Characterization of Two Hair Cell Proteins in the Zebrafish Lateral Line

Total Page:16

File Type:pdf, Size:1020Kb

Characterization of Two Hair Cell Proteins in the Zebrafish Lateral Line CHARACTERIZATION OF TWO HAIR CELL PROTEINS IN THE ZEBRAFISH LATERAL LINE BY ROBIN WOODS DAVIS Submitted in partial fulfillment of the requirements For the degree of Master of Science Thesis Advisor: Dr. Brian M. McDermott Jr. Department of Biology CASE WESTERN RESERVE UNIVERSITY August 2016 CASE WESTERN RESERVE UNIVERSITY SCHOOL OF GRADUATE STUDIES We hereby approve the thesis/dissertation of Robin Woods Davis candidate for the degree of Master of Science *. Committee Chair Ryan Martin Committee Member Brian M. McDermott Jr. Committee Member Hillel Chiel Committee Member Ruben Stepanyan Date of Defense May 23, 2016 *We also certify that written approval has been obtained for any proprietary material contained therein. Table of Contents List of Tables ..................................................................................................................... 2 List of Figures .................................................................................................................... 3 Acknowledgments ............................................................................................................. 4 Abstract .............................................................................................................................. 5 Introduction ....................................................................................................................... 6 Hearing and the Cochlea ........................................................................................................... 6 The Hair Cell .............................................................................................................................. 8 The Mechanotransduction Channel ...................................................................................... 12 Potential Channel Proteins ..................................................................................................... 14 Zebrafish as a Model Organism ............................................................................................. 24 Materials and Methods ................................................................................................... 29 Zebrafish strains and husbandry ........................................................................................... 29 Microphonic potential recording ........................................................................................... 29 Results .............................................................................................................................. 31 Tmc2b is differentially required in lateral line neuromasts ................................................ 31 Microphonic potentials in the lateral line neuromasts of Piezo1 mutants ......................... 37 Discussion ........................................................................................................................ 40 Appendix .......................................................................................................................... 46 Model for Piezo1 Effect on Mechanotransduction ............................................................... 46 Microphonic Potential Example Traces ................................................................................ 47 Creation of Tmc1 CRISPR mutant ........................................................................................ 51 References ........................................................................................................................ 54 1 List of Tables Table 1…………………………………………………………………………...53 2 List of Figures Figure 1….………………………………………………………………………..7 Figure 2………………………………………………………………………….10 Figure 3………………………………………………………………………….11 Figure 4………………………………………………………………………….16 Figure 5………………………………………………………………………….20 Figure 6………………………………………………………………………….22 Figure 7………………………………………………………………………….26 Figure 8………………………………………………………………………….27 Figure 9………………………………………………………………………….32 Figure 10………………………………………………………………………...33 Figure 11………………………………………………………………………...34 Figure 12………………………………………………………………………...35 Figure 13………………………………………………………………………...36 Figure 14………………………………………………………………………...37 Figure 15………………………………………………………………………...39 Figure 16………………………………………………………………………...46 Figure 17………………………………………………………………………...47 Figure 18………………………………………………………………………...47 Figure 19………………………………………………………………………...48 Figure 20………………………………………………………………………...48 Figure 21………………………………………………………………………...49 Figure 22………………………………………………………………………...49 Figure 23………………………………………………………………………...50 Figure 24………………………………………………………………………...52 Figure 25………………………………………………………………………...53 3 Acknowledgments First and foremost, I would like to thank my advisor Dr. Brian M. McDermott Jr. for his mentorship and support, for his enthusiasm, and for letting me work on such an awesome project. I would also like to thank my former lab members and friends Victoria (Shih- Wei Chou), for her guidance and insightful thoughts (even from California), Jiaqi Hu, Nick Sarn, and Lana Pollock for their sheparding me through my early days of learning CRISPR and zebrafish work, and Nilay Gupta, for his artistic talents and moral support; as well as Carol Fernando, our ever-knowledgeable lab manager; and current lab members Sara (Shaoyuan) Zhu and Kevin (Zongwei) Chen for their support and bonhomie. I also must thank Dr. Ruben Stepanyan for sharing with me his expertise in electrophysiology and for his very patient troubleshooting when things went wrong. And finally, my completing this program would not have been possible without the love and encouragement from my husband, Zach Davis, who steady presence and support as I went from a theater administrator to scientist was invaluable. 4 Characterization of Two Hair Cell Proteins in the Zebrafish Lateral Line ROBIN WOODS DAVIS Abstract Mechanotransduction is an important mechanism found in several sensory systems. It is the act of transforming a mechanical stimulus into an electrical response, the language of the nervous system. In the auditory, vestibular, and lateral line system, the sensory receptor of mechanosensation is the hair cell, a cell so named because of the bundle of stereocilia on its apical surface. When the stereocilia are deflected as a result of the movement of the fluid surrounding them, ion channels located at their tips open and cations enter, creating an electrical current. This thesis examines the function of two proteins found in hair cells, using gene-specific knockout zebrafish lines. The experiments performed help to elucidate the complex diversity of proteins involved in the hair cell. 5 Introduction Hearing and the Cochlea At about 20 weeks’ gestation, human hearing begins to develop, giving us one of our first interactions with the outside world (Hepper and Shahidullah 1994). Our hearing develops, and we are able to perceive sound from 20 Hz to 20 kHz. As we grow older, our hearing begins to decline; many of us losing the highest range of pitches beginning at around 20 years old (National Institute of Deafness and Other Communication Disorders). One in three adults over 65 has disabling hearing loss, and one in eight people over 12 have some hearing loss (NIDCD). Hearing loss can be genetic, due to a mutation of one of the many genes that are involved in hearing, but can also be caused by such triggers as loud noise or illness. One of the goals of hearing research is to determine the proteins involved in the auditory system so that therapies to treat or prevent deafness can be developed. The job of the auditory system is to convert sound waves — compressions and rarefactions of air — into the electrical signals understood by the brain. This is done through the process of mechanotransduction. Sound waves enter the outer ear and transfer their energy to vibrations of the eardrum and middle ear bones, which amplify the sound (Figure 1a). The last of these bones, the stapes, contacts the oval window, 6 sending vibrations into the fluid-filled inner ear. It is here, in the cochlea, where mechanotransduction takes place. The cochlea is divided into three fluid filled compartments: the scala tympani, the scala media, and the scala vestibuli (Figure 1b). Inside the scala media which, as the name suggests, lies between the scala tympani and vestibuli, is found the organ of Corti (Figure 1c). The organ of Corti contains around 16,000 hair cells arranged in four rows surrounded by supporting cells, all of which rest on a basilar membrane. B A C Figure 1. (A) The mammalian ear showing the outer ear, or pinna, the middle ear, consisting of the tympanum, malleus, incus, and stapes, and the inner ear, which is the snail-shaped cochlea and circular vestibular labyrinth. (B) A cross-section of the cochlea showing the three compartments, the scala vestibuli, scala media, and scala tympani. (C) The scala media showing the locations of the inner and outer hair cells, as well as the tectorial and basilar membranes. Reprinted from Principles of Neural Science 5th Ed. Kandel et al. (Hudspeth 2013). 7 Hair cells are named after the bundles of hundreds of stereocilia — tall, thin actin- based processes — found on their apical ends. In the ear, there are two groups of hair cells. The outer hair cells, found closer to the outside of the cochlea, lie in three rows, and their hair bundles are embedded in the tectorial membrane, a gelatinous membrane which rests over the top of the organ of Corti. The inner hair cells form one row, and their hair bundles are free-standing. When the basilar
Recommended publications
  • Putative Pore-Forming Subunits of the Mechano-Electrical Transduction Channel
    bioRxiv preprint doi: https://doi.org/10.1101/393330; this version posted August 23, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 1 2 3 4 Putative pore-forming subunits of the mechano-electrical transduction channel, 5 Tmc1/2b, require Tmie to localize to the site of mechanotransduction in zebrafish 6 sensory hair cells 7 8 9 Itallia V. Pacentine and Teresa Nicolson* 10 Oregon Hearing Research Center and Vollum Institute, Oregon Health & Science University, 11 Portland, Oregon, United States of America 12 13 14 *Corresponding author 15 E-mail: [email protected] 1 bioRxiv preprint doi: https://doi.org/10.1101/393330; this version posted August 23, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 16 Abstract 17 Mutations in transmembrane inner ear (TMIE) cause deafness in humans; previous 18 studies suggest involvement in the mechano-electrical transduction (MET) complex in sensory 19 hair cells, but TMIE’s precise role is unclear. In tmie zebrafish mutants, we observed that GFP- 20 tagged Tmc1 and Tmc2b, which are putative subunits of the MET channel, fail to target to the 21 hair bundle. In contrast, overexpression of Tmie strongly enhances the targeting of Tmc2b-GFP 22 to stereocilia.
    [Show full text]
  • The Lhfpl5 Ohnologs Lhfpl5a and Lhfpl5b Are Required for Mechanotransduction in Distinct Populations of Sensory Hair Cells in Zebrafish
    fnmol-12-00320 January 2, 2020 Time: 14:35 # 1 ORIGINAL RESEARCH published: 15 January 2020 doi: 10.3389/fnmol.2019.00320 The lhfpl5 Ohnologs lhfpl5a and lhfpl5b Are Required for Mechanotransduction in Distinct Populations of Sensory Hair Cells in Zebrafish Timothy Erickson1,2*, Itallia V. Pacentine2, Alexandra Venuto1, Rachel Clemens2 and Teresa Nicolson2† 1 Department of Biology, East Carolina University, Greenville, NC, United States, 2 Oregon Hearing Research Center and Vollum Institute, Oregon Health and Science University, Portland, OR, United States Hair cells sense and transmit auditory, vestibular, and hydrodynamic information by converting mechanical stimuli into electrical signals. This process of mechano-electrical transduction (MET) requires a mechanically gated channel localized in the apical Edited by: stereocilia of hair cells. In mice, lipoma HMGIC fusion partner-like 5 (LHFPL5) acts Isabel Varela-Nieto, as an auxiliary subunit of the MET channel whose primary role is to correctly localize Spanish National Research Council (CSIC), Spain PCDH15 and TMC1 to the mechanotransduction complex. Zebrafish have two lhfpl5 Reviewed by: genes (lhfpl5a and lhfpl5b), but their individual contributions to MET channel assembly Hiroshi Hibino, and function have not been analyzed. Here we show that the zebrafish lhfpl5 genes Niigata University, Japan are expressed in discrete populations of hair cells: lhfpl5a expression is restricted to Sangyong Jung, Singapore Bioimaging Consortium auditory and vestibular hair cells in the inner ear, while lhfpl5b expression is specific ∗ (A STAR), Singapore to hair cells of the lateral line organ. Consequently, lhfpl5a mutants exhibit defects in Gwenaelle Geleoc, Harvard Medical School, auditory and vestibular function, while disruption of lhfpl5b affects hair cells only in the United States lateral line neuromasts.
    [Show full text]
  • A Clinicopathological and Molecular Genetic Analysis of Low-Grade Glioma in Adults
    A CLINICOPATHOLOGICAL AND MOLECULAR GENETIC ANALYSIS OF LOW-GRADE GLIOMA IN ADULTS Presented by ANUSHREE SINGH MSc A thesis submitted in partial fulfilment of the requirements of the University of Wolverhampton for the degree of Doctor of Philosophy Brain Tumour Research Centre Research Institute in Healthcare Sciences Faculty of Science and Engineering University of Wolverhampton November 2014 i DECLARATION This work or any part thereof has not previously been presented in any form to the University or to any other body whether for the purposes of assessment, publication or for any other purpose (unless otherwise indicated). Save for any express acknowledgments, references and/or bibliographies cited in the work, I confirm that the intellectual content of the work is the result of my own efforts and of no other person. The right of Anushree Singh to be identified as author of this work is asserted in accordance with ss.77 and 78 of the Copyright, Designs and Patents Act 1988. At this date copyright is owned by the author. Signature: Anushree Date: 30th November 2014 ii ABSTRACT The aim of the study was to identify molecular markers that can determine progression of low grade glioma. This was done using various approaches such as IDH1 and IDH2 mutation analysis, MGMT methylation analysis, copy number analysis using array comparative genomic hybridisation and identification of differentially expressed miRNAs using miRNA microarray analysis. IDH1 mutation was present at a frequency of 71% in low grade glioma and was identified as an independent marker for improved OS in a multivariate analysis, which confirms the previous findings in low grade glioma studies.
    [Show full text]
  • TMC) Gene Family: Functional Clues from Hearing Loss and Epidermodysplasia Verruciformis૾
    Available online at www.sciencedirect.com R Genomics 82 (2003) 300–308 www.elsevier.com/locate/ygeno Characterization of the transmembrane channel-like (TMC) gene family: functional clues from hearing loss and epidermodysplasia verruciformis૾ Kiyoto Kurima,a Yandan Yang,a Katherine Sorber,a and Andrew J. Griffitha,b,* a Section on Gene Structure and Function, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Rockville, MD 20850, USA b Hearing Section, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Rockville, MD 20850, USA Received 10 March 2003; accepted 15 May 2003 Abstract Mutations of TMC1 cause deafness in humans and mice. TMC1 and a related gene, TMC2, are the founding members of a novel gene family. Here we describe six additional TMC paralogs (TMC3 to TMC8) in humans and mice, as well as homologs in other species. cDNAs spanning the full length of the predicted open reading frames of the mammalian genes were cloned and sequenced. All are strongly predicted to encode proteins with 6 to 10 transmembrane domains and a novel conserved 120-amino-acid sequence that we termed the TMC domain. TMC1, TMC2, and TMC3 comprise a distinct subfamily expressed at low levels, whereas TMC4 to TMC8 are expressed at higher levels in multiple tissues. TMC6 and TMC8 are identical to the EVER1 and EVER2 genes implicated in epidermodysplasia verruciformis, a recessive disorder comprising susceptibility to cutaneous human papilloma virus infections and associated nonmelanoma skin cancers, providing additional genetic and tissue systems in which to study the TMC gene family. © 2003 Elsevier Science (USA).
    [Show full text]
  • Supplementary Table 1: Adhesion Genes Data Set
    Supplementary Table 1: Adhesion genes data set PROBE Entrez Gene ID Celera Gene ID Gene_Symbol Gene_Name 160832 1 hCG201364.3 A1BG alpha-1-B glycoprotein 223658 1 hCG201364.3 A1BG alpha-1-B glycoprotein 212988 102 hCG40040.3 ADAM10 ADAM metallopeptidase domain 10 133411 4185 hCG28232.2 ADAM11 ADAM metallopeptidase domain 11 110695 8038 hCG40937.4 ADAM12 ADAM metallopeptidase domain 12 (meltrin alpha) 195222 8038 hCG40937.4 ADAM12 ADAM metallopeptidase domain 12 (meltrin alpha) 165344 8751 hCG20021.3 ADAM15 ADAM metallopeptidase domain 15 (metargidin) 189065 6868 null ADAM17 ADAM metallopeptidase domain 17 (tumor necrosis factor, alpha, converting enzyme) 108119 8728 hCG15398.4 ADAM19 ADAM metallopeptidase domain 19 (meltrin beta) 117763 8748 hCG20675.3 ADAM20 ADAM metallopeptidase domain 20 126448 8747 hCG1785634.2 ADAM21 ADAM metallopeptidase domain 21 208981 8747 hCG1785634.2|hCG2042897 ADAM21 ADAM metallopeptidase domain 21 180903 53616 hCG17212.4 ADAM22 ADAM metallopeptidase domain 22 177272 8745 hCG1811623.1 ADAM23 ADAM metallopeptidase domain 23 102384 10863 hCG1818505.1 ADAM28 ADAM metallopeptidase domain 28 119968 11086 hCG1786734.2 ADAM29 ADAM metallopeptidase domain 29 205542 11085 hCG1997196.1 ADAM30 ADAM metallopeptidase domain 30 148417 80332 hCG39255.4 ADAM33 ADAM metallopeptidase domain 33 140492 8756 hCG1789002.2 ADAM7 ADAM metallopeptidase domain 7 122603 101 hCG1816947.1 ADAM8 ADAM metallopeptidase domain 8 183965 8754 hCG1996391 ADAM9 ADAM metallopeptidase domain 9 (meltrin gamma) 129974 27299 hCG15447.3 ADAMDEC1 ADAM-like,
    [Show full text]
  • USHIC, CDH23 and TMIE
    Non-Syndromic Hearing Impairment in India: High Allelic Heterogeneity among Mutations in TMPRSS3, TMC1, USHIC, CDH23 and TMIE Aparna Ganapathy1, Nishtha Pandey1, C. R. Srikumari Srisailapathy2, Rajeev Jalvi3, Vikas Malhotra4, Mohan Venkatappa1, Arunima Chatterjee1, Meenakshi Sharma1, Rekha Santhanam1, Shelly Chadha4, Arabandi Ramesh2, Arun K. Agarwal4, Raghunath R. Rangasayee3, Anuranjan Anand1* 1 Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India, 2 Department of Genetics, Dr. ALM Post Graduate Institute of Basic Medical Sciences, Chennai, India, 3 Department of Audiology, Ali Yavar Jung National Institute for the Hearing Handicapped, Mumbai, India, 4 Department of ENT, Maulana Azad Medical College, New Delhi, India Abstract Mutations in the autosomal genes TMPRSS3, TMC1, USHIC, CDH23 and TMIE are known to cause hereditary hearing loss. To study the contribution of these genes to autosomal recessive, non-syndromic hearing loss (ARNSHL) in India, we examined 374 families with the disorder to identify potential mutations. We found four mutations in TMPRSS3, eight in TMC1, ten in USHIC, eight in CDH23 and three in TMIE. Of the 33 potentially pathogenic variants identified in these genes, 23 were new and the remaining have been previously reported. Collectively, mutations in these five genes contribute to about one-tenth of ARNSHL among the families examined. New mutations detected in this study extend the allelic heterogeneity of the genes and provide several additional variants for structure-function correlation studies. These findings have implications for early DNA-based detection of deafness and genetic counseling of affected families in the Indian subcontinent. Citation: Ganapathy A, Pandey N, Srisailapathy CRS, Jalvi R, Malhotra V, et al.
    [Show full text]
  • TMHS Is an Integral Component of the Mechanotransduction Machinery of Cochlear Hair Cells
    TMHS Is an Integral Component of the Mechanotransduction Machinery of Cochlear Hair Cells Wei Xiong,1 Nicolas Grillet,1 Heather M. Elledge,1 Thomas F.J. Wagner,1 Bo Zhao,1 Kenneth R. Johnson,2 Piotr Kazmierczak,1 and Ulrich Mu¨ller1,* 1The Dorris Neuroscience Center, Department of Cell Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA 2The Jackson Laboratory, Bar Harbor, ME 04609, USA *Correspondence: [email protected] http://dx.doi.org/10.1016/j.cell.2012.10.041 SUMMARY deflection of the stereociliary bundles, which directly control the activity of the mechanotransduction channels in stereocilia. Hair cells are mechanosensors for the perception of It is thought that tip links, fine extracellular filaments that connect sound, acceleration, and fluid motion. Mechano- the tips of neighboring stereocilia, transmit tension force onto transduction channels in hair cells are gated by tip the transduction channels (Gillespie and Mu¨ ller, 2009). links, which connect the stereocilia of a hair cell in In recent years, significant progress has been made in the direction of their mechanical sensitivity. The the identification of components of the mechanotransduction molecular constituents of the mechanotransduction machinery of hair cells (Figure 1A). These studies have shown that tip links are formed by CDH23 homodimers that interact channels of hair cells are not known. Here, we show with PCDH15 homodimers to form the upper and lower parts that mechanotransduction is impaired in mice lack- of tip links (Ahmed et al., 2006; Kazmierczak et al., 2007; ing the tetraspan TMHS. TMHS binds to the tip-link Siemens et al., 2004; So¨ llner et al., 2004).
    [Show full text]
  • Improved TMC1 Gene Therapy Restores Hearing and Balance in Mice with Genetic Inner Ear Disorders
    Corrected: Publisher correction ARTICLE https://doi.org/10.1038/s41467-018-08264-w OPEN Improved TMC1 gene therapy restores hearing and balance in mice with genetic inner ear disorders Carl A. Nist-Lund1, Bifeng Pan 1,2, Amy Patterson1, Yukako Asai1,2, Tianwen Chen3, Wu Zhou3, Hong Zhu3, Sandra Romero4, Jennifer Resnik2,4, Daniel B. Polley2,4, Gwenaelle S. Géléoc1,2 & Jeffrey R. Holt1,2,5 Fifty percent of inner ear disorders are caused by genetic mutations. To develop treatments for genetic inner ear disorders, we designed gene replacement therapies using synthetic 1234567890():,; adeno-associated viral vectors to deliver the coding sequence for Transmembrane Channel- Like (Tmc) 1 or 2 into sensory hair cells of mice with hearing and balance deficits due to mutations in Tmc1 and closely related Tmc2. Here we report restoration of function in inner and outer hair cells, enhanced hair cell survival, restoration of cochlear and vestibular function, restoration of neural responses in auditory cortex and recovery of behavioral responses to auditory and vestibular stimulation. Secondarily, we find that inner ear Tmc gene therapy restores breeding efficiency, litter survival and normal growth rates in mouse models of genetic inner ear dysfunction. Although challenges remain, the data suggest that Tmc gene therapy may be well suited for further development and perhaps translation to clinical application. 1 Department of Otolaryngology and F.M. Kirby Neurobiology Center, Boston Children’s Hospital, 300 Longwood Avenue, Boston, MA 02115, USA. 2 Department of Otolaryngology, Harvard Medical School, Boston, MA 02139, USA. 3 Department of Otolaryngology and Communicative Sciences, University of Mississippi Medical Center, Jackson, MS 39216, USA.
    [Show full text]
  • 1 Structural Studies of a Protocadherin-15 Fragment Essential for Hearing
    Structural Studies of a Protocadherin-15 Fragment Essential for Hearing A thesis presented By Conghui Chen To The Committee on Degrees in Chemistry ad Biochemistry In partial fulfillment of the requirements For a degree of Bachelor of Science with Research Distinction In the field of Biochemistry Research Advisor: Dr. Marcos Sotomayor, Assistant Professor of Department of Chemistry and Biochemistry Defense Committee: Dr. John Shimko, Chemistry Lecturer of Department of Chemistry and Biochemistry The Ohio State University Columbus, Ohio April 13th, 2016 1 Statement of Research I conducted the research presented in this thesis under the professional guidance of Dr. Marcos Sotomayor of The Ohio State University Main Campus Chemistry and Biochemistry Department. I joined the Sotomayor lab in August of 2013, during my second year at the university. I was trained in the process of protein purification and cell culture by visiting graduate student Deryanur Kilic in conjunction with Dr. Sotomayor. Dr. Sotomayor offered knowledgeable tutelage in designing and performing the experiments, analyzing data, and the writing of this thesis. All molecular modeling and analysis was performed with the guidance and assistance from Dr. Marcos Sotomayor and Dr. Raul Araya-Secchi. My research was generously funded by The Ohio State University Chemistry and Biochemistry Undergraduate Research Scholarship from autumn 2013 until spring 2015. I performed research as part of the Biochemistry 4998 and 4999 courses as a requirement for the completion of the thesis. 2 Abstract Sound travels through the external and middle ear to the fluid-filled cochlea where mechanosensitive hair cells transform it into electrochemical signals. On the apical side of each hair cell, a set of hair-like protrusions, called stereocilia form a bundle with filamentous connections (tip links) that are essential for hearing.
    [Show full text]
  • Tip-Link Protein Protocadherin 15 Interacts with Transmembrane Channel-Like Proteins TMC1 and TMC2
    Tip-link protein protocadherin 15 interacts with transmembrane channel-like proteins TMC1 and TMC2 Reo Maedaa,b,1, Katie S. Kindta,b,1,2, Weike Moa,b,1, Clive P. Morgana,b, Timothy Ericksona,b, Hongyu Zhaoa,b, Rachel Clemens-Grishama,b, Peter G. Barr-Gillespiea,b, and Teresa Nicolsona,b,3 aOregon Hearing Research Center and bVollum Institute, Oregon Health and Science University, Portland, OR 97239 Edited by A. J. Hudspeth, Howard Hughes Medical Institute, The Rockefeller University, New York, NY, and approved July 23, 2014 (received for review February 3, 2014) The tip link protein protocadherin 15 (PCDH15) is a central compo- vestibular deficits, along with the complete absence of normal nent of the mechanotransduction complex in auditory and vestib- mechanotransduction currents in auditory and vestibular hair cells ular hair cells. PCDH15 is hypothesized to relay external forces to the (17). Changes in calcium permeability through the transduction mechanically gated channel located near its cytoplasmic C terminus. channel of cochlear hair cells were observed for Tmc1 Tmc2 How PCDH15 is coupled to the transduction machinery is not clear. double-mutant mice, as well as in single mutants of either gene Using a membrane-based two-hybrid screen to identify proteins (10, 18, 19). In further support of the idea that TMCs are pore- that bind to PCDH15, we detected an interaction between zebrafish forming subunits of the transduction channel, mouse vestibular Pcdh15a and an N-terminal fragment of transmembrane channel- hair cells that express only the dominant Beethoven (M412K) al- like 2a (Tmc2a). Tmc2a is an ortholog of mammalian TMC2, which lele of Tmc1, in the absence of any wild-type TMC1 or TMC2, along with TMC1 has been implicated in mechanotransduction in display altered single-channel transduction currents (10).
    [Show full text]
  • Engineering New Balancer Chromosomes in C. Elegans Via
    www.nature.com/scientificreports OPEN Engineering new balancer chromosomes in C. elegans via CRISPR/Cas9 Received: 19 May 2016 Satoru Iwata1, Sawako Yoshina1, Yuji Suehiro1, Sayaka Hori1 & Shohei Mitani1,2 Accepted: 02 September 2016 Balancer chromosomes are convenient tools used to maintain lethal mutations in heterozygotes. We Published: 21 September 2016 established a method for engineering new balancers in C. elegans by using the CRISPR/Cas9 system in a non-homologous end-joining mutant. Our studies will make it easier for researchers to maintain lethal mutations and should provide a path for the development of a system that generates rearrangements at specific sites of interest to model and analyse the mechanisms of action of genes. Genetic balancers (including inversions, translocations and crossover-suppressors) are essential tools to maintain lethal or sterile mutations in heterozygotes. Recombination is suppressed within these chromosomal rearrange- ments. However, despite efforts to isolate genetic balancers since 19781–5, approximately 15% (map units) of the C. elegans genome has not been covered6 (Supplementary Fig. 1). Because the chromosomal rearrangements gen- erated by gamma-ray and X-ray mutagenesis are random, it is difficult to modify specific chromosomal regions. Here, we used the CRISPR/Cas9 genome editing system to solve this problem. The CRISPR/Cas9 system has enabled genomic engineering of specific DNA sequences and has been successfully applied to the generation of gene knock-outs and knock-ins in humans, rats, mice, zebrafish, flies and nematodes7. Recently, the CRISPR/ Cas9 system has been shown to induce inversions and translocations in human cell lines and mouse somatic cells8–10.
    [Show full text]
  • Improved TMC1 Gene Therapy Restores Hearing and Balance in Mice with Genetic Inner Ear Disorders
    ARTICLE https://doi.org/10.1038/s41467-018-08264-w OPEN Improved TMC1 gene therapy restores hearing and balance in mice with genetic inner ear disorders Carl A. Nist-Lund1, Bifeng Pan 1,2, Amy Patterson1, Yukako Asai1,2, Tianwen Chen3, Wu Zhou3, Hong Zhu3, Sandra Romero4, Jennifer Resnik2,4, Daniel B. Polley2,4, Gwenaelle S. Géléoc1,2 & Jeffrey R. Holt1,2,5 Fifty percent of inner ear disorders are caused by genetic mutations. To develop treatments for genetic inner ear disorders, we designed gene replacement therapies using synthetic 1234567890():,; adeno-associated viral vectors to deliver the coding sequence for Transmembrane Channel- Like (Tmc) 1 or 2 into sensory hair cells of mice with hearing and balance deficits due to mutations in Tmc1 and closely related Tmc2. Here we report restoration of function in inner and outer hair cells, enhanced hair cell survival, restoration of cochlear and vestibular function, restoration of neural responses in auditory cortex and recovery of behavioral responses to auditory and vestibular stimulation. Secondarily, we find that inner ear Tmc gene therapy restores breeding efficiency, litter survival and normal growth rates in mouse models of genetic inner ear dysfunction. Although challenges remain, the data suggest that Tmc gene therapy may be well suited for further development and perhaps translation to clinical application. 1 Department of Otolaryngology and F.M. Kirby Neurobiology Center, Boston Children’s Hospital, 300 Longwood Avenue, Boston, MA 02115, USA. 2 Department of Otolaryngology, Harvard Medical School, Boston, MA 02139, USA. 3 Department of Otolaryngology and Communicative Sciences, University of Mississippi Medical Center, Jackson, MS 39216, USA.
    [Show full text]