Fluorescence-Based Bioassays for the Detection and Evaluation of Food Materials
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Research Paper a Review of Goji Berry (Lycium Barbarum) in Traditional Chinese Medicine As a Promising Organic Superfood And
Academia Journal of Medicinal Plants 6(12): 437-445, December 2018 DOI: 10.15413/ajmp.2018.0186 ISSN: 2315-7720 ©2018 Academia Publishing Research Paper A review of Goji berry (Lycium barbarum) in Traditional Chinese medicine as a promising organic superfood and superfruit in modern industry Accepted 3rd December, 2018 ABSTRACT Traditional Chinese Medicine (TCM) has been used for thousands of years by different generations in China and other Asian countries as foods to promote good health and as drugs to treat disease. Goji berry (Lycium barbarum), as a Chinese traditional herb and food supplement, contains many nutrients and phytochemicals, such as polysaccharides, scopoletin, the glucosylated precursor, amino acids, flaconoids, carotenoids, vitamins and minerals. It has positive effects on anitcancer, antioxidant activities, retinal function preservation, anti-diabetes, immune function and anti-fatigue. Widely used in traditional Chinese medicine, Goji berries can be sold as a dietary supplement or classified as nutraceutical food due to their long and safe traditional use. Modern Goji pharmacological actions improve function and enhance the body ,s ability to adapt to a variety of noxious stimuli; it significantly inhibits the generation and spread of cancer cells and can improve eyesight and increase reserves of muscle and liver glycogens which may increase human energy and has anti-fatigue effect. Goji berries may improve brain function and enhance learning and memory. It may boost the body ,s adaptive defences, and significantly reduce the levels of serum cholesterol and triglyceride, it may help weight loss and obesity and treats chronic hepatitis and cirrhosis. At Mohamad Hesam Shahrajabian1,2, Wenli present, they are considered functional food with many beneficial effects, which is Sun1,2 and Qi Cheng1,2* why they have become more popular recently, especially in Europe, North America and Australia, as they are considered as superfood with highly nutritive and 1 Biotechnology Research Institute, antioxidant properties. -
"Epitope Mapping: B-Cell Epitopes". In: Encyclopedia of Life Sciences
Epitope Mapping: B-cell Advanced article Epitopes Article Contents . Introduction GE Morris, Wolfson Centre for Inherited Neuromuscular Disease RJAH Orthopaedic Hospital, . What Is a B-cell Epitope? . Epitope Mapping Methods Oswestry, UK and Keele University, Keele, Staffordshire, UK . Applications Immunoglobulin molecules are folded to present a surface structure complementary to doi: 10.1002/9780470015902.a0002624.pub2 a surface feature on the antigen – the epitope is this feature of the antigen. Epitope mapping is the process of locating the antibody-binding site on the antigen, although the term is also applied more broadly to receptor–ligand interactions unrelated to the immune system. Introduction formed of highly convoluted peptide chains, so that resi- dues that lie close together on the protein surface are often Immunoglobulin molecules are folded in a way that as- far apart in the amino acid sequence (Barlow et al., 1986). sembles sequences from the variable regions of both the Consequently, most epitopes on native, globular proteins heavy and light chains into a surface feature (comprised of are conformation-dependent and they disappear if the up to six complementarity-determining regions (CDRs)) protein is denatured or fragmented. Sometimes, by acci- that is complementary in shape to a surface structure on the dent or design, antibodies are produced against linear antigen. These two surface features, the ‘paratope’ on the (sequential) epitopes that survive denaturation, though antibody and the ‘epitope’ on the antigen, may have a cer- such antibodies usually fail to recognize the native protein. tain amount of flexibility to allow an ‘induced fit’ between The simplest way to find out whether an epitope is confor- them. -
Hardy Goji Berry Bush FREQUENTLY ASKED QUESTIONS FIRST
FREQUENTLY ASKED QUESTIONS WHEN DO THEY FRUIT? In most cases abundantly heavy fruit will not be produced until second season. However most will produce enough fruit the 1st year to get you real excited about your plants. Although deer leave them alone, it may be wise to place a net on them to deter the birds a little bit. DO THEY SELF POLLINATE? Yes. So they do not need a companion to set fruit. WHERE DO THESE FIT IN TO LANDSCAPE? These are a fast growing shrub with showy blue and purple flowers and red berries that adorn this plant most the entire summer and fall into a heavy frost. HOW MUCH DO THESE GET CUT BACK AND WHEN? 1st year - Allow plants to grow un-pruned. This will result in more fruit the first year and result in stronger roots. 2nd year - Cut off all stems early in the spring to about 15 inches long. This will result in many more 2nd year stems and lots of fruit, but it will come on later in the summer. 3rd year -The long-term goal is to have a nicely shaped plant about six feet tall, with a three-foot diameter canopy. In early spring, trim canopy stems to keep a foot or more clearance between the canopy and the ground. This stimulates new growth where most fruit will develop. Winter pruning can be used to clean out unwanted stems. ARE THESE VIGOROUS GROWERS AND FRUITERS? Yes. Goji berries will grow in almost any type of soil, light-sandy, Medium-loamy, and heavy-clay, but they tend to flower and fruit better in a well-drained soil of moderate quality. -
Ten Years of Lateral Flow Immunoassay Technique Applications: Trends, Challenges and Future Perspectives
sensors Review Ten Years of Lateral Flow Immunoassay Technique Applications: Trends, Challenges and Future Perspectives Fabio Di Nardo * , Matteo Chiarello , Simone Cavalera , Claudio Baggiani and Laura Anfossi Department of Chemistry, University of Torino, 10125 Torino, Italy; [email protected] (M.C.); [email protected] (S.C.); [email protected] (C.B.); [email protected] (L.A.) * Correspondence: [email protected] Abstract: The Lateral Flow Immunoassay (LFIA) is by far one of the most successful analytical platforms to perform the on-site detection of target substances. LFIA can be considered as a sort of lab-in-a-hand and, together with other point-of-need tests, has represented a paradigm shift from sample-to-lab to lab-to-sample aiming to improve decision making and turnaround time. The features of LFIAs made them a very attractive tool in clinical diagnostic where they can improve patient care by enabling more prompt diagnosis and treatment decisions. The rapidity, simplicity, relative cost-effectiveness, and the possibility to be used by nonskilled personnel contributed to the wide acceptance of LFIAs. As a consequence, from the detection of molecules, organisms, and (bio)markers for clinical purposes, the LFIA application has been rapidly extended to other fields, including food and feed safety, veterinary medicine, environmental control, and many others. This review aims to provide readers with a 10-years overview of applications, outlining the trends for the main application fields and the relative compounded annual growth rates. Moreover, future perspectives and challenges are discussed. Citation: Di Nardo, F.; Chiarello, M.; Cavalera, S.; Baggiani, C.; Anfossi, L. -
Comparison of Immunohistochemistry with Immunoassay (ELISA
British Journal of Cancer (1999) 79(9/10), 1534–1541 © 1999 Cancer Research Campaign Article no. bjoc.1998.0245 Comparison of immunohistochemistry with immunoassay (ELISA) for the detection of components of the plasminogen activation system in human tumour tissue CM Ferrier1, HH de Witte2, H Straatman3, DH van Tienoven2, WL van Geloof1, FJR Rietveld1, CGJ Sweep2, DJ Ruiter1 and GNP van Muijen1 Departments of 1Pathology, 2Chemical Endocrinology and 3Epidemiology, University Hospital Nijmegen, PO Box 9101, 6500 HB Nijmegen, The Netherlands Summary Enzyme-linked immunosorbent assay (ELISA) methods and immunohistochemistry (IHC) are techniques that provide information on protein expression in tissue samples. Both methods have been used to investigate the impact of the plasminogen activation (PA) system in cancer. In the present paper we first compared the expression levels of uPA, tPA, PAI-1 and uPAR in a compound group consisting of 33 cancer lesions of various origin (breast, lung, colon, cervix and melanoma) as quantitated by ELISA and semi-quantitated by IHC. Secondly, the same kind of comparison was performed on a group of 23 melanoma lesions and a group of 28 breast carcinoma lesions. The two techniques were applied to adjacent parts of the same frozen tissue sample, enabling the comparison of results obtained on material of almost identical composition. Spearman correlation coefficients between IHC results and ELISA results for uPA, tPA, PAI-1 and uPAR varied between 0.41 and 0.78, and were higher for the compound group and the breast cancer group than for the melanoma group. Although a higher IHC score category was always associated with an increased median ELISA value, there was an overlap of ELISA values from different scoring classes. -
Immunoassay - Elisa
IMMUNOASSAY - ELISA PHUBETH YA-UMPHAN National Institute of Health, Department of Medical Sciences 0bjective After this presentation, participants will be able to Explain how an ELISA test determines if a person has certain antigens or antibodies . Explain the process of conducting an ELISA test. Explain interactions that take place at the molecular level (inside the microtiter well) during an ELISA test. Outline - Principal of immunoassay - Classification of immunoassay Type of ELISA - ELISA ELISA Reagents General - Applications Principal of ELISA ELISA workflow What is immunoassay? Immunoassays are bioanalytical methods that use the specificity of an antigen-antibody reaction to detect and quantify target molecules in biological samples. Specific antigen-antibody recognition Principal of immunoassay • Immunoassays rely on the inherent ability of an antibody to bind to the specific structure of a molecule. • In addition to the binding of an antibody to its antigen, the other key feature of all immunoassays is a means to produce a measurable signal in response to the binding. Classification of Immunoassays Immunoassays can be classified in various ways. Unlabeled Labeled Competitive Homogeneous Noncompetitive Competitive Heterogeneous Noncompetitive https://www.sciencedirect.com/science/article/pii/S0075753508705618 Classification of Immunoassays • Unlabeled - Immunoprecipitation • Labeled Precipitation of large cross-linked Ag-Ab complexes can be visible to the naked eyes. - Fluoroimmnoassay (FIA) - Radioimmunoassay (RIA) - Enzyme Immunoassays (EIA) - Chemiluminescenceimmunoassay(CLIA) - Colloidal Gold Immunochromatographic Assay (ICA) https://www.creative-diagnostics.com/Immunoassay.htm Classification of Immunoassays • Homogeneous immunoassays Immunoassays that do not require separation of the bound Ag-Ab complex. (Does not require wash steps to separate reactants.) Example: Home pregnancy test. • Heterogeneous immunoassays Immunoassays that require separation of the bound Ag-Ab complex. -
Development of a Prototype Lateral Flow Immunoassay for Rapid Detection of Staphylococcal Protein a in Positive Blood Culture Samples
diagnostics Article Development of a Prototype Lateral Flow Immunoassay for Rapid Detection of Staphylococcal Protein A in Positive Blood Culture Samples Arpasiri Srisrattakarn 1 , Patcharaporn Tippayawat 1, Aroonwadee Chanawong 1, Ratree Tavichakorntrakool 1, Jureerut Daduang 1, Lumyai Wonglakorn 2 and Aroonlug Lulitanond 1,* 1 Centre for Research and Development of Medical Diagnostic Laboratories, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand; [email protected] (A.S.); [email protected] (P.T.); [email protected] (A.C.); [email protected] (R.T.); [email protected] (J.D.) 2 Clinical Microbiology Unit, Srinagarind Hospital, Khon Kaen University, Khon Kaen 40002, Thailand; [email protected] * Correspondence: [email protected]; Tel.: +66-(0)-4320-2086 Received: 11 August 2020; Accepted: 21 September 2020; Published: 7 October 2020 Abstract: Bloodstream infection (BSI) is a major cause of mortality in hospitalized patients worldwide. Staphylococcus aureus is one of the most common pathogens found in BSI. The conventional workflow is time consuming. Therefore, we developed a lateral flow immunoassay (LFIA) for rapid detection of S. aureus-protein A in positive blood culture samples. A total of 90 clinical isolates including 58 S. aureus and 32 non-S. aureus were spiked in simulated blood samples. The antigens were extracted by a simple boiling method and diluted before being tested using the developed LFIA strips. The results were readable by naked eye within 15 min. The sensitivity of the developed LFIA was 87.9% (51/58) and the specificity was 93.8% (30/32). When bacterial colonies were used in the test, the LFIA provided higher sensitivity and specificity (94.8% and 100%, respectively). -
Goji Berry—A Novel Nutraceutical “Superfruit” for Florida Master Gardeners1 Yujie Jiao and Guodong Liu2
HS1391 Goji Berry—a Novel Nutraceutical “Superfruit” for Florida Master Gardeners1 Yujie Jiao and Guodong Liu2 Introduction Goji berry (Lycium barbarum L.) is a native shrub to China belonging to the Solanaceae family. Common names of the crop include Chinese wolfberry, Himalayan goji, Tibetan goji, Fruktus Iycii, gougizi, goji berry, matrimony vine, Chinese boxthorn, Ningxia wolfberry, red medlar, and mede berry. It is widely cultivated and used throughout the arid and semiarid regions of northwest China (Figure 1). Figure 1. Branches of goji berry bushes (A) and cultivation in Yinchuan, Goji berries have been used in both fresh and processed Ningxia, in northern China (B). forms for food and medicine for more than 4,000 years in Credits: Yuwang Luan, Yinchuan, Ningxia, China China (Wang et al. 2015). The goji berry fruit is known This crop can be grown in Plant Hardiness Zones 4b to 9b as a “superfruit” thanks to its high levels of vitamins and as defined by the US Department of Agriculture (USDA) minerals, as well as other medicinal benefits recognized in (Figure 2). Therefore, most of Florida’s climate is favorable many countries around the world. The term “superfruit” is for goji berry, and a few Florida growers have cultivated it frequently used to refer to fruit extraordinarily rich in anti- for years. This species can tolerate infertile and unfavorable oxidants and nutrients (Chang et al. 2018; Himelrick 2018). growth conditions and hence can be mistakenly considered Goji berry has nutraceutical properties. Nutraceuticals, also invasive, but FDACS DPI (Florida Department of Agricul- called “functional foods,” aid in the prevention or treatment tural and Consumer Services, Division of Plant Industry) of certain diseases and disorders. -
HIV-1 Induces Cytoskeletal Alterations and Rac1 Activation During Monocyte-Blood-Brain Barrier Interactions
Woollard et al. Retrovirology 2014, 11:20 http://www.retrovirology.com/content/11/1/20 RESEARCH Open Access HIV-1 induces cytoskeletal alterations and Rac1 activation during monocyte-blood–brain barrier interactions: modulatory role of CCR5 Shawna M Woollard1, Hong Li1, Sangya Singh1, Fang Yu2 and Georgette D Kanmogne1* Abstract Background: Most HIV strains that enter the brain are macrophage-tropic and use the CCR5 receptor to bind and infect target cells. Because the cytoskeleton is a network of protein filaments involved in cellular movement and migration, we investigated whether CCR5 and the cytoskeleton are involved in endothelial-mononuclear phagocytes interactions, adhesion, and HIV-1 infection. Results: Using a cytoskeleton phospho-antibody microarray, we showed that after co-culture with human brain microvascular endothelial cells (HBMEC), HIV-1 infected monocytes increased expression and activation of cytoskeleton- associated proteins, including Rac1/cdc42 and cortactin, compared to non-infected monocytes co-cultured with HBMEC. Analysis of brain tissues from HIV-1-infected patients validated these findings, and showed transcriptional upregulation of Rac1 and cortactin, as well as increased activation of Rac1 in brain tissues of HIV-1-infected humans, compared to seronegative individuals and subjects with HIV-1-encephalitis. Confocal imaging showed that brain cells expressing phosphorylated Rac1 were mostly macrophages and blood vessels. CCR5 antagonists TAK-799 and maraviroc prevented HIV-induced upregulation and phosphorylation of cytoskeleton-associated proteins, prevented HIV-1 infection of macrophages, and diminished viral-induced adhesion of monocytes to HBMEC. Ingenuity pathway analysis suggests that during monocyte-endothelial interactions, HIV-1 alters protein expression and phosphorylation associated with integrin signaling, cellular morphology and cell movement, cellular assembly and organization, and post-translational modifications in monocytes. -
Protein Function Microarrays: Design, Use and Bioinformatic Analysis in Cancer Biomarker Discovery and Quantitation
Chapter 3 Protein Function Microarrays: Design, Use and Bioinformatic Analysis in Cancer Biomarker Discovery and Quantitation Jessica Duarte , Jean-Michel Serufuri , Nicola Mulder , and Jonathan Blackburn Abstract Protein microarrays have many potential applications in the systematic, quantitative analysis of protein function, including in biomarker discovery applica- tions. In this chapter, we review available methodologies relevant to this fi eld and describe a simple approach to the design and fabrication of cancer-antigen arrays suitable for cancer biomarker discovery through serological analysis of cancer patients. We consider general issues that arise in antigen content generation, microar- ray fabrication and microarray-based assays and provide practical examples of experimental approaches that address these. We then focus on general issues that arise in raw data extraction, raw data preprocessing and analysis of the resultant preprocessed data to determine its biological signi fi cance, and we describe compu- tational approaches to address these that enable quantitative assessment of serologi- cal protein microarray data. We exemplify this overall approach by reference to the creation of a multiplexed cancer-antigen microarray that contains 100 unique, puri fi ed, immobilised antigens in a spatially de fi ned array, and we describe speci fi c methods for serological assay and data analysis on such microarrays, including test cases with data originated from a malignant melanoma cohort. Keywords Protein microarrays • Cancer–testis antigens • Cancer biomarker discovery • Bioinformatic analysis • Pipeline J. Duarte • J.-M. Serufuri • N. Mulder • J. Blackburn , D.Phil (*) Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences , University of Cape Town , N3.06 Wernher Beit North Building, Anzio Road, Observatory , Cape Town 7925 , South Africa e-mail: [email protected] X. -
A Chip for the Detection of Antibodies in Autoimmune Diseases by Dr J
A utoimmunity As published in CLI June 2005 A chip for the detection of antibodies in autoimmune diseases by Dr J. Schulte-Pelkum, Dr Ch.Hentschel, Dr J. Kreutzberger, Dr F. Hiepe & Dr. W. Schoessler Biochip technology has rapidly developed into a booming sec- tor in life sciences over the last few years. The several thousand articles dedicated to the topic of microarrays reflect the signifi- cance of the potential impact of this technology on the bio- sciences [1]. Most of the research has been carried out on gene expression analysis, where DNA microarrays make it possible to generate a vast amount of information from only a few experi- ments. Newly developed protein microarrays are designed for the detection, quantification and functional analysis of proteins (e.g., antibodies) [2]. Applications of protein microarrays include assessment of DNA-protein and protein-protein inter- actions. However, progress has been slow, in part because of the challenges posed by the natural differences between proteins and DNA molecules. Proteins are highly diverse conformational Table 1. Microarray results using sera from patients with rheumatic diseases. structures commonly consisting of twenty different amino acids, whereas DNA, apart from its sequence, has a relatively uniform structure. Proteins may be totally or partially hydrophilic, hydrophobic, acidic or basic. Furthermore, they may undergo post-translational modifications such as glycosylation, acetylation and/or phosphorylation. Up to now, only a relatively small number of scientists have used protein array technology to directly investigate autoimmune diseases. Protein microarrays are technically more sophisticated than DNA arrays due to the heterogeneity of protein molecules as well as the need to preserve the complex three-dimensional structure (conformational epitopes) and function of proteins after immobilisation on the chip surface [3]. -
Anti-CD Antibody Microarray for Human Leukocyte Morphology Examination Allows Analyzing Rare Cell Populations and Suggesting Preliminary Diagnosis in Leukemia
www.nature.com/scientificreports OPEN Anti-CD antibody microarray for human leukocyte morphology examination allows analyzing rare Received: 11 March 2015 Accepted: 23 June 2015 cell populations and suggesting Published: 27 July 2015 preliminary diagnosis in leukemia Alina N. Khvastunova1,2,*, Sofya A. Kuznetsova1,2,3,*, Liubov S. Al-Radi3, Alexandra V. Vylegzhanina3, Anna O. Zakirova1,2, Olga S. Fedyanina2, Alexander V. Filatov4, Ivan A. Vorobjev5 & Fazly Ataullakhanov1,2,3 We describe a method for leukocyte sorting by a microarray of anti-cluster-of-differentiation (anti-CD) antibodies and for preparation of the bound cells for morphological or cytochemical examination. The procedure results in a “sorted” smear with cells positive for certain surface antigens localised in predefined areas. The morphology and cytochemistry of the microarray-captured normal and neoplastic peripheral blood mononuclear cells are identical to the same characteristics in a smear. The microarray permits to determine the proportions of cells positive for the CD antigens on the microarray panel with high correlation with flow cytometry. Using the anti-CD microarray we show that normal granular lymphocytes and lymphocytes with radial segmentation of the nuclei are positive for CD3, CD8, CD16 or CD56 but not for CD4 or CD19. We also show that the described technique permits to obtain a pure leukemic cell population or to separate two leukemic cell populations on different antibody spots and to study their morphology or cytochemistry directly on the microarray. In cases of leukemias/lymphomas when circulating neoplastic cells are morphologically distinct, preliminary diagnosis can be suggested from full analysis of cell morphology, cytochemistry and their binding pattern on the microarray.