Princeton Physics and Astrophysics 2021
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Parallel Sessions
Identification of Dark Matter July 23-27, 2012 9th International Conference Chicago, IL http://kicp-workshops.uchicago.edu/IDM2012/ PARALLEL SESSIONS http://kicp.uchicago.edu/ http://www.nsf.gov/ http://www.uchicago.edu/ http://www.fnal.gov/ International Advisory Committee Daniel Akerib Elena Aprile Rita Bernabei Case Western Reserve University, Columbia University, USA Universita degli Studi di Roma, Italy Cleveland, USA Gianfranco Bertone Joakim Edsjo Katherine Freese University of Amsterdam Oskar Klein Centre / Stockholm University of Michigan, USA University Richard Gaitskell Gilles Gerbier Anne Green Brown University, USA IRFU/ CEA Saclay, France University of Nottingham, UK Karsten Jedamzik Xiangdong Ji Lawrence Krauss Universite de Montpellier, France University of Maryland, USA Arizona State University, USA Vitaly Kudryavtsev Reina Maruyama Leszek Roszkowski University of Sheffield University of Wisconsin-Madison University of Sheffield, UK Bernard Sadoulet Pierre Salati Daniel Santos University of California, Berkeley, USA University of California, Berkeley, USA LPSC/UJF/CNRS Pierre Sikivie Daniel Snowden-Ifft Neil Spooner University of Florida, USA Occidental College University of Sheffield, UK Max Tegmark Karl van Bibber Kavli Institute for Astrophysics & Space Naval Postgraduate School Monterey, Research at MIT, USA USA Local Organizing Committee Daniel Bauer Matthew Buckley Juan Collar Fermi National Accelerator Laboratory Fermi National Accelerator Laboratory Kavli Institute for Cosmological Physics Scott Dodelson Aimee -
THE COSMIC COCKTAIL Three Parts Dark Matter
release For immediate release Contact: Andrew DeSio Publication Date: June 11, 2014 (609) 258-5165 [email protected] Weaving a tale of scientific discovery, adventures in cosmology, and the hunt for dark matter, Dr. Katherine Freese explores just what exactly the universe is made out of in THE COSMIC COCKTAIL Three Parts Dark Matter “Freese tells her trailblazing and very personal story of how the worlds of particle physics and astronomy have come together to unveil the mysterious ingredients of the cosmic cocktail that we call our universe.” Brian Schmidt, 2011 Nobel Laureate in Physics, Australian National University What is dark matter? Where is it? Where did it come from? How do scientists study the stuff when they can’t see it? According to current research, our universe consists of only 5% ordinary matter (planets, comets, galaxies) while the rest is made of dark matter (26%) and dark energy (69%). Scientists and researchers are hard at work trying to detect these mysterious phenomena. And there are none further ahead in the pursuit than Dr. Katherine Freese, one of today’s foremost pioneers in the study of dark matter. In her splendidly written new book THE COSMIC COCKTAIL: Three Parts Dark Matter (Publication Date: June 11, 2014; $29.95), Dr. Freese tells the inside story of the epic quest to solve one of the most compelling enigmas of modern science—what is the universe made of? Blending cutting-edge science with her own behind-the-scenes insights as a leading researcher in the field, acclaimed theoretical physicist Katherine Freese recounts the hunt for dark matter, from the predictions and discoveries of visionary scientists like Fritz Zwicky— the Swiss astronomer who coined the term "dark matter" in 1933—to the deluge of data today from underground laboratories, satellites in space, and the Large Hadron Collider. -
Hendrik Antoon Lorentz's Struggle with Quantum Theory A. J
Hendrik Antoon Lorentz’s struggle with quantum theory A. J. Kox Archive for History of Exact Sciences ISSN 0003-9519 Volume 67 Number 2 Arch. Hist. Exact Sci. (2013) 67:149-170 DOI 10.1007/s00407-012-0107-8 1 23 Your article is published under the Creative Commons Attribution license which allows users to read, copy, distribute and make derivative works, as long as the author of the original work is cited. You may self- archive this article on your own website, an institutional repository or funder’s repository and make it publicly available immediately. 1 23 Arch. Hist. Exact Sci. (2013) 67:149–170 DOI 10.1007/s00407-012-0107-8 Hendrik Antoon Lorentz’s struggle with quantum theory A. J. Kox Received: 15 June 2012 / Published online: 24 July 2012 © The Author(s) 2012. This article is published with open access at Springerlink.com Abstract A historical overview is given of the contributions of Hendrik Antoon Lorentz in quantum theory. Although especially his early work is valuable, the main importance of Lorentz’s work lies in the conceptual clarifications he provided and in his critique of the foundations of quantum theory. 1 Introduction The Dutch physicist Hendrik Antoon Lorentz (1853–1928) is generally viewed as an icon of classical, nineteenth-century physics—indeed, as one of the last masters of that era. Thus, it may come as a bit of a surprise that he also made important contribu- tions to quantum theory, the quintessential non-classical twentieth-century develop- ment in physics. The importance of Lorentz’s work lies not so much in his concrete contributions to the actual physics—although some of his early work was ground- breaking—but rather in the conceptual clarifications he provided and his critique of the foundations and interpretations of the new ideas. -
Einstein's Mistakes
Einstein’s Mistakes Einstein was the greatest genius of the Twentieth Century, but his discoveries were blighted with mistakes. The Human Failing of Genius. 1 PART 1 An evaluation of the man Here, Einstein grows up, his thinking evolves, and many quotations from him are listed. Albert Einstein (1879-1955) Einstein at 14 Einstein at 26 Einstein at 42 3 Albert Einstein (1879-1955) Einstein at age 61 (1940) 4 Albert Einstein (1879-1955) Born in Ulm, Swabian region of Southern Germany. From a Jewish merchant family. Had a sister Maja. Family rejected Jewish customs. Did not inherit any mathematical talent. Inherited stubbornness, Inherited a roguish sense of humor, An inclination to mysticism, And a habit of grüblen or protracted, agonizing “brooding” over whatever was on its mind. Leading to the thought experiment. 5 Portrait in 1947 – age 68, and his habit of agonizing brooding over whatever was on its mind. He was in Princeton, NJ, USA. 6 Einstein the mystic •“Everyone who is seriously involved in pursuit of science becomes convinced that a spirit is manifest in the laws of the universe, one that is vastly superior to that of man..” •“When I assess a theory, I ask myself, if I was God, would I have arranged the universe that way?” •His roguish sense of humor was always there. •When asked what will be his reactions to observational evidence against the bending of light predicted by his general theory of relativity, he said: •”Then I would feel sorry for the Good Lord. The theory is correct anyway.” 7 Einstein: Mathematics •More quotations from Einstein: •“How it is possible that mathematics, a product of human thought that is independent of experience, fits so excellently the objects of physical reality?” •Questions asked by many people and Einstein: •“Is God a mathematician?” •His conclusion: •“ The Lord is cunning, but not malicious.” 8 Einstein the Stubborn Mystic “What interests me is whether God had any choice in the creation of the world” Some broadcasters expunged the comment from the soundtrack because they thought it was blasphemous. -
The Second-Order Correction to the Energy and Momentum in Plane Symmetric Gravitational Waves Like Spacetimes
S S symmetry Article The Second-Order Correction to the Energy and Momentum in Plane Symmetric Gravitational Waves Like Spacetimes Mutahir Ali *, Farhad Ali , Abdus Saboor, M. Saad Ghafar and Amir Sultan Khan Department of Mathematics, Kohat University of Science and Technology, Kohat 26000, Pakistan; [email protected] (F.A.); [email protected] (A.S.); [email protected] (M.S.G.); [email protected] (A.S.K.) * Correspondence: [email protected] Received: 5 December 2018; Accepted: 22 January 2019; Published: 13 February 2019 Abstract: This research provides second-order approximate Noether symmetries of geodetic Lagrangian of time-conformal plane symmetric spacetime. A time-conformal factor is of the form ee f (t) which perturbs the plane symmetric static spacetime, where e is small a positive parameter that produces perturbation in the spacetime. By considering the perturbation up to second-order in e in plane symmetric spacetime, we find the second order approximate Noether symmetries for the corresponding Lagrangian. Using Noether theorem, the corresponding second order approximate conservation laws are investigated for plane symmetric gravitational waves like spacetimes. This technique tells about the energy content of the gravitational waves. Keywords: Einstein field equations; time conformal spacetime; approximate conservation of energy 1. Introduction Gravitational waves are ripples in the fabric of space-time produced by some of the most violent and energetic processes like colliding black holes or closely orbiting black holes and neutron stars (binary pulsars). These waves travel with the speed of light and depend on their sources [1–5]. The study of these waves provide us useful information about their sources (black holes and neutron stars). -
Synergy of Astroparticle Physics and Colliders
Snowmass2021 - Letter of Interest Synergy of astro-particle physics and collider physics Thematic Areas: (check all that apply /) (CF1) Dark Matter: Particle Like (CF2) Dark Matter: Wavelike (CF3) Dark Matter: Cosmic Probes (CF4) Dark Energy and Cosmic Acceleration: The Modern Universe (CF5) Dark Energy and Cosmic Acceleration: Cosmic Dawn and Before (CF6) Dark Energy and Cosmic Acceleration: Complementarity of Probes and New Facilities (CF7) Cosmic Probes of Fundamental Physics (Other) EF06, EF07, NF05, NF06,AF4 Contact Information: Luis A. Anchordoqui (City University of New York) [[email protected]] Authors: Rana Adhikari, Markus Ahlers, Michael Albrow, Roberto Aloisio, Luis A. Anchordoqui, Ignatios Anto- niadis, Vernon Barger, Jose Bellido Caceres, David Berge, Douglas R. Bergman, Mario E. Bertaina, Lorenzo Bonechi, Mauricio Bustamante, Karen S. Caballero-Mora, Antonella Castellina, Lorenzo Cazon, Ruben Conceic¸ao,˜ Giovanni Consolati, Olivier Deligny, Hans P. Dembinski, James B. Dent, Peter B. Denton, Car- ola Dobrigkeit, Caterina Doglioni, Ralph Engel, David d’Enterria, Ke Fang, Glennys R. Farrar, Jonathan L. Feng, Thomas K. Gaisser, Carlos Garc´ıa Canal, Claire Guepin, Francis Halzen, Tao Han, Andreas Haungs, Dan Hooper, Felix Kling, John Krizmanic, Greg Landsberg, Jean-Philippe Lansberg, John G. Learned, Paolo Lipari, Danny Marfatia, Jim Matthews, Thomas McCauley, Hiroaki Menjo, John W. Mitchell, Marco Stein Muzio, Jane M. Nachtman, Angela V. Olinto, Yasar Onel, Sandip Pakvasa, Sergio Palomares-Ruiz, Dan Parson, Thomas C. Paul, Tanguy Pierog, Mario Pimenta, Mary Hall Reno, Markus Roth, Grigory Rubtsov, Takashi Sako, Fred Sarazin, Bangalore Sathyaprakash, Sergio J. Sciutto, Dennis Soldin, Jorge F. Soriano, Todor Stanev, Xerxes Tata, Serap Tilav, Kirsten Tollefson, Diego F. -
Arxiv:1912.08821V2 [Hep-Ph] 27 Jul 2020
MIT-CTP/5157 FERMILAB-PUB-19-628-A A Systematic Study of Hidden Sector Dark Matter: Application to the Gamma-Ray and Antiproton Excesses Dan Hooper,1, 2, 3, ∗ Rebecca K. Leane,4, y Yu-Dai Tsai,1, z Shalma Wegsman,5, x and Samuel J. Witte6, { 1Fermilab, Fermi National Accelerator Laboratory, Batavia, IL 60510, USA 2University of Chicago, Kavli Institute for Cosmological Physics, Chicago, IL 60637, USA 3University of Chicago, Department of Astronomy and Astrophysics, Chicago, IL 60637, USA 4Center for Theoretical Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA 5University of Chicago, Department of Physics, Chicago, IL 60637, USA 6Instituto de Fisica Corpuscular (IFIC), CSIC-Universitat de Valencia, Spain (Dated: July 29, 2020) Abstract In hidden sector models, dark matter does not directly couple to the particle content of the Standard Model, strongly suppressing rates at direct detection experiments, while still allowing for large signals from annihilation. In this paper, we conduct an extensive study of hidden sector dark matter, covering a wide range of dark matter spins, mediator spins, interaction diagrams, and annihilation final states, in each case determining whether the annihilations are s-wave (thus enabling efficient annihilation in the universe today). We then go on to consider a variety of portal interactions that allow the hidden sector annihilation products to decay into the Standard Model. We broadly classify constraints from relic density requirements and dwarf spheroidal galaxy observations. In the scenario that the hidden sector was in equilibrium with the Standard Model in the early universe, we place a lower bound on the portal coupling, as well as on the dark matter’s elastic scattering cross section with nuclei. -
Looking at Earth: an Astronaut's Journey Induction Ceremony 2017
american academy of arts & sciences winter 2018 www.amacad.org Bulletin vol. lxxi, no. 2 Induction Ceremony 2017 Class Speakers: Jane Mayer, Ursula Burns, James P. Allison, Heather K. Gerken, and Gerald Chan Annual David M. Rubenstein Lecture Looking at Earth: An Astronaut’s Journey David M. Rubenstein and Kathryn D. Sullivan ALSO: How Are Humans Different from Other Great Apes?–Ajit Varki, Pascal Gagneux, and Fred H. Gage Advancing Higher Education in America–Monica Lozano, Robert J. Birgeneau, Bob Jacobsen, and Michael S. McPherson Redistricting and Representation–Patti B. Saris, Gary King, Jamal Greene, and Moon Duchin noteworthy Select Prizes and Andrea Bertozzi (University of James R. Downing (St. Jude Chil- Barbara Grosz (Harvard Univer- California, Los Angeles) was se- dren’s Research Hospital) was sity) is the recipient of the Life- Awards to Members lected as a 2017 Simons Investi- awarded the 2017 E. Donnall time Achievement Award of the gator by the Simons Foundation. Thomas Lecture and Prize by the Association for Computational American Society of Hematology. Linguistics. Nobel Prize in Chemistry, Clara D. Bloomfield (Ohio State 2017 University) is the recipient of the Carol Dweck (Stanford Univer- Christopher Hacon (University 2017 Robert A. Kyle Award for sity) was awarded the inaugural of Utah) was awarded the Break- Joachim Frank (Columbia Univer- Outstanding Clinician-Scientist, Yidan Prize. through Prize in Mathematics. sity) presented by the Mayo Clinic Di- vision of Hematology. Felton Earls (Harvard Univer- Naomi Halas (Rice University) sity) is the recipient of the 2018 was awarded the 2018 Julius Ed- Nobel Prize in Economic Emmanuel J. -
Ripples in Spacetime
editorial Ripples in spacetime The 2017 Nobel prize in Physics has been awarded to Rainer Weiss, Barry C. Barish and Kip S. Thorne “for decisive contributions to the LIGO detector and the observation of gravitational waves”. It is, frankly, difficult to find something original to say about the detection of gravitational waves that hasn’t been said already. The technological feat of measuring fluctuations in the fabric of spacetime less than one-thousandth the width of an atomic nucleus is quite simply astonishing. The scientific achievement represented by the confirmation of a century-old prediction by Albert Einstein is unique. And the collaborative effort that made the discovery possible — the Laser Interferometer Gravitational-Wave Observatory (LIGO) — is inspiring. Adapted from Phys. Rev. Lett. 116, 061102 (2016), under Creative Commons Licence. Rainer Weiss and Kip Thorne were, along with the late Ronald Drever, founders of the project that eventually became known Barry Barish, who was the director Last month we received a spectacular as LIGO. In the 1960s, Thorne, a black hole of LIGO from 1997 to 2005, is widely demonstration that talk of a new era expert, had come to believe that his objects of credited with transforming it into a ‘big of gravitational astronomy was no interest should be detectable as gravitational physics’ collaboration, and providing the exaggeration. Cued by detections at LIGO waves. Separately, and inspired by previous organizational structure required to ensure and Virgo, an interferometer based in Pisa, proposals, Weiss came up with the first it worked. Of course, the passion, skill and Italy, more than 70 teams of researchers calculations detailing how an interferometer dedication of the thousand or so scientists working at different telescopes around could be used to detect them in 1972. -
Arxiv:1509.06955V1 [Physics.Optics]
Statistical mechanics models for multimode lasers and random lasers F. Antenucci 1,2, A. Crisanti2,3, M. Ib´a˜nez Berganza2,4, A. Marruzzo1,2, L. Leuzzi1,2∗ 1 NANOTEC-CNR, Institute of Nanotechnology, Soft and Living Matter Lab, Rome, Piazzale A. Moro 2, I-00185, Roma, Italy 2 Dipartimento di Fisica, Universit`adi Roma “Sapienza,” Piazzale A. Moro 2, I-00185, Roma, Italy 3 ISC-CNR, UOS Sapienza, Piazzale A. Moro 2, I-00185, Roma, Italy 4 INFN, Gruppo Collegato di Parma, via G.P. Usberti, 7/A - 43124, Parma, Italy We review recent statistical mechanical approaches to multimode laser theory. The theory has proved very effective to describe standard lasers. We refer of the mean field theory for passive mode locking and developments based on Monte Carlo simulations and cavity method to study the role of the frequency matching condition. The status for a complete theory of multimode lasing in open and disordered cavities is discussed and the derivation of the general statistical models in this framework is presented. When light is propagating in a disordered medium, the system can be analyzed via the replica method. For high degrees of disorder and nonlinearity, a glassy behavior is expected at the lasing threshold, providing a suggestive link between glasses and photonics. We describe in details the results for the general Hamiltonian model in mean field approximation and mention an available test for replica symmetry breaking from intensity spectra measurements. Finally, we summary some perspectives still opened for such approaches. The idea that the lasing threshold can be understood as a proper thermodynamic transition goes back since the early development of laser theory and non-linear optics in the 1970s, in particular in connection with modulation instability (see, e.g.,1 and the review2). -
Conclusion: the Impact of Statistical Physics
Conclusion: The Impact of Statistical Physics Applications of Statistical Physics The different examples which we have treated in the present book have shown the role played by statistical mechanics in other branches of physics: as a theory of matter in its various forms it serves as a bridge between macroscopic physics, which is more descriptive and experimental, and microscopic physics, which aims at finding the principles on which our understanding of Nature is based. This bridge can be crossed fruitfully in both directions, to explain or predict macroscopic properties from our knowledge of microphysics, and inversely to consolidate the microscopic principles by exploring their more or less distant macroscopic consequences which may be checked experimentally. The use of statistical methods for deductive purposes becomes unavoidable as soon as the systems or the effects studied are no longer elementary. Statistical physics is a tool of common use in the other natural sciences. Astrophysics resorts to it for describing the various forms of matter existing in the Universe where densities are either too high or too low, and tempera tures too high, to enable us to carry out the appropriate laboratory studies. Chemical kinetics as well as chemical equilibria depend in an essential way on it. We have also seen that this makes it possible to calculate the mechan ical properties of fluids or of solids; these properties are postulated in the mechanics of continuous media. Even biophysics has recourse to it when it treats general properties or poorly organized systems. If we turn to the domain of practical applications it is clear that the technology of materials, a science aiming to develop substances which have definite mechanical (metallurgy, plastics, lubricants), chemical (corrosion), thermal (conduction or insulation), electrical (resistance, superconductivity), or optical (display by liquid crystals) properties, has a great interest in statis tical physics. -
President's Column
AAAS Publication for the members N of the Americanewsletter Astronomical Society September/October 2010, Issue 154 CONTENTS President's Column Debra Meloy Elmegreen, [email protected] 2 Congratulations to all of us in the astronomical community on the completion of the Decadal From the Survey! Two years after the National Research Council organized the Astro2010 Committee to begin its arduous process, the report “New Worlds, New Horizons in Astronomy and Astrophysics” Executive Office is complete. In fact, as I write this article the public roll-out is underway at the Keck Center of the National Academies in Washington, DC. This was truly a community effort, and we should all be proud of it and feel ownership of it. The federal funding agencies and Congress widely view the 3 astronomy decadal process as a model for other disciplines to emulate, and it is extremely important for us to embrace it. Editor, The Astrophysical We are embarking on a period of unprecedented opportunities for astronomical research, thanks to great advances in technology, theory, and observations, and the report presents an exciting Journal Letters and balanced set of science-driven priorities within the framework of realistic budget scenarios. The Astro2010 committee comprised 23 astronomers, selected by the National Academies based on community solicitation of suggested names, who were assisted by panels on different science 4 disciplines, space- and ground-based activities, and study groups on the astronomical infrastructure; these subcommittees had a membership of nearly 200 astronomers from the US astronomical Journals Update community. The Survey report and the panel reports are the culmination of a careful and deliberate consideration of science goals, projects and missions and on the whole astronomical enterprise, based in part on the distillation of over 450 community-submitted white papers, over 100 proposals for 6 research activities, briefings from federal agencies, and 17 Town Halls, along with other federal and international reports.