Circadian Rhythm Sleep Disorders
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Circadian Disruption: What Do We Actually Mean?
HHS Public Access Author manuscript Author ManuscriptAuthor Manuscript Author Eur J Neurosci Manuscript Author . Author manuscript; Manuscript Author available in PMC 2020 May 07. Circadian disruption: What do we actually mean? Céline Vetter Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA Abstract The circadian system regulates physiology and behavior. Acute challenges to the system, such as those experienced when traveling across time zones, will eventually result in re-synchronization to the local environmental time cues, but this re-synchronization is oftentimes accompanied by adverse short-term consequences. When such challenges are experienced chronically, adaptation may not be achieved, as for example in the case of rotating night shift workers. The transient and chronic disturbance of the circadian system is most frequently referred to as “circadian disruption”, but many other terms have been proposed and used to refer to similar situations. It is now beyond doubt that the circadian system contributes to health and disease, emphasizing the need for clear terminology when describing challenges to the circadian system and their consequences. The goal of this review is to provide an overview of the terms used to describe disruption of the circadian system, discuss proposed quantifications of disruption in experimental and observational settings with a focus on human research, and highlight limitations and challenges of currently available tools. For circadian research to advance as a translational science, clear, operationalizable, and scalable quantifications of circadian disruption are key, as they will enable improved assessment and reproducibility of results, ideally ranging from mechanistic settings, including animal research, to large-scale randomized clinical trials. -
Using Bright Light and Melatonin to Reduce Jet Lag Helen J
Chapter 16 Using Bright Light and Melatonin to Reduce Jet Lag Helen J. Burgess Biological Rhythms Research Laboratory, Rush University Medical Center, Chicago, IL PROTOCOL NAME Using bright light and melatonin to reduce jet lag. GROSS INDICATION This is generally applicable to phase shifting the circadian clock in patients with circadian rhythm sleep disorders or winter depression. SPECIFIC INDICATION Bright light and melatonin can be used to reduce jet lag after crossing at least two time zones east or west. CONTRAINDICATIONS Bright light should probably not be used in: l people with existing eye disease; l people using photosensitizing medications. Bright light can induce: l migraines (in about one-third of migraine sufferers); l mania (rare). Melatonin should probably not be used in: l people who are driving or operating heavy machinery (unless they have previously tested their response to melatonin and are taking ,0.5 mg of melatonin); l pregnant or nursing women (melatonin will transfer to the fetus/infant); l women seeking to become pregnant; Behavioral Treatments for Sleep Disorders. DOI: 10.1016/B978-0-12-381522-4.00016-X © 2011 Elsevier Inc. All rights reserved. 151 152 PART I | BSM Treatment Protocols for Insomnia l children (unless they suffer from a neurodevelopmental condition associ- ated with extremely poor sleep); l asthmatics and patients with gastrointestinal disease (melatonin may be inflammatory); l patients using other medications (unless supervised by a physician). RATIONALE FOR INTERVENTION Rapid jet travel across multiple time zones produces a temporary misalign- ment between the timing of the central circadian clock and the desired sleep times in the new time zone. -
The Management of Chronic Insomnia Disorder and Obstructive Sleep
VA/DoD CLINICAL PRACTICE GUIDELINES The Management of Chronic Module A: Screening for Sleep Disorders Module B: Management of Chronic Insomnia Disorder Insomnia Disorder and 1 11 Adults with a provisional diagnosis of 15 Adult patient 14 Obstructive Sleep Apnea chronic insomnia disorder Refer to trained CBT-I or BBT-I Did the patient 2 provider, either in-person or using complete CBT-I or Sidebar 1: Clinical Features of OSA and Chronic Insomnia Disorder Does the patient, their bed 12 telehealth BBT-I? 3 OSA (see Appendix D in the full CPG for detailed ICSD -3 diagnostic criteria): partner, or their healthcare No Confirm diagnosis and then use SDM and encourage 20 Initiate short-term Yes • Sleepiness provider have complaints Exit algorithm behaviorally-based interventions for chronic insomnia No and/or concerns about the (i.e., CBT-I or BBT-I) (See Sidebar 3) pharmacotherapy • Loud, bothersome snoring patient’s sleep? treatment and/or CIH • Witnessed apneas 16 Yes 13 Was CBT-I or • Nightly gasping/choking 4 Is the patient ablea and willing Yes BBT-I 2 b • Obesity (BMI >30 kg/m ) Perform a clinical assessment, to complete CBT-I or BBT-I? 21 effective? Yes • Treatment resistant hypertension including use of validated screening No No Did insomnia remit after 17 Chronic Insomnia Disorder (see Appendix D in the full CPG for detailed tools (e.g., ISI and STOP 18 Is short-term pharmacotherapy Yes treatment with CIH or short- ICSD-3 diagnostic criteria): questionnaire) (See Sidebar 1) and/or CIH appropriate? (See Refer to sleep term pharmacotherapy with • Difficulty initiating sleep, difficulty maintaining sleep, or early -morning Sidebars 4 and 5) specialist for further no additional medication No assessment awakenings 6 No 5 19 required? • The sleep disturbance causes clinically significant distress or impairment in Are screening, history, Manage the important areas of functioning and/or physical exam No diagnosed sleep Reassess or reconsider behavioral treatments as needed. -
Participant Guide
Participant Guide Get Enough Sleep Session Focus Getting enough sleep can help you prevent or delay type 2 diabetes. This session we will talk about: z Why sleep matters z Some challenges of getting enough sleep and ways to cope with them You will also make a new action plan! Tips: ✓ Go to bed and get up at the same time each day. This helps your body get on a schedule. ✓ Follow a bedtime routine that helps you wind down. Participant Guide: Get Enough Sleep 2 Jenny’s Story Jenny is at risk for type 2 diabetes. Her doctor asks her if she gets at least 7 hours of sleep each night. Jenny laughs. “Are you serious?” she asks. “I’m lucky if I get 5 hours.” Jenny usually doesn’t have much trouble falling asleep. But she often has to use the bathroom in the early morning. This gets her thinking about all the things she needs to do the next day. Plus, her husband’s breathing is loud. Both of these things make it hard for Jenny to fall back to sleep. She often lies awake for hours. These days, Jenny drinks less water and avoids caffeine in the evening. She makes a list of things to do the next day. Then she sets it aside. Jenny rarely needs to get up to use the bathroom during the night. If she does, she breathes deeply to help her get back to sleep. She also runs a fan to cover up the sound of her husband’s breathing. Jenny is closer to getting 7 hours of sleep a night. -
Circadian Rhythms Fact Sheet
Circadian Rhythms Circadian rhythms are physical, mental, and behavioral changes that follow a 24-hour cycle. What are circadian rhythms? Circadian rhythms are physical, mental, and behavioral changes that follow a 24-hour cycle. These natural processes respond primarily to light and dark and affect most living things, including animals, plants, and microbes. Chronobiology is the study of circadian rhythms. One example of a light-related circadian rhythm is sleeping at night and being awake during the day. The image to the right shows the circadian rhythm cycle of a typical teen. What are biological clocks? Biological clocks are organisms’ natural timing devices, regulating the cycle of circadian rhythms. They’re composed of specific molecules (proteins) Circadian rhythm cycle of a typical teenager. that interact with cells throughout the body. Credit: NIGMS Nearly every tissue and organ contains biological clocks. Researchers have identified similar genes in people, fruit flies, mice, plants, fungi, and several What is the master clock? other organisms that make the clocks’ molecular A master clock in the brain coordinates all the components. biological clocks in a living thing, keeping the clocks in sync. In vertebrate animals, including humans, the master clock is a group of about 20,000 nerve cells (neurons) that form a structure called the suprachiasmatic nucleus, or SCN. The SCN is in a part of the brain called the hypothalamus and Light receives direct input from the eyes. Your brain’s “master clock” Suprachiasmatic Nucleus (SCN) Hypothalamus (or SCN) receives (Soop-ra-kias-MA-tic NU-klee-us) (Hype-o-THAL-a-mus) light cues from the environment. -
Diagnosis, Management and Pathophysiology of Central Sleep Apnea in Children ⇑ Anya T
Paediatric Respiratory Reviews 30 (2019) 49–57 Contents lists available at ScienceDirect Paediatric Respiratory Reviews Review Diagnosis, management and pathophysiology of central sleep apnea in children ⇑ Anya T. McLaren a, Saadoun Bin-Hasan b, Indra Narang a,c, a Division of Respiratory Medicine, The Hospital for Sick Children, 555 University Avenue, Toronto, ON M5G1X8, Canada b Department of Pediatrics, Division of Respiratory Medicine, Farwaniya Hospital, Kuwait c Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada Educational aims The reader will be able to: Identify the different types of pediatric central sleep apnea (CSA) Describe the clinical presentation of CSA in children Discuss the pathophysiology of CSA Understand the evaluation of CSA in the pediatric population article info summary Keywords: Central sleep apnea (CSA) is thought to occur in about 1–5% of healthy children. CSA occurs more com- Central sleep apnea monly in children with underlying disease and the presence of CSA may influence the course of their dis- Sleep disordered breathing ease. CSA can be classified based on the presence or absence of hypercapnia as well as the underlying Hypoventilation condition it is associated with. The management of CSA needs to be tailored to the patient and may Children include medication, non-invasive ventilation, and surgical intervention. Screening children at high risk will allow for earlier diagnosis and timely therapeutic interventions for this population. The review will highlight the pathophysiology, prevalence and diagnosis of CSA in children. An algorithm for the manage- ment of CSA in healthy children and children with underlying co-morbidities will be outlined. Ó 2018 Elsevier Ltd. -
Sleep Bruxism and Sleep-Disordered Breathing
CRITICAL APPRAISAL Sleep Bruxism and Sleep-Disordered Breathing Author STEVEN D BENDER, DDS*, Associate Editor EDWARD J. SWIFT JR., DMD, MS ABSTRACT Sleep bruxism (SB) is a repetitive jaw muscle activity with clenching or grinding of the teeth during sleep. SB is characterized by what is known as rhythmic masticatory muscle activity (RMMA). RMMA is the laboratory polysomnographic finding that differentiates SB from other oromandibular movements seen during sleep. Most often RMMA episodes are associated with sleep arousal. Some patients will report similar complaints related to both SB and sleep disordered breathing (SDB). There are some reports that would suggest that SB is a result of SDB. It has has been postulated that SB is a compensatory mechanism to re establish muscle tone of the upper airway. While these disorders do in fact often present concomitantly, the relationship between the two is yet to be fully elucidated. This Critical Appraisal reviews 3 recent publications with the intent to better define what relationships may exists between SDB and SB. While the current evidence appears to support the notion that these are often concomitant disorders, it also makes clear that evidence to support the hypothesis that SDB is causative for SB is currently lacking. (J Esthet Restor Dent 00:000–000, 2016) Sleep Bruxismin Patients with Sleep-disordered Breathing T.T. SJOHOLM,€ A.A. LOWE, K. MIYAMOTO, A. FLEETHAM, C.F. RYAN Archives of Oral Biology 2000 (45:889–96) ABSTRACT index of more than five per hour of sleep were excluded. Sleep breathing parameters were measured Objective: The primary objective was to determine the using polysomnagraphic (PSG) recordings. -
Sleep Apnea Sleep Apnea
Health and Safety Guidelines 1 Sleep Apnea Sleep Apnea Normally while sleeping, air is moved at a regular rhythm through the throat and in and out the lungs. When someone has sleep apnea, air movement becomes decreased or stops altogether. Sleep apnea can affect long term health. Types of sleep apnea: 1. Obstructive sleep apnea (narrowing or closure of the throat during sleep) which is seen most commonly, and, 2. Central sleep apnea (the brain is causing a change in breathing control and rhythm) Obstructive sleep apnea (OSA) About 25% of all adults are at risk for sleep apnea of some degree. Men are more commonly affected than women. Other risk factors include: 1. Middle and older age 2. Being overweight 3. Having a small mouth and throat Down syndrome Because of soft tissue and skeletal alterations that lead to upper airway obstruction, people with Down syndrome have an increased risk of obstructive sleep apnea. Statistics show that obstructive sleep apnea occurs in at least 30 to 75% of people with Down syndrome, including those who are not obese. In over half of person’s with Down syndrome whose parents reported no sleep problems, sleep studies showed abnormal results. Sleep apnea causing lowered oxygen levels often contributes to mental impairment. How does obstructive sleep apnea occur? The throat is surrounded by muscles that are active controlling the airway during talking, swallowing and breathing. During sleep, these muscles are much less active. They can fall back into the throat, causing narrowing. In most people this doesn’t affect breathing. However in some the narrowing can cause snoring. -
The Effects of Time of Day and Chronotype on Cognitive and Physical Performance in Healthy Volunteers Facer-Childs, Elise; Boiling, Sophie; Balanos, George
CORE Metadata, citation and similar papers at core.ac.uk Provided by University of Birmingham Research Portal The effects of time of day and chronotype on cognitive and physical performance in healthy volunteers Facer-Childs, Elise; Boiling, Sophie; Balanos, George DOI: 10.1186/s40798-018-0162-z License: Creative Commons: Attribution (CC BY) Document Version Publisher's PDF, also known as Version of record Citation for published version (Harvard): Facer-Childs, E, Boiling, S & Balanos, G 2018, 'The effects of time of day and chronotype on cognitive and physical performance in healthy volunteers', Sports Medicine - Open, vol. 4, no. 1, 47. https://doi.org/10.1186/s40798-018-0162-z Link to publication on Research at Birmingham portal Publisher Rights Statement: Checked for eligibility 09/11/2018 Sports Medicine - Open20184:47 https://doi.org/10.1186/s40798-018-0162-z General rights Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes permitted by law. •Users may freely distribute the URL that is used to identify this publication. •Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private study or non-commercial research. •User may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?) •Users may not further distribute the material nor use it for the purposes of commercial gain. -
INSOMNIA Authors: Dr
INSOMNIA Authors: Dr. Ashna Bowry, Dr. Karl Iglar Created Dec 2010 Overview Insomnia is commonly reported due to daytime fatigue, physical discomfort and psychological distress1. Although highly prevalent and can lead to physical and mental health problems as well as social, occupational and economic repercussions, poor sleep quality is often overlooked. The prevalence of insomnia is estimated to be 13.4% in Canada and 6-10% worldwide. 2 Definitions Acute insomnia: new onset of difficulty initiating or maintaining sleep, with the presence of an identifiable trigger lasting < 4 wks. duration;Chronic insomnia: symptoms lasting >4 weeks; Primary insomnia: a conditioned state of hyperarousal that inhibits the sleep process. Not usually associated with a comorbidity and often lasts < 1 month; Secondary insomnia: associated with primary sleep disorders (C: Circadian rhythm, A: sleep apnea, L: restless legs), medications, medical or psychiatric conditions (mood disorders and substance abuse) – see table 1; Sleep-onset latency: the time it takes to fall asleep. Normal is < 30 minutes8 Diagnostic Considerations Consider diagnosis of insomnia for patients with difficulty falling asleep, staying asleep or non-refreshing sleep in a person who has the opportunity to sleep 7-8 hours per night. Clinically relevant if effects daytime functionality (daytime dysfunction, fatigue, poor concentration and irritability.) 1,3 Sleep history is essential and should include: recent life changes, alcohol/drug use, sleep and wakefulness patterns, effect on functioning. -
Chronobiology Meets Work Life Chronotype-Dependent Nap Behaviour and Light Exposure on Work- and Free Days
Aus dem Institut für Medizinische Psychologie der Ludwig-Maximilians-Universität München Vorstand: Frau Univ. Prof. Dr. Martha Merrow Chronobiology Meets Work Life Chronotype-dependent nap behaviour and light exposure on work- and free days Dissertation zum Erwerb des Doktorgrades der Humanbiologie an der Medizinischen Fakultät der Ludwig-Maximilians-Universität zu München vorgelegt von Joana Leonie Matera aus Koblenz Jahr 2015 Mit Genehmigung der Medizinischen Fakultät der Universität München Berichterstatter: Prof. Dr. Till Roenneberg Mitberichterstatter: Priv. Doz. Dr. Matthias Weigl Priv. Doz. Dr. Jan Rémi Mitbetreuung durch den promovierten MitarBeiter: Dekan: Prof. Dr. Reinhard Hickel Tag der mündlichen Prüfung: 05.11.2015 2 ! 9(;-//.5..)(=#-!Y-$/(=#-$7&*! ! ! ! A=#@!H%5&5!2-%&(-!,5.-$5@!-$1)?$-!#(-$8(.!5&!9(;-/!/.5..@!;5//!(=#!;(-!G%$)(-*-&;-! 4(//-$.5.(%&!8(.!;-8!X#-85S! ! "#$%&%'(%)%*+!,--./!0%$1!2(3-! !"#$%$&'()*+)()%+)%&,%-(,.)"-/0$1#,-%+,203"&,)4($51#), $%,6$#7*,-%+,8#)),+-'5, ! ! /-)'/.?&;(*! G-$35//.@! 8(=#! 57Z-$! ;-$! 5&*-*-'-&-&! 1-(&-$! :-(.-$-&! <()3/8(..-)! '-;(-&.! 7&;! 5))-! 9$1-&&.&(//-@! ;(-! 57/! ;-8! [=#$(3..78! *5&6! %;-$! 5&&?#-$&;! B'-$&%88-&!/(&;@!5)/!/%)=#-!1-&&.)(=#!*-85=#.!7&;!&5=#!(#$-$!<-$17&3.!7&.-$! R-6-(=#&7&*!;-$!>7&;/.-))-!-(&6-)&!&5=#*-:(-/-&!#5'-K!! ! A=#!-$1)?$-!;-/!0-(.-$-&@!;5//!;(-!#(-$!G%$*-)-*.-!4(//-$.5.(%&!&(=#.!(&!*)-(=#-$! %;-$! (&! ?#&)(=#-$! >%$8! '-(! -(&-$! 5&;-$-&! [.-))-! 67$! 9$)5&*7&*! -(&-/! 515;-8(/=#-&!Q$5;-/!-(&*-$-(=#.!:7$;-K! ! ! ,B&=#-&@!\IK\]K^\I_! ! ! ! TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT! -
Chronic Insomnia Disorder in Australia
Chronic Insomnia Disorder in Australia A REPORT TO THE SLEEP HEALTH FOUNDATION 1,2 1. Appleton Institute, CQUniversity Australia 44 Greenhill Amy C Reynolds Road, Wayville SA 5034 3,4 Sarah L Appleton 2. School of Health, Medical and Applied Sciences, CQUniversity Australia 4,5 Tiffany K Gill 3. Adelaide Institute for Sleep Health: A Flinders Centre of Robert J Adams 3,4 Research Excellence, Flinders University, Bedford Park, SA. 4. The Health Observatory, Adelaide Medical School, The University of Adelaide, SA. 5. South Australian Health and Medical Research Institute, Adelaide, Australia Chronic Insomnia Disorder in Australia A Report to the Sleep Health Foundation Amy C Reynolds1,2, Sarah L Appleton3,4, Tiffany K Gill4,5 & Robert J Adams3,4 1. Appleton Institute, CQUniversity Australia 44 Greenhill Road, Wayville SA 5034 2. School of Health, Medical and Applied Sciences, CQUniversity Australia 3. Adelaide Institute for Sleep Health: A Flinders Centre of Research Excellence, Flinders University, Bedford Park, SA. 4. The Health Observatory, Adelaide Medical School, The University of Adelaide, SA. 5. South Australian Health and Medical Research Institute, Adelaide, Australia This work was supported by the Sleep Health Foundation, an Australian not‑for‑profit organisation devoted to improving sleep health, and an unrestricted grant from Merck Sharp & Dohme (Australia) Pty Limited which had no part in conception, planning, execution or write‑up of it. Publication and graphic design by Flux Visual Communication www.designbyflux.com.au July 2019 2 Chronic Insomnia Disorder in Australia EXECUTIVE SUMMARY Sleep problems are common and costly to the Australian community. One common sleep condition is insomnia.