"13 = the Number of French Fields Medal Winners" "Artur Ávila, A

Total Page:16

File Type:pdf, Size:1020Kb

"13 = The Number of French Fields Medal Winners " "Artur Ávila, a Brazil-born Frenchman and the director of the National Center for Scientific Research (CNRS), has just received the Fields Medal. Awarded every 4 years since 1936, the medal—considered the ultimate token of recognition—is often referred to as the “mathematician’s Nobel Prize.” It is officially known as the International Medal for Outstanding Discoveries in Mathematics. Artur Ávila received the medal for his work on dynamic systems. Now a dual citizen, he began his education in Brazil and completed it in France, thanks to the establishment of a joint CNRS-IMPA program in Rio in 2006. This achievement reflects decades of scientific cooperation between France and Brazil, and Ávila’s career exemplifies France’s attractiveness in the field of research. Artur Ávila is the 13th French winner, out of a total of 55. Along with the United States, France accounts for the largest number of winners (counting Alexander Grothendieck, who is stateless but was trained and spent much of his working life in France). This is the 6th consecutive time that a French mathematician has received the award and confirms the world- class role played by French mathematicians. The success of the French school of mathematics can be explained by a system that is highly effective at identifying talent, prospects for an early and stable career, competitive salaries and good working conditions. France therefore continues to attract top minds. The 2014 edition also marked the first time that a woman received the award ; she is Maryam Mirzakhani, an American of Iranian origin. Complete list of French winners : • 1950 – Laurent Schwartz • 1954 – Jean-Pierre Serre • 1958 – René Thom • 1966 – Alexandre Grothendick (he won but refused the medal) • 1982 – Alain Connes • 1994 – Pierre-Louis Lions and Jean-Christophe Yoccoz • 1998 – Maxime Kontsevitch (Franco-Russian) • 2002 – Laurent Lafforgue • 2006 – Wendelin Werner • 2010 – Cédric Villani and Ngô Bào Chu (Franco-Vietnamese) • 2014 – Artur Avila" .
Recommended publications
  • 2006 Annual Report
    Contents Clay Mathematics Institute 2006 James A. Carlson Letter from the President 2 Recognizing Achievement Fields Medal Winner Terence Tao 3 Persi Diaconis Mathematics & Magic Tricks 4 Annual Meeting Clay Lectures at Cambridge University 6 Researchers, Workshops & Conferences Summary of 2006 Research Activities 8 Profile Interview with Research Fellow Ben Green 10 Davar Khoshnevisan Normal Numbers are Normal 15 Feature Article CMI—Göttingen Library Project: 16 Eugene Chislenko The Felix Klein Protocols Digitized The Klein Protokolle 18 Summer School Arithmetic Geometry at the Mathematisches Institut, Göttingen, Germany 22 Program Overview The Ross Program at Ohio State University 24 PROMYS at Boston University Institute News Awards & Honors 26 Deadlines Nominations, Proposals and Applications 32 Publications Selected Articles by Research Fellows 33 Books & Videos Activities 2007 Institute Calendar 36 2006 Another major change this year concerns the editorial board for the Clay Mathematics Institute Monograph Series, published jointly with the American Mathematical Society. Simon Donaldson and Andrew Wiles will serve as editors-in-chief, while I will serve as managing editor. Associate editors are Brian Conrad, Ingrid Daubechies, Charles Fefferman, János Kollár, Andrei Okounkov, David Morrison, Cliff Taubes, Peter Ozsváth, and Karen Smith. The Monograph Series publishes Letter from the president selected expositions of recent developments, both in emerging areas and in older subjects transformed by new insights or unifying ideas. The next volume in the series will be Ricci Flow and the Poincaré Conjecture, by John Morgan and Gang Tian. Their book will appear in the summer of 2007. In related publishing news, the Institute has had the complete record of the Göttingen seminars of Felix Klein, 1872–1912, digitized and made available on James Carlson.
    [Show full text]
  • Distributions:The Evolutionof a Mathematicaltheory
    Historia Mathematics 10 (1983) 149-183 DISTRIBUTIONS:THE EVOLUTIONOF A MATHEMATICALTHEORY BY JOHN SYNOWIEC INDIANA UNIVERSITY NORTHWEST, GARY, INDIANA 46408 SUMMARIES The theory of distributions, or generalized func- tions, evolved from various concepts of generalized solutions of partial differential equations and gener- alized differentiation. Some of the principal steps in this evolution are described in this paper. La thgorie des distributions, ou des fonctions g&&alis~es, s'est d&eloppeg 2 partir de divers con- cepts de solutions g&&alis6es d'gquations aux d&i- &es partielles et de diffgrentiation g&&alis6e. Quelques-unes des principales &apes de cette &olution sont d&rites dans cet article. Die Theorie der Distributionen oder verallgemein- erten Funktionen entwickelte sich aus verschiedenen Begriffen von verallgemeinerten Lasungen der partiellen Differentialgleichungen und der verallgemeinerten Ableitungen. In diesem Artikel werden einige der wesentlichen Schritte dieser Entwicklung beschrieben. 1. INTRODUCTION The founder of the theory of distributions is rightly con- sidered to be Laurent Schwartz. Not only did he write the first systematic paper on the subject [Schwartz 19451, which, along with another paper [1947-19481, already contained most of the basic ideas, but he also wrote expository papers on distributions for electrical engineers [19481. Furthermore, he lectured effec- tively on his work, for example, at the Canadian Mathematical Congress [1949]. He showed how to apply distributions to partial differential equations [19SObl and wrote the first general trea- tise on the subject [19SOa, 19511. Recognition of his contri- butions came in 1950 when he was awarded the Fields' Medal at the International Congress of Mathematicians, and in his accep- tance address to the congress Schwartz took the opportunity to announce his celebrated "kernel theorem" [195Oc].
    [Show full text]
  • Potential Automorphy of $\Widehat {G} $-Local Systems
    Potential automorphy of G-local systems Jack A. Thorneb September 4, 2019 Abstract Vincent Lafforgue has recently made a spectacular breakthrough in the setting of the global Langlands correspondence for global fields of positive characteristic, by constructing the ‘automorphic–to–Galois’ direction of the correspondence for an arbitrary reductive group G. We discuss a result that starts with Lafforgue’s work and proceeds in the opposite (‘Galois– to–automorphic’) direction. 1 Introduction Let Fq be a finite field, and let G be a split reductive group over Fq. Let X be a smooth projective connected curve over Fq, and let K be its function field. Let AK denote the ring of ad`eles of K. Automorphic forms on G are locally constant functions f : G(AK ) → Q which are invariant under left translation 1 by the discrete group G(K) ⊂ G(AK ). The space of automorphic forms is a representation of G(AK ), and its irreducible constituents are called automorphic representations. Let ℓ ∤ q be a prime. According to the Langlands conjectures, any automor- phic representation π of G(AK ) should give rise to a continuous representation ´et ρ(π): π1 (U) → G(Qℓ) (for some open subscheme U ⊂ X). This should be com- patible with the (known) unramified local Langlands correspondence, which de- arXiv:1909.00655v1 [math.NT] 2 Sep 2019 b ´et scribes the pullback of ρ(π) to π1 (Fqv ) for every closed point v : Spec Fqv ֒→ U ′ in terms of the components πv of a factorization π = ⊗vπv into representations of the local groups G(Kv).
    [Show full text]
  • Mathematical
    2-12 JULY 2011 MATHEMATICAL HOST AND VENUE for Students Jacobs University Scientific Committee Étienne Ghys (École Normale The summer school is based on the park-like campus of Supérieure de Lyon, France), chair Jacobs University, with lecture halls, library, small group study rooms, cafeterias, and recreation facilities within Frances Kirwan (University of Oxford, UK) easy walking distance. Dierk Schleicher (Jacobs University, Germany) Alexei Sossinsky (Moscow University, Russia) Jacobs University is an international, highly selective, Sergei Tabachnikov (Penn State University, USA) residential campus university in the historic Hanseatic Anatoliy Vershik (St. Petersburg State University, Russia) city of Bremen. It features an attractive math program Wendelin Werner (Université Paris-Sud, France) with personal attention to students and their individual interests. Jean-Christophe Yoccoz (Collège de France) Don Zagier (Max Planck-Institute Bonn, Germany; › Home to approximately 1,200 students from over Collège de France) 100 different countries Günter M. Ziegler (Freie Universität Berlin, Germany) › English language university › Committed to excellence in higher education Organizing Committee › Has a special program with fellowships for the most Anke Allner (Universität Hamburg, Germany) talented students in mathematics from all countries Martin Andler (Université Versailles-Saint-Quentin, › Venue of the 50th International Mathematical Olympiad France) (IMO) 2009 Victor Kleptsyn (Université de Rennes, France) Marcel Oliver (Jacobs University, Germany) For more information about the mathematics program Stephanie Schiemann (Freie Universität Berlin, Germany) at Jacobs University, please visit: Dierk Schleicher (Jacobs University, Germany) math.jacobs-university.de Sergei Tabachnikov (Penn State University, USA) at Jacobs University, Bremen The School is an initiative in the framework of the European Campus of Excellence (ECE).
    [Show full text]
  • Why U.S. Immigration Barriers Matter for the Global Advancement of Science
    DISCUSSION PAPER SERIES IZA DP No. 14016 Why U.S. Immigration Barriers Matter for the Global Advancement of Science Ruchir Agarwal Ina Ganguli Patrick Gaulé Geoff Smith JANUARY 2021 DISCUSSION PAPER SERIES IZA DP No. 14016 Why U.S. Immigration Barriers Matter for the Global Advancement of Science Ruchir Agarwal Patrick Gaulé International Monetary Fund University of Bath and IZA Ina Ganguli Geoff Smith University of Massachusetts Amherst University of Bath JANUARY 2021 Any opinions expressed in this paper are those of the author(s) and not those of IZA. Research published in this series may include views on policy, but IZA takes no institutional policy positions. The IZA research network is committed to the IZA Guiding Principles of Research Integrity. The IZA Institute of Labor Economics is an independent economic research institute that conducts research in labor economics and offers evidence-based policy advice on labor market issues. Supported by the Deutsche Post Foundation, IZA runs the world’s largest network of economists, whose research aims to provide answers to the global labor market challenges of our time. Our key objective is to build bridges between academic research, policymakers and society. IZA Discussion Papers often represent preliminary work and are circulated to encourage discussion. Citation of such a paper should account for its provisional character. A revised version may be available directly from the author. ISSN: 2365-9793 IZA – Institute of Labor Economics Schaumburg-Lippe-Straße 5–9 Phone: +49-228-3894-0 53113 Bonn, Germany Email: [email protected] www.iza.org IZA DP No. 14016 JANUARY 2021 ABSTRACT Why U.S.
    [Show full text]
  • The Work of Grigory Perelman
    The work of Grigory Perelman John Lott Grigory Perelman has been awarded the Fields Medal for his contributions to geom- etry and his revolutionary insights into the analytical and geometric structure of the Ricci flow. Perelman was born in 1966 and received his doctorate from St. Petersburg State University. He quickly became renowned for his work in Riemannian geometry and Alexandrov geometry, the latter being a form of Riemannian geometry for metric spaces. Some of Perelman’s results in Alexandrov geometry are summarized in his 1994 ICM talk [20]. We state one of his results in Riemannian geometry. In a short and striking article, Perelman proved the so-called Soul Conjecture. Soul Conjecture (conjectured by Cheeger–Gromoll [2] in 1972, proved by Perelman [19] in 1994). Let M be a complete connected noncompact Riemannian manifold with nonnegative sectional curvatures. If there is a point where all of the sectional curvatures are positive then M is diffeomorphic to Euclidean space. In the 1990s, Perelman shifted the focus of his research to the Ricci flow and its applications to the geometrization of three-dimensional manifolds. In three preprints [21], [22], [23] posted on the arXiv in 2002–2003, Perelman presented proofs of the Poincaré conjecture and the geometrization conjecture. The Poincaré conjecture dates back to 1904 [24]. The version stated by Poincaré is equivalent to the following. Poincaré conjecture. A simply-connected closed (= compact boundaryless) smooth 3-dimensional manifold is diffeomorphic to the 3-sphere. Thurston’s geometrization conjecture is a far-reaching generalization of the Poin- caré conjecture. It says that any closed orientable 3-dimensional manifold can be canonically cut along 2-spheres and 2-tori into “geometric pieces” [27].
    [Show full text]
  • A Short Survey of Cyclic Cohomology
    Clay Mathematics Proceedings Volume 10, 2008 A Short Survey of Cyclic Cohomology Masoud Khalkhali Dedicated with admiration and affection to Alain Connes Abstract. This is a short survey of some aspects of Alain Connes’ contribu- tions to cyclic cohomology theory in the course of his work on noncommutative geometry over the past 30 years. Contents 1. Introduction 1 2. Cyclic cohomology 3 3. From K-homology to cyclic cohomology 10 4. Cyclic modules 13 5. Thelocalindexformulaandbeyond 16 6. Hopf cyclic cohomology 21 References 28 1. Introduction Cyclic cohomology was discovered by Alain Connes no later than 1981 and in fact it was announced in that year in a conference in Oberwolfach [5]. I have reproduced the text of his abstract below. As it appears in his report, one of arXiv:1008.1212v1 [math.OA] 6 Aug 2010 Connes’ main motivations to introduce cyclic cohomology theory came from index theory on foliated spaces. Let (V, ) be a compact foliated manifold and let V/ denote the space of leaves of (V, ).F This space, with its natural quotient topology,F is, in general, a highly singular spaceF and in noncommutative geometry one usually replaces the quotient space V/ with a noncommutative algebra A = C∗(V, ) called the foliation algebra of (V,F ). It is the convolution algebra of the holonomyF groupoid of the foliation and isF a C∗-algebra. It has a dense subalgebra = C∞(V, ) which plays the role of the algebra of smooth functions on V/ . LetA D be a transversallyF elliptic operator on (V, ). The analytic index of D, index(F D) F ∈ K0(A), is an element of the K-theory of A.
    [Show full text]
  • Press Release
    Press release 13 August 2014 Two Fields Medals 2014 awarded to ERC laureates The 2014 Fields Medals were awarded today to four outstanding mathematicians, of whom two are grantees of the European Research Council (ERC): Prof. Artur Avila (Brazil-France), an ERC Starting grant holder since 2010, and Prof. Martin Hairer (Austria) has been selected for funding under an ERC Consolidator grant in 2013. They received the prize respectively for their work on dynamical systems and probability, and on stochastic analysis. The other two laureates are Prof. Manjul Barghava (Canada-US) and Prof. Maryam Mirzakhani (Iran). The Medals were announced at the International Congress of Mathematicians (ICM) taking place from 13 – 21 August in Seoul, South Korea. On the occasion of the announcement, ERC President Prof. Jean-Pierre Bourguignon, a mathematician himself, said: “On behalf of the ERC Scientific Council, I would like to congratulate warmly all four Fields Medallists for their outstanding contributions to the field of mathematics. My special congratulations go to Artur Avila and Martin Hairer, who are both brilliant scientists supported by the ERC. We are happy to see that their remarkable talent in the endless frontiers of science has been recognised. The Fields Medals awarded today are also a sign that the ERC continues to identity and fund the most promising researchers across Europe; this is true not only in mathematics but in all scientific disciplines.” EU Commissioner for Research, Innovation and Science, Máire Geoghegan-Quinn, said: “I would like to congratulate the four laureates of the Fields Medal announced today. The Fields Medal, the highest international distinction for young mathematicians, is a well- deserved honour for hardworking and creative young researchers who push the boundaries of knowledge.
    [Show full text]
  • Learning from Fields Medal Winners
    TechTrends DOI 10.1007/s11528-015-0011-6 COLUMN: RETHINKING TECHNOLOGY & CREATIVITY IN THE 21ST CENTURY Creativity in Mathematics and Beyond – Learning from Fields Medal Winners Rohit Mehta1 & Punya Mishra1 & Danah Henriksen2 & the Deep-Play Research Group # Association for Educational Communications & Technology 2016 For mathematicians, mathematics—like music, poetry, advanced mathematics through their work in areas as special- or painting—is a creative art. All these arts involve— ized and diverse as dynamical systems theory, the geometry of and indeed require—a certain creative fire. They all numbers, stochastic partial differential equations, and the dy- strive to express truths that cannot be expressed in ordi- namical geometry of Reimann surfaces. nary everyday language. And they all strive towards An award such as the Fields Medal is a recognition of beauty — Manjul Bhargava (2014) sustained creative effort of the highest caliber in a challenging Your personal life, your professional life, and your cre- domain, making the recipients worthy of study for scholars ative life are all intertwined — Skylar Grey interested in creativity. In doing so, we continue a long tradi- tion in creativity research – going all the way back to Galton in Every 4 years, the International Mathematical Union rec- the 19th century – of studying highly accomplished individ- ognizes two to four individuals under the age of 40 for their uals to better understand the nature of the creative process. We achievements in mathematics. These awards, known as the must point out that the focus of creativity research has shifted Fields Medal, have often been described as the “mathemati- over time, moving from an early dominant focus on genius, cian’s Nobel Prize” and serve both a form of peer-recognition towards giftedness in the middle of the 20th century, to a more of highly influential and creative mathematical work, as well contemporary emphasis on originality of thought and work as an encouragement of future achievement.
    [Show full text]
  • Shtukas for Reductive Groups and Langlands Correspondence for Functions Fields
    SHTUKAS FOR REDUCTIVE GROUPS AND LANGLANDS CORRESPONDENCE FOR FUNCTIONS FIELDS VINCENT LAFFORGUE This text gives an introduction to the Langlands correspondence for function fields and in particular to some recent works in this subject. We begin with a short historical account (all notions used below are recalled in the text). The Langlands correspondence [49] is a conjecture of utmost impor- tance, concerning global fields, i.e. number fields and function fields. Many excellent surveys are available, for example [39, 14, 13, 79, 31, 5]. The Langlands correspondence belongs to a huge system of conjectures (Langlands functoriality, Grothendieck’s vision of motives, special val- ues of L-functions, Ramanujan-Petersson conjecture, generalized Rie- mann hypothesis). This system has a remarkable deepness and logical coherence and many cases of these conjectures have already been es- tablished. Moreover the Langlands correspondence over function fields admits a geometrization, the “geometric Langlands program”, which is related to conformal field theory in Theoretical Physics. Let G be a connected reductive group over a global field F . For the sake of simplicity we assume G is split. The Langlands correspondence relates two fundamental objects, of very different nature, whose definition will be recalled later, • the automorphic forms for G, • the global Langlands parameters , i.e. the conjugacy classes of morphisms from the Galois group Gal(F =F ) to the Langlands b dual group G(Q`). b For G = GL1 we have G = GL1 and this is class field theory, which describes the abelianization of Gal(F =F ) (one particular case of it for Q is the law of quadratic reciprocity, which dates back to Euler, Legendre and Gauss).
    [Show full text]
  • The Work of Wendelin Werner
    The work of Wendelin Werner Charles M. Newman∗ 1. Introduction It is my great pleasure to briefly report on some of Wendelin Werner’s research ac- complishments that have led to his being awarded a Fields Medal at this International Congress of Mathematicians of 2006. There are a number of aspects of Werner’s work that add to my pleasure in this event. One is that he was trained as a probabilist, receiving his Ph.D. in 1993 under the supervision of Jean-François Le Gall in Paris with a dissertation concerning planar Brownian Motion – which, as we shall see, plays a major role in his later work as well. Until now, Probability Theory had not been represented among Fields Medals and so I am enormously pleased to be here to witness a change in that history. I myself was originally trained, not in Probability Theory, but in Mathematical Physics. Werner’s work, together with his collaborators such as Greg Lawler, Oded Schramm and Stas Smirnov, involves applications of Probablity and Conformal Map- ping Theory to fundamental issues in Statistical Physics, as we shall discuss. A second source of pleasure is my belief that this, together with other work of recent years, represents a watershed in the interaction between Mathematics and Physics generally. Namely, mathematicians such as Werner are not only providing rigorous proofs of already existing claims in the Physics literature, but beyond that are provid- ing quite new conceptual understanding of basic phenomena – in this case, a direct geometric picture of the intrinsically random structure of physical systems at their critical points (at least in two dimensions).
    [Show full text]
  • Laurent Schwartz (1915–2002), Volume 50, Number 9
    Laurent Schwartz (1915–2002) François Treves, Gilles Pisier, and Marc Yor classics scholar and that of a mathematician. He had won the Concours Général in Latin; the Con- Biographical cours Général was and still is the most prestigious nationwide competition in France for high school- Sketch ers. Meanwhile he had become fascinated by the beauty of geometry, and, in the end, with the en- François Treves couragement of one of his professors in classics and of his uncle, the pediatrician Robert Debré, and Laurent Schwartz died in Paris on the 4th of July despite the rather unhelpful attitude of Hadamard, 2002. He was born in Paris on March 5, 1915. His dismayed that the sixteen-year-old Laurent was father, Anselme Schwartz, had been born in 1872 not acquainted with the Riemann zeta function, he in a small Alsatian town soon after the annexation of Alsatia by Germany. A fervent patriot, Anselme tried for admission to the science classes of the Schwartz had emigrated to France at the age of four- École Normale Supérieure (ENS), the most selective teen (before speaking French). In Paris he man- and most scholarly oriented of the “Grandes aged to carry out successful studies in medicine and Écoles”. He underwent the rather grueling two-year was to become a prominent surgeon in France in training (“hypotaupe”, followed by “taupe”, the the years between the two world wars. In 1907, tunnelling “submole” and “mole” years, so to speak) having just become the first Jewish surgeon ever preparatory to entrance to the ENS, where he was officially employed in a Paris hospital, Anselme admitted in 1934.
    [Show full text]