text]
  • Natural Selection and Genetic Diversity in the Butterfly Heliconius
    HIGHLIGHTED ARTICLE | INVESTIGATION Natural Selection and Genetic Diversity in the Butterfly Heliconius melpomene Simon H. Martin,*,1 Markus Möst,* William J. Palmer,† Camilo Salazar,‡ W. Owen McMillan,§ Francis M. Jiggins,† and Chris D. Jiggins* *Department of Zoology and †Department of Genetics, University of Cambridge, CB2 3EH, United Kingdom, ‡Biology Program, Faculty of Natural Sciences and Mathematics, Universidad del Rosario, Bogota 111221, Colombia, and §Smithsonian Tropical Research Institution, Apartado 0843–03092, Balboa, Ancón, Panama ABSTRACT A combination of selective and neutral evolutionary forces shape patterns of genetic diversity in nature. Among the insects, most previous analyses of the roles of drift and selection in shaping variation across the genome have focused on the genus Drosophila. A more complete understanding of these forces will come from analyzing other taxa that differ in population demography and other aspects of biology. We have analyzed diversity and signatures of selection in the neotropical Heliconius butterflies using resequenced genomes from 58 wild-caught individuals of Heliconius melpomene and another 21 resequenced genomes representing 11 related species. By comparing intraspecific diversity and interspecific divergence, we estimate that 31% of amino acid substitutions between Heliconius species are adaptive. Diversity at putatively neutral sites is negatively correlated with the local density of coding sites as well as nonsynonymous substitutions and positively correlated with recombination rate, indicating widespread linked selection. This process also manifests in significantly reduced diversity on longer chromosomes, consistent with lower recombination rates. Although hitch- hiking around beneficial nonsynonymous mutations has significantly shaped genetic variation in H. melpomene, evidence for strong selective sweeps is limited overall. We did however identify two regions where distinct haplotypes have swept in different populations, leading to increased population differentiation.
    [Show full text]
  • Ecological Divergence and Speciation in Heliconius Cydno and H
    Ecological divergence and speciation in Heliconius cydno and H. melpomene by Russell Edward Naisbit A thesis submitted for the degree of Doctor of Philosophy of the University of London September 2001 Department of Biology University College London To my family, for their support and encouragement throughout this crazy endeavour 2 “It is hardly an exaggeration to say, that whilst reading and reflecting on the various facts given in this Memoir, we feel to be as near witnesses, as we can ever hope to be, of the creation of a new species on this earth.” Charles Darwin, Natural History Review: Quarterly Journal of Biological Science, 1863. From a review of “Contributions to an Insect Fauna of the Amazon Valley,” in which Henry Walter Bates gave an adaptive explanation for mimicry in Amazonian butterflies and argued that variation in mimicry might cause speciation 3 Abstract We are in the midst of a renaissance in speciation research. There is a return to Darwin’s belief in the role of natural selection in driving speciation, after a lengthy focus on geographic isolation and hybrid sterility. Here I describe the ecological, behavioural, and genetic bases of speciation in Heliconius cydno and Heliconius melpomene (Lepidoptera: Nymphalidae). The two species are sympatric in tropical rainforest across most of Central America and the foothills of the Andes. Ecological differentiation allows coexistence of these sister species despite rare hybridisation. Divergence in microhabitat and larval host plant use has reduced both the potential for gene flow and for competition. In Panama H. cydno uses most Passiflora species in closed canopy forest, whilst H.
    [Show full text]
  • Insect Seminal Fluid Proteins: Identification and Function
    EN56CH02-Wolfner ARI 14 October 2010 9:49 Insect Seminal Fluid Proteins: Identification and Function Frank W. Avila, Laura K. Sirot, Brooke A. LaFlamme, C. Dustin Rubinstein, and Mariana F. Wolfner Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853; email: [email protected], [email protected], [email protected], [email protected], [email protected] Annu. Rev. Entomol. 2011. 56:21–40 Key Words First published online as a Review in Advance on egg production, mating receptivity, sperm storage, mating plug, sperm September 24, 2010 by University of California - San Diego on 08/13/13. For personal use only. competition, feeding, reproduction, Acp Annu. Rev. Entomol. 2011.56:21-40. Downloaded from www.annualreviews.org The Annual Review of Entomology is online at ento.annualreviews.org Abstract This article’s doi: Seminal fluid proteins (SFPs) produced in reproductive tract tissues 10.1146/annurev-ento-120709-144823 of male insects and transferred to females during mating induce nu- Copyright c 2011 by Annual Reviews. merous physiological and behavioral postmating changes in females. All rights reserved These changes include decreasing receptivity to remating; affecting 0066-4170/11/0107-0021$20.00 sperm storage parameters; increasing egg production; and modulating sperm competition, feeding behaviors, and mating plug formation. In addition, SFPs also have antimicrobial functions and induce expression of antimicrobial peptides in at least some insects. Here, we review re- cent identification of insect SFPs and discuss the multiple roles these proteins play in the postmating processes of female insects. 21 EN56CH02-Wolfner ARI 14 October 2010 9:49 INTRODUCTION SFPs provide intriguing targets for the control of disease vectors and agricultural pests.
    [Show full text]
  • High Evolutionary Potential in the Chemical Defenses of an Aposematic Heliconius Butterfly
    bioRxiv preprint doi: https://doi.org/10.1101/2020.01.14.905950; this version posted January 15, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 1. GENERAL INFORMATION Article Type: Research Paper Title: High evolutionary potential in the chemical defenses of an aposematic Heliconius butterfly Authors: Mattila, Anniina L. K.1; Jiggins, Chris D.2; Opedal, Øystein H.1,3; Montejo-Kovacevich, Gabriela2; de Castro, Érika2; McMillan, William O.4; Bacquet, Caroline5; Saastamoinen, Marjo1,6 Author affiliations: 1. Research Centre for Ecological Change, Organismal and Evolutionary Biology Research Programme, University of Helsinki, Finland 2. Department of Zoology, University of Cambridge, UK 3. Department of Biology, Lund University, Sweden 4. Smithsonian Tropical Research Institute, Panama 5. Universidad Regional Amazónica de Ikiam, Tena, Ecuador 6. Helsinki Life Science Institute, University of Helsinki, Finland Orcid ID: Anniina L. K. Mattila: 0000-0002-6546-6528 Chris D. Jiggins: 0000-0002-7809-062X Øystein H. Opedal: 0000-0002-7841-6933 Gabriela Montejo-Kovacevich: 0000-0003-3716-9929 Érika de Castro: 0000-0002-4731-3835 William O. McMillan: 0000-0003-2805-2745 Caroline Bacquet: 0000-0002-1954-1806 Marjo Saastamoinen: 0000-0001-7009-2527 Keywords: chemical defense – aposematism – mimicry – Heliconius – cyanogenic glucosides – evolvability 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.01.14.905950; this version posted January 15, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.
    [Show full text]
  • Genomic Hotspots of Adaptation in Butterfly Wing
    Author's personal copy Available online at www.sciencedirect.com Genomic hotspots of adaptation in butterfly wing pattern evolution Riccardo Papa, Arnaud Martin and Robert D Reed What is the genetic architecture of morphological evolution? Is underlies adaptation in multiple lineages. There are there uniform potential for novelty across a genome or, on the now numerous cases known of specific genes underlying contrary, can a small number of large-effect genes explain the parallel and convergent evolution [3]. For example, regu- phenotypic variation observed within and between species? latory elements of yellow underlie multiple cases of con- Here we highlight recent work on butterfly wing pattern vergent evolution of both abdomen and wing genetics showing that a small set of loci can be repeatedly pigmentation in Drosophila species [4,5], independent involved in the evolution of complex traits. These loci behave as events of albinism in cavefish were linked to mutations genomic hotspots for diversification because they underlie in Oca2, a determinant of pigmentation in human popu- adaptive variation within and between species with both lations [6,7], and derived pigmentation in several stickle- convergent and highly divergent wing patterns. These findings back populations is linked to a regulatory allele of Kitlg,a suggest that certain loci may be more likely than others to gene associated with skin color in humans [8]. Repeated facilitate rapid evolutionary change. fixation of an allele of the Eda gene is responsible for the reduction of armor plates in sticklebacks [9–11], while its Address receptor Edar matches a quantitative trait locus (QTL) Department of Ecology and Evolutionary Biology, University of for hair thickness in humans [12].
    [Show full text]
  • Genetic Evidence for a Sibling Species of Heliconius Charithonia (Lepidoptera; Nymphalidae)
    Biological Journal of the Linnean Society (1998), 64: 57±67. With 1 ®gure Article ID: bj970211 Genetic evidence for a sibling species of Heliconius charithonia (Lepidoptera; Nymphalidae) CHRIS D. JIGGINS* The Galton Laboratory, Department of Biology, University College London, 4 Stephenson Way, London NW1 2HE NEIL DAVIES University of Hawaii at Manoa, Center for Conservation Research and Training, Honolulu, HI 96822, U.S.A. Received 29 May 1997; accepted for publication 22 December 1997 Heliconius charithonia is a widespread species which, unlike many Heliconius, is non-mimetic and shows little racial diVerentiation. Only one form, `peruvianus', which occurs in the dry forest habitats of western Ecuador and Peru, has a distinct and clearly mimetic colour pattern. Here it was shown that H. peruvianus was distinct from H. charithonia bassleri at allozyme loci (D=0.25 over 22 loci). This diVerentiation was ten times greater than that between H. charithonia sampled from Ecuador and the Caribbean (D=0.027) and was consistent with analysis of mitochondrial sequence data (3.4±4% sequence divergence between H. peruvianus and H. charithonia). One individual with a H. peruvianus colour pattern and allozyme genotype was collected in an area where H. charithonia was known to be common, demonstrating that contact between the taxa occurs in western Ecuador. Furthermore, the allozyme genotype of another individual was heterozygous for four of ®ve diagnostic loci and was most likely an F1 hybrid between H. charithonia and H. peruvianus. These data imply that H. charithonia and H. peruvianus are distinct species which hybridize occasionally. This species pair show many similarities with H.
    [Show full text]