<<

JournalofMechanicalScienceandTechnology26(12)(2012)3751~3759 www.springerlink.com/content/1738494x DOI10.1007/s1220601210017 Capillarydrivenmicroflowsfortheunderfillprocess inmicroelectronicspackaging† YoungBaeKim1andJaeyongSung2,* 1Graduate School of Energy and Environment, Seoul National University of Science and Technology, Seoul 139-743, Korea 2Department of Mechanical and Automotive Engineering, Seoul National University of Science and Technology, Seoul 139-743, Korea

(ManuscriptReceivedMay22,2012;RevisedJune6,2012;AcceptedJune18,2012)

Abstract Capillarydrivenmicroflowallowstransportbyinterfacialforcewithoutexternalor.Theoreticalandex perimentalstudieshavebeenconductedtopredictthemovementoftheflowmeniscusintheapplicationofcapillaryunderfillflows.Ina flipchippackage,twodimensionalmotionsofflowfrontthroughsolderbumpscanresultinunwantedairvoidformationbecausethe meniscusandthearrangementofthesurfaceaffecttheinterfacedynamics.Thisstudyintroducesanalyticalmodelsoffillingtime anddiscussestheirverificationandlimitations.Recentdevelopmentsinunderfillflowvisualizationarealsopresentedtoanalyzeflow phenomena,includingtheracingeffectandvoidformation. Keywords:Capillaryunderfillflow;Fillingtimemodel;Flipchippackage;Flowvisualization;Voidformation ------ 1. Introduction Wire Bond Technology Mold cap Die Die attach Wire Liquidpenetratesintoanarrowgapbycapillaryactionat the–liquidinterface.Thisprocessiscalledmicrocapillary flow and has practical importance in a wide range of tech nologiessuchastheflowthroughporousmaterialsinmicro heatpipesandmicrocoolersaswellasunderfillinginflipchip Solder ball Substrate packaging.Thefundamentalphysicsofmicrocapillaryflows Flip Chip Technology has long been examined, specifically, the movement of the Underfill epoxy Die Mold cap flowmeniscusthroughacapillarytubeorchannel[13]. Meanwhile,flipchiptechnologyiswidelyusedtopackage highperformancedevicesandsatisfytheneedforhighinter connection[4].Fig.1(a)showsthecomparisonofthe (a) (b) internalstructuresofflipchipandwirebondpackages.The Fig.1.(a)Internalstructuresofwirebondandflipchippackages;(b) flipchipindicatesthatthepatternedfaceofachipwithsolder capillary underfill process to improve reliability of interconnection bumps is turned over to interconnect directly to a substrate system. with solder balls. In a wire bond package, long conductive wiresareconnectedbetweenachipandasubstrate.Theshort betweenachipandasubstratetopreventcracksonthesolder interconnection in the flipchiptechnology is more advanta bumpandelectricalfailureresultingfromthermal.A geousthanthelongwireconnectionformanufacturingthinner large difference in the thermal expansion coefficient (CTE) andsmallerintegratedcircuitsystemsandimprovingelectrical betweenthesiliconchipandtheorganicsubstratemaycause performance.Thesolderballsinthepackagedchiparewelded significant thermal stresses on the interconnections during to electric pads on a printed circuit board. However, in flip thermal cycling [5]. Thus, the underfill epoxy relaxes the chip packages,underfill epoxy should befilled into the gap stressesbytheCTEmismatch,aswellasreducestheimpact anddeflectionofthesubstrate.Thefillingmethodcanbeclas * Correspondingauthor.Tel.:+8229706398,Fax.:+8229491458 sifiedintocapillaryunderfillornoflowunderfill.Thisstudy Emailaddress:[email protected] †ThispaperwaspresentedattheWorkshophonoringprofessorJungYulYooon focuses on the capillary underfill process, as shown in Fig. hisOfficialRetirement,Seoul,Korea,March2012. 1(b).Inthisprocess,theunderfillepoxyisdispensedalongthe ©KSME&Springer2012

3752 Y. B. Kim and J. Sung / Journal of Mechanical Science and Technology 26 (12) (2012) 3751~3759

Syringe y Flip-chip Plate 1 θ Solder bump Gap height b R Underfill x h Plate 2 Substrate Flow front x Underfill flow f Fig.2.Schematicofthecapillaryunderfillprocess. Fig.3.Capillaryflowthroughtwoparallelplates. peripheryofoneortwosidesofthechip,allowingthecapil pressible, and the governing equation for the unsteady flow laryactiontodrawtheliquidintothemicrocavity[6].Given u(y,t)canbeexpressedasfollows: that the filling process is based on the capillary action, a ∂u ∂p ∂2u longer filling time is required for a larger chip size and a ρ = − + (1) higherbumpdensity.Airvoidsmayoccurwhentheunderfill ∂t ∂x ∂y2 material isnotuniformly distributed, which results ina sig nificantreliabilityprobleminmicroelectronicpackaging. whereistheand ρisthedensity.Fromthe Inthissurvey,capillarydrivenmicroflowsintheunderfill Laplace–Young equation, the driving capillary force at the processareintroduced.Foragivensolderbumppatternand meniscusisp= 2σ cosθ / h ,whereσisthesurfacetension underfillepoxy,estimatingthefillingtimeisoneofthemain coefficient,θisthecontactangle,andh=2bisthegapheight. problemsintheunderfillprocessdesign.Severalfillingtime GiventhatEq.(1)cannotbesolvedanalytically,thevelocity modelsbasedonthetheoryofmicrocapillaryflowhavebeen is decomposed into steady and unsteady terms as u(y, t) = developedwithsolderbumpresistance,dynamiccontactangle, u (y) + u′(y, t) . By letting u and u′ stratify, thefollowing andnonNewtonianandtemperaturedependentfluidproper areobtained: ties considered. The analytical models of filling time have 2 been verified experimentally and numerically. The second dp ∂ u 0 = − + 2 (2) problem is the physical flow phenomenon in the capillary dx ∂y underfillflow.Airvoidformationbytheracingeffectisone ∂u′ ∂2u′ ρ = . (3) oftheimportantpracticalissuestoconsider.Voidformationis ∂t ∂y 2 mainly related to the dynamic interaction between the flow meniscusandthesolderbumps.Recentsuccessinmicroscale The solution ofthesteady component is the well known, flowvisualizationcanaddressthisunwantedfillingprocess. fullydevelopedlaminarvelocityprofile, and the solution of theunsteadycomponentcanbeobtainedbytheseparationof 2. Filling time models variablesproposedbyArpaci[7]. Fig.2presentsadiagramoftheunderfillflowprocess.The dp / dx u = − (b2 − y2 ) and (4) underfillepoxyisdispensedattheedgeofaflipchipspeci 2 men.Theliquidisthenfilledintothegapbetweenasubstrate ∞ ′ 2 and aflip chipby capillary action;the typical gapheight is u = ∑an exp(−λnνt)cosλn y (5) about50m.Beforetheliquidisdispensed,itisheatedupto n=0 90ºCtoincreasetheflowbyviscosityreduction.Duringheat ing,thetemperatureismaintainedunderthecuringtempera (2n +1)π where λnb = ,n = 0,1, 2,L ture;abovesaidtemperature,theliquidhardensimmediately. 2 Attemperatureslowerthanthecuringtemperature,theliquid n 2 can harden if exposed to the , which suggests a (−dp / dx) (−1) b an = −2 3 . limitationforthefillingtimetocompletetheunderfillprocess. (λnb) Thus,fillingtimeestimationisoneofthemajorconsiderations in the underfill process design. Several filling time models Thepressuregradientinsidethechannelisassumedaslin havebeensuggestedoverthepastdecades. ear;i.e., −dp / dx = p / x f ,wherexfisthelocationoftheflow front.Thespeedoftheflowfrontisequaltothemeanvelocity 2.1 Flow between two parallel plates um,whichcanbeevaluatedbyintegratingthevelocityprofile acrossthechannelcrosssection. A simple filling time model can be derived by assuming that the liquid is filled through a narrow gap between two 2 ∞ dx f pb 1 1 2  parallelplateswithoutasolderbump,asshowninFig.3.For um = =  − 2 exp(−λnνt) (6) dt x 3 ∑ (λ b)4 aNewtonianviscousliquid,iftheflowislaminarandincom f  n=0 n 

Y. B. Kim and J. Sung / Journal of Mechanical Science and Technology 26 (12) (2012) 3751~3759 3753

Integrationoftheaboveequationwithrespecttotime[0,tf] L obtainsthefollowing: 2 ∞ 2 2pb 1 1 1 2  W x = t − 2 1− exp(−λ νt ) f  f ∑ 4 2 ( n f ) d 3 n=0 (λnb) λnν  W (7) 2pb2  1 32h2  W ≈  t f − 6   3 π ν  where only the first term (n = 0) in the series expansion is (a) (b) consideredbecauseitdecreasesquicklywiththeincreaseinn. Toobtainanexplicitformulafortimetf,theexponentialterm Fig.4.Flipchippackagepattern:(a)arectangulararrayofthesolder can also be neglected except for the time less than 0.002 s bumppattern;(b)anapproximateflowpassagethroughasolderbump array. despitetheunsatisfiedinitialcondition(xf =0attf=0).By substituting the capillary pressure p into Eq. (7), the final equationforthefillingtimecanbeobtainedas thecapillaryforceisreducedbythepressurelossbecauseof the variation of the crosssection, which can be calculated 6x 2 96h2 3x 2 96h2 fromthevirtualworkprinciple[11].Thefinalequationofthe t = f + = f + . (8) f ph2 π 6ν hσ cosθ π 6ν drivingpressureiswrittenasfollows: p = pcapillary − pbump ThefirsttermintherighthandsideofEq.(8)resultsfrom  1 1  2dσ cosθ thesteadyvelocitycomponentandisthesameasthatinthe = 2σ cosθ  +  − (9) Washburnmodel[1].Thesecondtermisthemaximumcon  W h  W (W + d) 2σ cosθ (W 2 + hW + dW − dh) tributionoftheunsteadyvelocitycomponent,whichisrelated = . tothegapheighthandthekinematicviscosityνofthefluid. hW (W + d) Forthenarrowergapheightandthemoreviscousliquid,the unsteadyflowhaslesseffectonthefillingtime.Withthetypi ThisequationisreproducedtotheLaplace–Youngequation calgapheightof50mandglycerinasaworkingfluid,the without a solder bump if W becomes infinite. Theresultant fillingtimecausedbytheunsteadyflowisabout0.2s.For drivingpressureinthismodelisconstantifthegeometryand theviscosityof,thefillingtimeis250s,whichisneg fluidpropertiesarefixed.BysubstitutingEq.(9)forthedriv ligible,consideringthat thetotalfillingtimeinrealapplica ingpressureintoEq.(8),thefillingtimecanbeevaluated. tionsismorethan10s. 2.3 Time-dependent dynamic 2.2 Influence of solder bump resistance InbothWashburnandWanmodels,thecontactangleisas The diameter and pitch of the solder bump in flip chips sumedconstantasanequilibriumcontactangle.Inreality,at have decreased significantly because of the demand for the early stage of the underfill process, the contact angle is smaller and thinner electronic devices. Consequently, a chip nearly90ºbecausethemeniscusoftheliquiddispensedatthe with a higherdensityofsolderbumpisrequired.Thus,pre edgeofthechannelformsarightangleinthestreamdirection. dictingthefillingtimebasedontheWashburnmodelisnot Withtime,thecontactangledevelopstoitsequilibriumangle. satisfactorybecauseitdoesnotconsidertheexistenceofthe Theuseoftheconstantcontactanglesuggeststhatthedevel solderbump.Severalexperimentalstudies[8,9]reportedthat opment of an equilibrium contact angle is too fast that the theactualfillingtimewaslongerthanthetimeestimatedby developing region is neglected. However, studies demon the Washburn model. To consider the influence of solder stratedthatthetimedependentdynamiccontactanglehadto bump resistance on the capillary underfill flow, Wan et al. beconsidered[12,13]. [10] suggested an advanced model (referred to as the Wan Forthedynamiccontactangle,Newman[14]proposedthe −ct model)forarectangulararrayofthesolderbumppattern,as equation cosθ (t) = cosθs (1− ae ), where the contact angle showninFig.4(a).Inthefigure,Listhebumppitch,Wisthe decreasesexponentiallywithtime,asshowninFig.5.Inthe clearance between two adjacent solder bumps, and d is the figure,θsisthestaticorequilibriumcontactangle,andθ0is bumpdiameter.Theunderfillflowpassingthroughthesolder theinitialcontactangle. a = 1− cosθ0 / cosθs and c = σ /(M ) bumparrayisapproximatedasacombinationofasetofone arethecoefficients,whereMisaconstantthatdependsonthe dimensional channel flows with a variable crosssection, as solidsurface.Giventhatthecontactangleisafunctionoftime, illustratedinFig.4(b).Despitethetwodimensionalvelocity thedrivingpressurealsochangeswithtime.Thus,theintegra field,onlythestreamwisecomponentaveragedoverthecross tion of Eq. (6) by neglecting the unsteady flow component sectionisconsidered.Inthisgeometry,thedrivingpressureof resultsinthefollowingformulaforthefillingtime:

3754 Y. B. Kim and J. Sung / Journal of Mechanical Science and Technology 26 (12) (2012) 3751~3759 θ (t) 1.4 θ Measurement 0 1.2 Curve fit 45oC

1 ) s . a

P 0.8 (

y t θs i o s 55 C o 0.6 c

s o t i 60 C V 0.4 Fig.5.TimedependentdynamiccontactangleproposedbyNewman n = 2.58T −0.47e0.02T [14]. 0.2 m = 5.18T 1.08e−0.15T 2 0 6x a 0 20 40 60 80 100 120 140 t = f + 1− e−ct f . (10) f 2 ( ) ph c Shear rate (1/s) (a) This equation is a nonlinear function of the filling time, whichrequiresaniterativesolution.Tocalculatethedriving 13 60 pressure in the above equation, either the Washburn or the 12.5 50

Wanmodelcanbeused. ) 12 Contact angle m / C N 40 o n m 11.5 ( t

a n 2.4 Non-Newtonian and temperature-dependent c t o i

a s 11 30 n n g e t l

e

Thepropertiesoftheunderfillmaterialsareadditionalkey e

(

c 10.5 o a )

f 20 issues in underfill flow modeling. Two aspects of material r u properties have to be considered in the actual applications. S 10 σ =13.5 − 0.05T + 2.04×10−5T 2 10 Oneistherheologicalcharacteristic,andtheotheristhetem 9.5 2 peraturedependencyoftheproperties.Theunderfillmaterials θ = 88.5 −1.34T + 0.0056T 9 0 are generally known as nonNewtonian fluids. The most 30 40 50 60 70 80 90 widelyemployedformulaasaconstitutiveequationofviscos Temperature (oC) ity is the powerlaw model [15, 16], in which the effective (b) n−1 viscosityisgivenby η = mγ& .Inthismodel,theviscosity Fig.6.Temperaturedependent properties of an underfill material varieswiththeshearrate γ& ,andtheparametersmandnare FP4530:(a)viscosity;(b)surfacetensionandcontactangle(Wan[17]). determinedexperimentally.ForaNewtonianfluid,m=and n=1.Ifn>1,thefluidiscalledshearthickening;ifn<1,the 1 n+1 fluidiscalledshearthinning.ThegoverningEq.(1)foranon n +1  p  n  2x  n t = f (14) Newtonianfluidbyneglectingtheunsteadyvelocitycompo f     2n +1 m   h  nentcanberewrittenas wherethedrivingpressurecanbeeitherthecapillarypressure d  du  dp η  = − . (11) orthenetpressurewithbumpresistanceconsidered,assug dy  dy  dx gestedbytheWashburnandWanmodels,respectively. TocalculatethefillingtimeinEq.(14),thepropertiesof By integrating the aforementioned equation, the velocity underfillmaterials,suchasdensity,surfacetension,andcon profileinsidethechannelcanbeobtainedas tactangleaswellasthepowerlawindicesofviscosity,must bedetermined.Exceptfordensity,thesepropertiesoftypical 1 n+1 n+1 underfillmaterialsaresensitivetotemperaturevariations.Fig. n  −dp / dx  n   u(y) = b n − y n  . (12) 6showsthetemperaturedependentpropertiesofanunderfill n +1 m        material FP4530 (Dexter Corp., USA) [17]. In general, the underfillmaterialisstoredbelow40ºCtopreventhardening. Using the same procedure conducted on the Newtonian Above room temperature, its viscosity becomes sufficiently fluid explained previously, the final equations for the flow low to make a capillary underfill flow. The viscosity illus frontandfillingtimecanbederivedas trated in Fig. 6(a) changes with the shear rate and is ade quatelyfittedtothepowerlawconstitutiveequationfor45,55, 1 n and60ºC.Thismaterialhasashearthinningbehaviorinthe h  p  n+1  n +1  n+1 x = t (13) processingtemperaturerange.Thedependenceofmandnon f 2  m   2n +1 f      temperatureisshowninFig.6(a).Inthefigure,mdecreases

Y. B. Kim and J. Sung / Journal of Mechanical Science and Technology 26 (12) (2012) 3751~3759 3755 L withtemperature,whichcontributestothedecreaseinviscos Solder bump ity;whereasnincreaseswithtemperature,whichenhancesthe shearthinningbehavior.Thesurfacetensionandequilibrium contact angle are also measured under the variationoftem perature,asshowninFig.6(b).Bothpropertiesdecreasewith x temperature, but the decreasing rate of the contact angle is f x moresignificantthanthatofthesurfacetension.Thecontact θ angleisalsodependent on thesurface materialsof the chip b meniscus φ andsubstrate[18]. d 2.5 Influence of on solder bump surface Fig.7.Aflowmodelconsideringthevariablecapillarypressureonthe Young[19,20]derivedadifferentfillingtimemodel(the solderbumpaccordingtothelocationoftheflowmeniscus. Youngmodel)byconsideringviscousresistanceandvariable capillarypressureonthesolderbumpaccordingtotheloca alongtheflowpath: tionoftheflowmeniscus.Theflowdomainisregardedasa porousspacewithanarrayofcircularcylinderbanksandcon dx f x f dx A(x f )R(x f ) = p , R(x f ) = . (19) finedbytwoparallelplates.Theviscousdragconsistsofthe dt ∫0 kA(x) resistance values by both the channel walls and the solder bumps.Foragivenpressuregradient,themeanvelocitybe Thefinalmeniscusdistancecanbeobtainedbyin tweentheparallelplatescanbeobtainedbyintegratingEq.(4) tegrating dxf/dt into Eq. (19). In this equation, the cross overthechannelcrosssectionasfollows: sectionalarea,viscousresistance,andcapillarypressurediffer whetherornotthepositionisintheregionofthesolderbump. h2 dp In the bump region, they are evaluated from the following u = − . (15) m 12 dx formulas: Ifthesolderbumpsareconsideredasparallelcylinders,the A(x) = L − d cosφ (20) flowbetweenthecircularcylinderscanbeexpressedas[21] φ d cosφdφ R(x) = + Ri−1 (21) ∫−π / 2 2hk(L − d cosφ) 2 5 / 2 4d  L − d  dp 2σ b cos(θb + φ) 2σ cosθ um = −   . (16) p = + . (22) 9 2π  d  dx L − d cosφ h BycombiningtheflowresistancesinEqs.(15)and(16),the Whenthemeniscusislocatedoutsidethebumpregion,the meanvelocityforagivenpressuregradientcanbewrittenas: followingformulasareused: −1 A(x) = Lh (23)  5 / 2  k dp 9 2π  d  12 π / 2 d cosφdφ 12 i i−1 um = − ,k =  2   + 2  , (17) dx 4d L − d h R(x) = + 3 (x f − d) + R (24)     ∫−π / 2 2hk(L − d cosφ) h L 2σ cosθ p = (25) wherekisthepermeability,andListhebumppitch. h WiththemeniscuslocatedatthepositionxfasshowninFig. 7,themeanvelocityvariesdependingontheposition xdue where φ isthedirectionalbodyangleformedbythecontact becauseofthechangeinthecrosssectionalareaA(x)tosat lineonthesolderbump,andσbandθbarethesurfacetension isfymassconservation. and contact angle on thebump surface, respectively.Super scripts i1 and i are the previous and current layers of the i1 A(x f ) bumparray,respectively.Thus,R denotestheaccumulated u (x) = u (x ) (18) m m f A(x) viscousresistanceuntilthepreviouslayer.Inthebumpregion, twocapillaryareinvolvedintheunderfillprocess, Thespeedoftheflowfrontisequaltothemeanvelocityat asshowninEq.(22).Oneisthecapillarypressurecausedby themeniscus,i.e.,um(xf)=dxf/dt.Assumingthatthepressure thesurfacetensionbetweensolderbumps,whichmaybecome gradientislinearandintegratingEq.(17)fromtheentranceto significantasthebumppitchbecomessmaller; theotheris themeniscusposition,thefollowingrelationshipbetweenthe thecapillarypressureexertedbythesurfacetensionbetween meniscus wetting distance and the capillary pressure can be the parallel plates, which is commonly considered in the derived in termsof the accumulated viscous resistance R(xf) WashburnandWanmodels.

3756 Y. B. Kim and J. Sung / Journal of Mechanical Science and Technology 26 (12) (2012) 3751~3759 70 sharp increase smooth increase 60

50 Measurement

) Washburn model s (

e 40 Wan model m i t

g n i l

l 30 i F 20 (a) (b) 10 Fig.9.Flowvisualizationoftheracingeffect:(a)omparisonofsimu latedflowfront(left)andmeasuredflowfront(right)byNguyenetal. 0 [8];(b)moreadvancedsimulationforflowfrontbyWanetal.[27]. 40 60 80 100 120 140 160 180 Bump pitch (m) Fig. 8. Comparison of the measured filling time with the estimated the location of the flow front. When the flow front passes fillingtimebytheanalyticalmodels(Kimetal.[24]). throughthesolderbump,itsmovementbecomesfastbecause oftheadditionalcapillaryactionbythesolderbumpsurface, 2.6 Experimental verification of filling time models whichcanbewellestimatedbytheYoungmodel.However, theflowfrontmovementbecomesslowerduringthedetach Innumerousstudies,thefillingtimemodelshavebeenveri mentfromthesolderbumpbecausethesolderbumpprevents fied experimentally. The results showed that the Washburn itfromdetaching.Consequently,abreakdownofequilibrium modelcouldbeinaccuratebecauseoftheflowresistanceof inthecontactangleoccursbecauseofthedynamicinteraction solderbumpsiftheclearancebetweenthebumpsiscompara withthesurfaceofthesolderbump.Thevariationinthecon bletothegapheight[22].Foraflipchippackagewitharela tactangleisinphasewiththevariationintheflowfrontspeed tively high bump density (a bump diameter of 100 m, a [25].Thisphenomenonhasnotbeenconsideredinprevious bumppitchof250m,aandgapheightof50m),theWan analyticalmodels. model, including both the solder bump resistance and the rheologicalbehaviorofthenonNewtonianfluid,canprovide 3. Physical phenomena in capillary underfill flows acloserestimateofthefillingtime[23].Withregardtothe 3.1 Racing effect and void formation dynamiccontactangle,HanandWang[22]appliedtheNew manequationforthefirsttimeinestimatingthefillingtimein Theanalyticalmodelsonlyconsidertheparallelmovement a flip chip package. The model using the dynamic contact oftheflowfrontwithtime.However,thetopviewofthetwo anglewassuperiortothemodelusingthestaticcontactangle. dimensionalflowshowsthattheflowfrontisnotalwaysuni However,theestimatedfillingtimeandtheexperimentalre form,asshowninFig.9.Experimentalresultsindicatedthata sults did not match. The most probable reason is that the faster flow develops along the edge [26]. Nguyen et al. [8] Newman equation developed for the flow between the two referredtothisphenomenonasthe“racingeffect”,whichmay parallelplatesdidnotincludetheeffectofsolderbumpson cause air voidformation atthecenter of the chip. If the air theunderfillflow,especiallyinahighbumpdensity. voidisformedinsidethechip,highisconcentratedin Kimetal.[24]comparedthefillingtimeestimatedbythe thevoidregion,whichgreatlyreducesthereliabilityoftheflip WashburnandWananalyticalmodelswiththeexperimental chippackage.Thus,thedesignoftheunderfillflowwithout data, including the case when the clearance between the void formation is a critical issue in the industrial field. Nu bumps is lessthanthebumpdiameter or gapheight. Fig. 8 merical simulations have been performed to estimate void shows the comparison of filling times for various bump formation. Fig. 9(a) shows the comparison of the simulated pitches.Boththebumpdiameterandthegapheightare50m, flowfrontandthemeasuredflowfrontbyNguyenetal.[8]. andaNewtonianfluidisunderfilled.Thefillingtimesinboth Therightsidecorrespondstothemeasuredflowfrontwitha analyticalmodelsareshorterthanthatintheexperiment,es transparent quartzdie (6.7×6.7×0.6 mmthick). The bump pecially in small bump pitches. The filling time increases diameteris168m,andthebumppitchis262m.Theflow sharply as the bump pitch becomes smaller than twice the simulation was performed using the commercial software bumpdiameter.However,intheWanmodel,thefillingtime (PLICECAD);however,thesimulationresultdidnotmatch inanextremelyhighbumpdensitycannotbecalculatedbe the measured result. Wan et al. [27] recently simulated the causethecapillarypressureinEq.(9)becomesnegative.Fur sameflowwiththeANSYSsoftwarebasedonthevolumeof thermore,Leeetal.[25]measuredthedetailedbehaviorofthe fluid method. Their result successfully estimated the faster flowfrontmovementinonepitchofthesolderbumpbyusing flowalongtheedgeregion,asshowninFig.9(b).Themain a microscope. The experimental data indicate that the flow reasonforthissuccessisthatasolidframeissetaroundthe frontmovementisnotmonotonicbutrather,isdependenton sidesoftheflipchip,andtheedgewidth(thedistancebetween

Y. B. Kim and J. Sung / Journal of Mechanical Science and Technology 26 (12) (2012) 3751~3759 3757

(a) (b) Fig.10.Mergingoftheflowfrontsandvoidformationbytheracing Fig.12.Timevaryingmovementoftheflowfrontpassingthroughthe effect: (a) development of flow front by fast edge and slow center solderbumpswithadiameterof50m,apitchof100m,andagap flows;(b)voidformationattheintersectionoftheflowfronts. heightof50m(Leeetal.[25]). inFig.11.Atransparentflipchipspecimen(5mm2×5mm2, 50mgapheight)wasproducedbyetchingthesiliconpartof asilicononglasswaferintheformofacylindricalbump(a diameterof50m,apitchof100m).Fig.11(a)illustrates the nonuniform flow fronts with different velocities at the early stage. The flow fronts converge, producing air voids becauseoftheexistenceofastationaryregion,asshownin Fig. 11(b). The voids that remain after theunderfill process showninFig.11(c)canbeacrucialdefectaffectingthereli ability of the flip chip package. An analytical condition of void formation for various underfill processes is difficult to (a) (b) (c) definebecause of numerousfactors affecting capillary flow, Fig.11.Flowvisualizationofvoidformationbytheracingeffectwith suchastherheologicalfluidproperties,solderbumparrange lapsoftime:(a)nonuniformflowfrontswithdifferentvelocitiesatthe ment,surfaceconditionoftheflipchip,andliquiddispensing early stage; (b) flow fronts encountered at the stationary regions; (c) method,amongothers.Nevertheless,anunderfillprocesswith irremovablevoidsafterthefillingprocess. a tilted angle or a pressurized underfill process with a vac uumed air vent can be an alternative method to reduce the theoutsidesolderbumpandtheedge)isadequatelycontrolled. voidformationandthetotalfillingtime[29,30]. Asthebump density increases,the effectofthe edge width becomessignificant.Thus,toobtainauniformflowfrontdis 3.2 Interaction between the flow meniscus and the solder tributionandpreventtheformationofairvoids,asufficiently bumps smalledgeisrequired.Despitethepartialsuccessintheesti mationofthefasteredgeflow,thedetailedshapeoftheflow The dynamic interaction of the meniscus with the solder frontdoesnotmatchthemeasuredresultsbecausetheirsimu bumpsisalsocrucialbecauseithelpsimprovetheanalytical lation is twodimensional. To overcome this limitation, modelsorexplainthephysicsofcapillaryflowthroughbumps Hashimoto et al. [28] conducted a numerical simulation of anddeterminethemethodsofsuppressingvoidformationby threedimensionalunderfillflowsusing thelevelset method theracingeffect.However,theexperimentalapproachtothis for gas–liquid interface and the continuum surface force aspect remains unpopular. Lee et al. [25] measured the dy modelforsurfacetension.Theresultswerecomparedwiththe namics of the meniscus by microparticle image velocimetry available experimental data, and the void formation mecha and image processing techniques. Fig. 12 shows the time nismwasobserved. varyingflowfrontpassingthrough thesolderbumps.Given Fig. 10 depicts air void formation by the racing effect. thatthetimeseparationbetweeneachflowfrontisthesame, Givenaslowcenterflow,thefrontsofthefastedgeflowin the narrow spacing between lines denotes lowspeed move bothsidesareinclinedtowardthecenter.Thelocalfrontve ment, whereas the wide spacing denotes highspeed move locitiesmaysubtractandcanceleachother,whichresultsin ment.Inthisfigure,themeniscusmovesfastonceitattaches stationaryspotswithaslowfluidmotion.Continuousdevel thesolderbumpsbecauseoftheattractiveforceofastretched opmentoftheedgeflowfrontsmayencounterthecenterflow meniscus. However, before the meniscus detaches from the front,leavingthestationaryspotbehindandfinallygenerating bump,itsmovementslowsdownbecausethedirectionofthe unmovableairvoidsattheintersectionoftheflowfronts.The capillaryforcechangesnegatively. voidformationbytheracingeffectisobservedexperimentally Thephaselockedvelocityfieldsattheinstanceofboththe

3758 Y. B. Kim and J. Sung / Journal of Mechanical Science and Technology 26 (12) (2012) 3751~3759 y / L racingeffectandstationaryspotsoftheflowfrontleadtothe 1.25 formationof air voids. Thehigher the solderbump density, thegreateristheprobabilityofvoidformation.Insuchacase, 1.00 the development of pressurized underfill technology with 0.75 relevantairventsmaybeaviablealternative.Tocontrolthe flowfrontuniformlyforvariousbumparrangements,thein (a) teraction between the solder bumps and the flow meniscus shouldbeinvestigatedfurtherfromamicroscopicperspective. y / L 1.25 Acknowledgments This study was supported by the Basic Science Research 1.00 ProgramthroughtheNationalResearchFoundationofKorea 0.75 fundedbytheMinistryofEducation,Science,andTechnol ogy(20100009054). (b) References Fig.13.Phaselockedvelocityfieldsandcontoursofstreamwiseveloc ity measured at (a) the attaching process; (b) the detaching process [1] E.W.Washburn,Thedynamicsofcapillaryflow,Phys. Rev., (Leeetal.[25]). 17(1921)273283. [2] N.Ichikawa,K.HosokawaandR.Maeda,Interfacemotion attachinganddetachingprocessesareplottedinFig.13.Dur ofcapillarydrivenflowinrectangularmicrochannel,J. Col- ing the attaching process shown in Fig. 13(a), the velocity loid and Interface Sci.,280(2004)155164. gradientonthemeniscusisthehighest,whichinducesaddi [3] W.R.Jong,T.H.Kuo,S.W.Ho,H.H.ChiuandS.H.Peng, tionalnormalstressonthemeniscussurface.However,during Flows in rectangular microchannels driven by capillary the detaching process, the liquid velocity is extremely low forcesand,Int. Comm. Heat and Mass Transfer,34 except for theflowpassage between bumps, as indicated in (2007)186196. Fig.13(b).Thetopviewofthemeniscusshowsaconcaveor [4] R.R.Tummala,Fundamentals of Microsystems Packaging, convex curvature because of the interaction with the solder McGrawHill,Singapore,Singapore(2001). bump, but its side view always shows a concave curvature. [5] D.Suryanarayana,R.Hsiao,T.P.GallandJ.M.McCreary, Thus, to analyze the detailed interaction, more sophisticated Enhancementofflipchipfatiguelifebyencapsulation,IEEE formulasforthecapillaryforceinthethreedimensionalshape Comp., Hybrids, and Manufacturing Technology, 14 (1) havetobedeveloped.Theanalysesofthemovementofthe (1991)218223. inclined meniscus and its interaction with the solder bumps [6] M.H.Gordon,G.Ni,W.F.SchmidtandR.P.Selvam,Cap andvelocityfieldscanstillbechallengedtoclarifythephysi illarydriven underfill encapsulation process, Advanced calphenomenaofthestationaryspotandvoidformation. Packaging,8(4)(1999)3437. [7] V. S. Arpaci, Conduction Heat Transfer, AddisonWesley PublishingCompany,NewYork,USA(1966). 4. Summary and perspectives [8] L. Nguyen, C. Quentin, P. Fine, B. Cobb, S. Bayyuk, H. Theflipchippackagehasbecomeincreasinglythinnerbe Yang and S. A. BidstrupAllen, Underfill of flip chip on cause of the demand for faster, smaller, and more flexible laminates: simulation and validation, IEEE Trans. Compo- electronicdevices.Theunderfillprocessintheflipchippack nents and Packaging Technologies,22(2)(1999)168176. age is a prerequisite to protect the electronic devices from [9] G.Lehmann,A.Maria,P.C.LeeandE.J.Cotts,Modeling thermalfatigueanddropimpact.Therecentachievementsof the underfill flow process, Proc. Technical Program, Con- the filling time models and the physical phenomena in the ference on Surface Mount Technology,SanJose,CA,USA capillaryunderfillflowswerereviewedinthisstudy.Asthe (1997)340350. solderbumpdensityincreases,theestimatedfillingtimebased [10] J.W.Wan,W.J.ZhangandD.J.Bergstrom,Ananalytical onstaticcapillarypressurebecomesshorterthanthemeasured modelforpredictingtheunderfillflowcharacteristicsinflip fillingtime.Thisdiscrepancyresultsfromthevariationofthe chip encapsulation, IEEE Trans. Advanced Packaging, 28 contactanglewhentheflowmeniscuspassesthebumpsur (3)(2005)481487. face.Therefore,thedynamiccontactangleanditsmodeling [11] K. Hosokawa, T. Fujii and I. Endo, Dropletbased nano/ shouldbeconsideredtoobtainamoreaccurateestimateofthe picolitermixerusinghydrophobicmicrocapillaryvent,Proc. capillaryflowanditsapplication.Apartfromperformance,the IEEE MEMS,Orlando,FL,USA(1999)388393. reliabilityofelectronicdevicesisalsosignificantintheindus [12] A. Gerlach, H. Lambach and D. Seidel, Propagation of trialfield.Thepresenceofairvoidsaftertheunderfillprocess adhesivesinjointsduringcapillaryadhesivebondingofmi indicatesaseriouspackagingdefectaffectingreliability.The crocomponents,Microsystems Technologies,6(1999)1922.

Y. B. Kim and J. Sung / Journal of Mechanical Science and Technology 26 (12) (2012) 3751~3759 3759 [13] H. Schonhorn, H. L. Frisch and T. K. Kwei, Kinetics of characteristicsandprediction,IEEE Trans. Components and wettingofsurfacesbypolymermelts,J. Applied Phys.,37 Packaging Technologies,23(3)(2000)420427. (13)(1966)49674973. [27] J.W. Wan, W.J.ZhangandD.J.Bergstrom, Numerical [14] S.Newman,Kineticsof wettingofsurfacesbypolymers; modelingfortheunderfillflowinflipchippackaging,IEEE capillaryflow,J. Colloid and Interface Sci.,26(1968)209 Trans. Components and Packaging Technologies,32(2009) 213. 227234. [15] C.W.Macosko,: Principles, Measurements, and [28] T.Hashimoto,T.Shinichiro,K.MorinishiandN.Satofuka, Applications,VCHPublishers,Inc.,NewYork,USA(1994). Numericalsimulationofconventionalcapillaryflowandno [16] R.B.Bird,W.E.StewartandE.N.Lightfoot,Transport flowunderfillinflipchippackaging,Computers and Fluids, Phenomena,JohnWiley&Sons,NewYork,USA(1960). 37(2008)520523. [17] J.W.Wan,Analysis and modeling of underfill flow driven [29] J. Wang, Flow time measurements for underfills in flip by capillary action in flip-chip packaging, Ph.D Thesis at chip packaging, IEEE Trans. Components and Packaging UniversityofSaskatchewan,Saskatoon,Canada(2005). Technologies,28(2005)366370. [18] J.Wang,Underfillofflipchiponorganicsubstrate:viscos [30] S.HanandK.K.Wang,Studyonthepressurizedunderfill ity,surfacetension,andcontactangle,Microelectronics Re- encapsulationofflipchips,IEEE Trans. Components, Pack- liability,42(2002)293299. aging, and Manufacturing Technology-Part B,20(4)(1997) [19] W.B.YoungandW.L.Yang,Theeffectofsolderbump 434442. pitchontheunderfillflow,IEEE Trans. Advanced Packag- ing,25(4)(2002)537542. [20] W.B.Young,Capillaryimpregnationintocylinderbanks,J. Young Bae Kim He obtained his BS Colloid and Interface Sci.,273(2004)576580. degree in Environmental Engineering [21] B.R.Gebart,Permeabilityofunidirectionalreinforcements from Yonsei University in 2007. Since forRTM,J. Composite Mater.,26(8)(1992)11001133. then,hehasbeenagraduatestudentof [22] S.HanandK.K.Wang,Analysisoftheflowofencapsu EnergyandEnvironmentalEngineering lantduringunderfillencapsulationofflipchips,IEEE Trans. atSeoulNationalUniversityofScience Components, Packaging, and Manufacturing Technology- andTechnology. Part B,20(4)(1997)424433. [23] J.W.Wan,W.J.ZhangandD.J.Bergstrom,Experimental verificationofmodelsforunderfillflowdrivenbycapillary Jaeyong Sung HereceivedhisBSde forces in flipchip packaging, Microelectronics Reliability, gree in Mechanical Engineering from 48(2008)425430. the Seoul National University in 1994. [24] Y. B. Kim, J. Sung and M. H. Lee, MicroPIV measure HesubsequentlyobtainedMSandPh.D mentsofcapillaryunderfillflowsandeffectofbumppitch degreesfromtheSchoolofMechanical onfillingprocess,J. Visualization,14(2011)237248. and Aerospace Engineering at Seoul [25] S.H.Lee,J.SungandS.E.Kim,Dynamicflowmeasure National University in 1996 and 2001. mentsofcapillaryunderfillthroughabumparrayinflipchip Since2004,hehasbeenaprofessorin package.Microelectronics Reliability,50(2010)20782083. theDepartmentofMechanicalandAutomotiveEngineeringat [26] P.Fine,B.CobbandL.Nguyen,Flipchipunderfill flow SeoulNationalUniversityofScienceandTechnology.