Cloudcompare User Manual

Total Page:16

File Type:pdf, Size:1020Kb

Cloudcompare User Manual CloudCompare Version 2.6.1 User manual Index table Introduction ........................................................................................................................................................................ 7 History ............................................................................................................................................................................. 7 Philosophy ....................................................................................................................................................................... 7 Point cloud Vs Mesh ................................................................................................................................................... 7 Scalar fields ................................................................................................................................................................. 8 Some technical considerations ....................................................................................................................................... 8 Portable ....................................................................................................................................................................... 8 Trade-off between storage and speed ........................................................................................................................ 8 Recent evolution ............................................................................................................................................................. 9 License ............................................................................................................................................................................ 9 Online version ................................................................................................................................................................. 9 General concepts .............................................................................................................................................................. 10 Graphical User Interface ............................................................................................................................................... 10 Entities .......................................................................................................................................................................... 11 Main entities ............................................................................................................................................................. 11 Point cloud associated structures ............................................................................................................................. 12 Other entities ............................................................................................................................................................ 13 DB tree .......................................................................................................................................................................... 15 Drag and drop ........................................................................................................................................................... 15 Selection.................................................................................................................................................................... 15 Context menu ........................................................................................................................................................... 15 Entity properties ........................................................................................................................................................... 16 Scalar field display parameters editor ...................................................................................................................... 17 Supported file formats .................................................................................................................................................. 18 Display modes ............................................................................................................................................................... 20 Main display modes .................................................................................................................................................. 20 Global Shift and Scale ................................................................................................................................................... 23 Introduction .............................................................................................................................................................. 23 But why? ................................................................................................................................................................... 23 Mathematics ............................................................................................................................................................. 23 Properties .................................................................................................................................................................. 24 Edition ....................................................................................................................................................................... 24 Bookmarks ................................................................................................................................................................ 24 Tutorials and guidelines .................................................................................................................................................... 25 Alignment and Registration .......................................................................................................................................... 25 General considerations ............................................................................................................................................. 25 Alignment .................................................................................................................................................................. 26 Automatic registration .............................................................................................................................................. 27 Distances Computation ................................................................................................................................................. 29 Cloud-cloud distances ............................................................................................................................................... 29 Cloud-mesh distances ............................................................................................................................................... 31 How to compare two 3D entities .................................................................................................................................. 32 Load data .................................................................................................................................................................. 32 Data preparation ....................................................................................................................................................... 32 Data comparison ....................................................................................................................................................... 34 Tools and algorithms ......................................................................................................................................................... 36 File menu ...................................................................................................................................................................... 36 Open.......................................................................................................................................................................... 36 Save ........................................................................................................................................................................... 37 Primitive Factory ....................................................................................................................................................... 38 3D mouse > Enable ................................................................................................................................................... 39 Close all ..................................................................................................................................................................... 39 Quit ........................................................................................................................................................................... 39 Edit menu ...................................................................................................................................................................... 40 Clone ........................................................................................................................................................................
Recommended publications
  • Recent Developments in Microfluidic Large Scale Integration
    UC Riverside UC Riverside Previously Published Works Title Recent developments in microfluidic large scale integration. Permalink https://escholarship.org/uc/item/3jh0x2hh Journal Current opinion in biotechnology, 25 ISSN 0958-1669 Authors Araci, Ismail Emre Brisk, Philip Publication Date 2014-02-01 DOI 10.1016/j.copbio.2013.08.014 Peer reviewed eScholarship.org Powered by the California Digital Library University of California Available online at www.sciencedirect.com ScienceDirect Recent developments in microfluidic large scale integration 1 2 Ismail Emre Araci and Philip Brisk In 2002, Thorsen et al. integrated thousands of The on-chip valve is the key component of mLSI, much micromechanical valves on a single microfluidic chip and like the transistor in semiconductor LSI. Typically, demonstrated that the control of the fluidic networks can be microfluidic valves are fabricated by multilayer soft litho- simplified through multiplexors [1]. This enabled realization of graphy (MSL) using PDMS and are actuated by external highly parallel and automated fluidic processes with substantial pneumatic controllers. A valve requires an elastomeric sample economy advantage. Moreover, the fabrication of these membrane that is deflected to control the fluidic resist- devices by multilayer soft lithography was easy and reliable ance; when the valve is open, the fluidic resistance has a hence contributed to the power of the technology; microfluidic minimum value, determined by channel dimensions and large scale integration (mLSI). Since then, mLSI has found use when the valve is closed, the fluidic resistance is increased in wide variety of applications in biology and chemistry. In the to infinity because flow rate is reduced to zero.
    [Show full text]
  • Automatic Generation of a 3D City Model
    UNIVERSITY OF CASTILLA-LA MANCHA ESCUELA SUPERIOR DE INFORMÁTICA COMPUTER ENGINEERING DEGREE DEGREE FINAL PROJECT Automatic generation of a 3D city model David Murcia Pacheco June, 2017 AUTOMATIC GENERATION OF A 3D CITY MODEL Escuela Superior de Informática UNIVERSITY OF CASTILLA-LA MANCHA ESCUELA SUPERIOR DE INFORMÁTICA Information Technology and Systems SPECIFIC TECHNOLOGY OF COMPUTER ENGINEERING DEGREE FINAL PROJECT Automatic generation of a 3D city model Author: David Murcia Pacheco Director: Dr. Félix Jesús Villanueva Molina June, 2017 David Murcia Pacheco Ciudad Real – Spain E-mail: [email protected] Phone No.:+34 625 922 076 c 2017 David Murcia Pacheco Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.3 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License". i TRIBUNAL: Presidente: Vocal: Secretario: FECHA DE DEFENSA: CALIFICACIÓN: PRESIDENTE VOCAL SECRETARIO Fdo.: Fdo.: Fdo.: ii Abstract HIS document collects all information related to the Degree Final Project (DFP) of Com- T puter Engineering Degree of the student David Murcia Pacheco, tutorized by Dr. Félix Jesús Villanueva Molina. This work has been developed during 2016 and 2017 in the Escuela Superior de Informática (ESI), in Ciudad Real, Spain. It is based in one of the proposed sub- jects by the faculty of this university for this year, called "Generación automática del modelo en 3D de una ciudad".
    [Show full text]
  • Benchmarks on WWW Performance
    The Scalability of X3D4 PointProperties: Benchmarks on WWW Performance Yanshen Sun Thesis submitted to the Faculty of the Virginia Polytechnic Institute and State University in partial fulfillment of the requirements for the degree of Master of Science in Computer Science and Application Nicholas F. Polys, Chair Doug A. Bowman Peter Sforza Aug 14, 2020 Blacksburg, Virginia Keywords: Point Cloud, WebGL, X3DOM, x3d Copyright 2020, Yanshen Sun The Scalability of X3D4 PointProperties: Benchmarks on WWW Performance Yanshen Sun (ABSTRACT) With the development of remote sensing devices, it becomes more and more convenient for individual researchers to acquire high-resolution point cloud data by themselves. There have been plenty of online tools for the researchers to exhibit their work. However, the drawback of existing tools is that they are not flexible enough for the users to create 3D scenes of a mixture of point-based and triangle-based models. X3DOM is a WebGL-based library built on Extensible 3D (X3D) standard, which enables users to create 3D scenes with only a little computer graphics knowledge. Before X3D 4.0 Specification, little attention has been paid to point cloud rendering in X3DOM. PointProperties, an appearance node newly added in X3D 4.0, provides point size attenuation and texture-color mixing effects to point geometries. In this work, we propose an X3DOM implementation of PointProperties. This implementation fulfills not only the features specified in X3D 4.0 documentation, but other shading effects comparable to the effects of triangle-based geometries in X3DOM, as well as other state-of-the-art point cloud visualization tools.
    [Show full text]
  • Cloudcompare Point Cloud Processing Workshop Daniel Girardeau-Montaut
    CloudCompare Point Cloud Processing Workshop Daniel Girardeau-Montaut www.cloudcompare.org @CloudCompareGPL PCP 2019 [email protected] December 4-5, 2019, Stuttgart, Germany Outline About the project Quick overview of the software capabilities Point cloud processing with CloudCompare The project 2003: PhD for EDF R&D EDF Main French power utility More than 150 000 employees worldwide 2 000 @ R&D (< 2%) 200 know about CloudCompare (< 0.2%) Sales >75 B€ > 200 dams + 58 nuclear reactors (19 plants) EDF and Laser Scanning EDF = former owner of Mensi (now Trimble Laser Scanning) Main scanning activity: as-built documentation Scanning a single nuclear reactor building 2002: 3 days, 50 M. points 2014: 1.5 days, 50 Bn points (+ high res. photos) EDF and Laser Scanning Other scanning activities: Building monitoring (dams, cooling towers, etc.) Landslide monitoring Hydrology Historical preservation (EDF Foundation) PhD Change detection on 3D geometric data Application to Emergency Mapping Inspired by 9/11 post-attacks recovery efforts (see “Mapping Ground Zero” by J. Kern, Optech, Nov. 2001) TLS was used for: visualization, optimal crane placement, measurements, monitoring the subsidence of the wreckage pile, slurry wall monitoring, etc. CloudCompare V1 2004-2006 Aim: quickly detecting changes by comparing TLS point clouds… with a CAD mesh or with another (high density) cloud CloudCompare V2 2007: “Industrialization” of CloudCompare … for internal use only! Rationale: idle reactor = 6 M€ / day acquired data
    [Show full text]
  • Seamless Texture Mapping of 3D Point Clouds
    Seamless Texture Mapping of 3D Point Clouds Dan Goldberg Mentor: Carl Salvaggio Chester F. Carlson Center for Imaging Science, Rochester Institute of Technology Rochester, NY November 25, 2014 Abstract The two similar, quickly growing fields of computer vision and computer graphics give users the ability to immerse themselves in a realistic computer generated environment by combining the ability create a 3D scene from images and the texture mapping process of computer graphics. The output of a popular computer vision algorithm, structure from motion (obtain a 3D point cloud from images) is incomplete from a computer graphics standpoint. The final product should be a textured mesh. The goal of this project is to make the most aesthetically pleasing output scene. In order to achieve this, auxiliary information from the structure from motion process was used to texture map a meshed 3D structure. 1 Introduction The overall goal of this project is to create a textured 3D computer model from images of an object or scene. This problem combines two different yet similar areas of study. Computer graphics and computer vision are two quickly growing fields that take advantage of the ever-expanding abilities of our computer hardware. Computer vision focuses on a computer capturing and understanding the world. Computer graphics con- centrates on accurately representing and displaying scenes to a human user. In the computer vision field, constructing three-dimensional (3D) data sets from images is becoming more common. Microsoft's Photo- synth (Snavely et al., 2006) is one application which brought attention to the 3D scene reconstruction field. Many structure from motion algorithms are being applied to data sets of images in order to obtain a 3D point cloud (Koenderink and van Doorn, 1991; Mohr et al., 1993; Snavely et al., 2006; Crandall et al., 2011; Weng et al., 2012; Yu and Gallup, 2014; Agisoft, 2014).
    [Show full text]
  • TUESDAY MORNING Open Open Open
    TUESDAY MORNING Open Open Open. The Rise of Open Scientific Publishing and the 8:30 AM ­ Keynote Address Dr. Ken Kvamme Archaeological Discipline: Managing the Paradigm Shift SCE Auditorium Education and Dissemination 9:30 AM Coffee Break Room: SCE 216 Organizers: Arianna Traviglia, Xavier Rodier General Papers 9:50 AM Rocks­Macqueen, Doug, Tom Levy, The Last of the Publishers General ­ GIS 10:10 AM Roued­Cunliffe, Henriette, Peter Room: SCE House Jensen, What is Open Data in an Archaeological Context? 9:50 AM Caswell, Edward, An Analysis of 10:30 AM Brin, Adam, Francis Pierce­ Selected Variables that Affect the McManamon, Leigh Anne Ellison, The Production of Cost Surfaces Challenges of Open Access for 10:10 AM Becker, Daniel, Christian Willmes, Archaeological Repositories Andreas Bolten, María de Andrés­ 10:50 AM Kondo, Yasuhisa, Atsushi Noguchi, Herrero, Gerd­Christian Weniger, Best Practices and Challenges in Georg Bareth, Influence of Differences Promoting Open Science in in Digital Elevation Models and their Archaeology: Two Narratives from Resolution on Slope­Based Site Japan Catchment Modelling 11:10 AM Rodier, Xavier, Olivier Marlet, How to 10:30 AM Beusing, Ruth, Temporal­GIS Tools for Combine Archaeological Archives, Mixed and Meso­Scale Archaeological Linked Open Data and Academic Data Publication, a French Experience 10:50 AM James, Vivian, Context as Theory: 11:30 AM Buard, Pierre­Yves, Elisabeth Zadora­ Towards Unification of Computer Rio, Publishing an Archaeological Applications and Quantitative Methods Excavation Report in a Logicist in Archaeology Workflow 11:10 AM Sharp, Kayeleigh, Testing the ‘Small­ 11:50 AM Kansa, Eric, Anne Austin, Ixchel Site’ Approach with Multivariate Spatial Faniel, Sarah Kansa, Ran Boynter, Statistical and Archaeological Network Jennifer Jacobs, Phoebe France, A Analysis Reality Check: The Impact of Open Data in Archaeology 11:30 AM Groen, Mike, Geospatial Analysis, Predictive Modelling and Modern Clandestine Burials Same as it ever was..
    [Show full text]
  • Navisworks 2013 Supported Formats and Applications
    Autodesk Navisworks 2013 Solutions Autodesk ® Navisworks ® 2013 Supported File Formats London Blackfriars station, courtesy of Network Rail and Jacobs R Autodesk Navisworks 2013 Solutions Autodesk Navisworks 2013 Solutions This document details support provided by the current release of Autodesk Navisworks 2013 solutions (including Autodesk Navisworks Simulate and Autodesk Navisworks Manage) for: • CAD file formats. • Laser scan formats. • CAD applications. • Scheduling software. NOTE: When referring to Navisworks or Autodesk Navisworks 2013 solutions in this document this does NOT include Autodesk Navisworks Freedom 2013, which only reads NWD or DWF files. Product Release Version: 2013 Document version: 1.0 March 2012 © 2013 Autodesk, Inc. All rights reserved. Except as otherwise permitted by Autodesk, Inc., this publication, or parts thereof, may not be reproduced in any form, by any method, for any purpose. Autodesk, AutoCAD, Civil 3D, DWF, DWG, DXF, Inventor, Maya, Navisworks, Revit, and 3ds Max are registered trademarks or trademarks of Autodesk, Inc., in the USA and other countries. All other brand names, product names, or trademarks belong to their respective holders. Autodesk reserves the right to alter product offerings and specifications at any time without notice, and is not responsible for typographical or graphical errors that may appear in this document. Disclaimer Certain information included in this publication is based on technical information provided by third parties. THIS PUBLICATION AND THE INFORMATION CONTAINED HEREIN IS MADE AVAILABLE BY AUTODESK, INC. “AS IS.” AUTODESK, INC. DISCLAIMS ALL WARRANTIES, EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE REGARDING THESE MATERIALS.
    [Show full text]
  • Simulated Imagery Rendering Workflow for UAS-Based
    remote sensing Article Simulated Imagery Rendering Workflow for UAS-Based Photogrammetric 3D Reconstruction Accuracy Assessments Richard K. Slocum * and Christopher E. Parrish School of Civil and Construction Engineering, Oregon State University, 101 Kearney Hall, 1491 SW Campus Way, Corvallis, OR 97331, USA; [email protected] * Correspondence: [email protected]; Tel.: +1-703-973-1983 Academic Editors: Gonzalo Pajares Martinsanz, Xiaofeng Li and Prasad S. Thenkabail Received: 13 March 2017; Accepted: 19 April 2017; Published: 22 April 2017 Abstract: Structure from motion (SfM) and MultiView Stereo (MVS) algorithms are increasingly being applied to imagery from unmanned aircraft systems (UAS) to generate point cloud data for various surveying and mapping applications. To date, the options for assessing the spatial accuracy of the SfM-MVS point clouds have primarily been limited to empirical accuracy assessments, which involve comparisons against reference data sets, which are both independent and of higher accuracy than the data they are being used to test. The acquisition of these reference data sets can be expensive, time consuming, and logistically challenging. Furthermore, these experiments are also almost always unable to be perfectly replicated and can contain numerous confounding variables, such as sun angle, cloud cover, wind, movement of objects in the scene, and camera thermal noise, to name a few. The combination of these factors leads to a situation in which robust, repeatable experiments are cost prohibitive, and the experiment results are frequently site-specific and condition-specific. Here, we present a workflow to render computer generated imagery using a virtual environment which can mimic the independent variables that would be experienced in a real-world UAS imagery acquisition scenario.
    [Show full text]
  • Objekttracking Für Dynamisches Videoprojektions Mapping
    Bachelorthesis Iwer Petersen Using object tracking for dynamic video projection mapping Fakultät Technik und Informatik Faculty of Engineering and Computer Science Studiendepartment Informatik Department of Computer Science Iwer Petersen Using object tracking for dynamic video projection mapping Bachelorthesis submitted within the scope of the Bachelor examination in the degree programme Bachelor of Science Technical Computer Science at the Department of Computer Science of the Faculty of Engineering and Computer Science of the Hamburg University of Applied Science Mentoring examiner: Prof. Dr. Ing. Birgit Wendholt Second expert: Prof. Dr.-Ing. Andreas Meisel Submitted at: January 31, 2013 Iwer Petersen Title of the paper Using object tracking for dynamic video projection mapping Keywords video projection mapping, object tracking, point cloud, 3D Abstract This document presents a way to realize video projection mapping onto moving objects. Therefore a visual 3D tracking method is used to determine the position and orientation of a known object. Via a calibrated projector-camera system, the real object then is augmented with a virtual texture. Iwer Petersen Thema der Arbeit Objekttracking für dynamisches Videoprojektions Mapping Stichworte Video Projektions Mapping, Objektverfolgung, Punktwolke, 3D Kurzzusammenfassung Dieses Dokument präsentiert einen Weg um Video Projektions Mapping auf sich bewegende Objekte zu realisieren. Dafür wird ein visuelles 3D Trackingverfahren verwendet um die Position und Lage eines bekannten Objekts zu bestimmen. Über ein kalibriertes Projektor- Kamera System wird das reale Objekt dann mit einer virtuellen Textur erweitert. Contents 1 Introduction1 1.1 Motivation . .1 1.2 Structure . .3 2 Related Work4 2.1 Corresponding projects . .4 2.1.1 Spatial Augmented Reality . .4 2.1.2 2D Mapping onto people .
    [Show full text]
  • Chapter 12 Computervision
    Chapter 12 Computervision According to a 1994 Wall Street Journal article, Philippe Villers decided to start a technology company shortly after listening to the minister at Concord, Massachusetts’ First Parish Church extol Martin Luther King’s accomplishments a few days after he was murdered in April 1968. Villers felt he needed to do something meaningful with his life and that there were two options – either become a social activist or start a company, make a lot of money and then use that money to change the world. Luckily for what eventually became the CAD/CAM industry, he chose the second path.1 Villers was technically well qualified to start Computervision, Inc. or CV is it was generally known. Born in Paris, France, he came to this country via Canada in the early 1940s to escape the Nazis. Villers had an undergraduate liberal arts degree from Harvard and a masters degree in mechanical engineering from MIT. He worked for several years in General Electric’s management training program followed by stints at Perkin Elmer, Barnes Engineering and the Link Division of Singer-General Precision with increasing levels of project management responsibility. At the time he decided to establish Computervision, Villers was Manager of Advanced Products at Concord Control in Boston. Villers spent much of his spare time in 1968 meeting with a group of business and technical associates including Steve Coons and Nicholas Negroponte (founder of the MIT Media Lab). Realizing that it takes more than good technical ideas to build a successful company, Villers decided to find a partner with more business experience to help jump start the enterprise.
    [Show full text]
  • Room Layout Estimation on Mobile Devices
    En vue de l'obtention du DOCTORAT DE L'UNIVERSITÉ DE TOULOUSE Délivré par : Institut National Polytechnique de Toulouse (Toulouse INP) Discipline ou spécialité : Image, Information et Hypermédia Présentée et soutenue par : M. VINCENT ANGLADON le vendredi 27 avril 2018 Titre : Room layout estimation on mobile devices Ecole doctorale : Mathématiques, Informatique, Télécommunications de Toulouse (MITT) Unité de recherche : Institut de Recherche en Informatique de Toulouse (I.R.I.T.) Directeur(s) de Thèse : M. VINCENT CHARVILLAT M. SIMONE GASPARINI Rapporteurs : M. CARSTEN GRIWODZ, UNIVERSITE D'OSLO M. DAVID FOFI, UNIVERSITE DE BOURGOGNE Membre(s) du jury : Mme LUCE MORIN, INSA DE RENNES, Président M. PASCAL BERTOLINO, UNIVERSITE GRENOBLE ALPES, Membre M. SIMONE GASPARINI, INP TOULOUSE, Membre M. TOMISLAV PRIBANIC, UNIVERSITE DE ZAGREB, Membre M. VINCENT CHARVILLAT, INP TOULOUSE, Membre Acknowledgments I would like to thank my thesis committee for giving me the opportunity to work on an exciting topic, and for the trust they placed in me. First, Simone Gasparini, I had the pleasure to have as advisor, who kept a cautious eye on my scientific and technical productions. I am certain this great attention to the details played an important role in the quality of my publications and the absence of rejection notice. Then, my thesis director, Vincent Charvillat, who was always generous in original ideas and positive energy. His advice helped me to put a more flattering light on my works and feel more optimistic. Finally, Telequid, which funded my works, with a special thought to Frédéric Bruel and Benjamin Ahsan for their great patience. I would also like to thank my referees: Prof.
    [Show full text]
  • Basic Implementation and Measurements of Plane Detection
    Basic Implementation and Measurements of Plane Detection in Point Clouds A project of the 2017 Robotics Course of the School of Information Science and Technology (SIST) of ShanghaiTech University https://robotics.shanghaitech.edu.cn/teaching/robotics2017 Chen Chen Wentao Lv Yuan Yuan School of Information and School of Information and School of Information and Science Technology Science Technology Science Technology [email protected] [email protected] [email protected] ShanghaiTech University ShanghaiTech University ShanghaiTech University Abstract—In practical robotics research, plane detection is an Corsini et al.(2012) is working on dealing with the problem important prerequisite to a wide variety of vision tasks. FARO is of taking random samples over the surface of a 3D mesh another powerful devices to scan the whole environment into describing and evaluating efficient algorithms for generating point cloud. In our project, we are working to apply some algorithms to convert point cloud data to plane mesh, and then different distributions. In this paper, the author we propose path planning based on the plane information. Constrained Poisson-disk sampling, a new Poisson-disk sam- pling scheme for polygonal meshes which can be easily I. Introduction tweaked in order to generate customized set of points such as In practical robotics research, plane detection is an im- importance sampling or distributions with generic geometric portant prerequisite to a wide variety of vision tasks. Plane constraints. detection means to detect the plane information from some Kazhdan and Hoppe(2013) is talking about poisson surface basic disjoint information, for example, the point cloud. In this reconstruction, which can create watertight surfaces from project, we will use point clouds from FARO devices which oriented point sets.
    [Show full text]