Harold HOTELLING B. 29 September 1895 - D

Total Page:16

File Type:pdf, Size:1020Kb

Harold HOTELLING B. 29 September 1895 - D Harold HOTELLING b. 29 September 1895 - d. 26 December 1973 Summary. A major developer of the foundations of statistics and an im- portant contributor to mathematical economics, Hotelling introduced the multivariate T 2, principal components analysis, and canomical correlations. Harold Hotelling was born in Fulda, Minnesota, USA. He graduated with a B.A. in Journalism in 1919, and subsequently obtained a Master of Science degree in mathematics in 1921, both from the University of Washington. In 1924, he received his doctorate in mathematics from Princeton University, writing a dissertation on topology. Upon leaving Princeton, he joined the Food Research Institute at Stanford University where he was a research as- sociate from 1924 to 1927, and an associate professor in the Department of Mathematics from 1927 to 1931. It was during this time that Hotelling, al- ready involved in economics and mathematics research, began his work in statistics. He became aware of the writings of R. A. Fisher (q.v.) and be- gan a correspondence with him that led to their long friendship. In fact, Hotelling wrote in 1927 the book review of the first edition of Fisher’s Statis- tical Methods for Research Workers for The Journal of the American Statis- tical Association, and also spent a number of months visiting Fisher at the Rothamsted Experimental Station in the second half of 1929. While at Stan- ford, Hotelling wrote several ground-breaking papers in both statistics and mathematical economics. Hotelling developed his generalization of Student’s t-ratio to deal with multivariate correlated response data (Hotelling, 1931) and this test known as Hotelling’s T 2, remains one of his best known results. Also he worked with Holbrook Working, and together in 1929 they developed results on the standard error of the estimated regression line leading to the well known Working-Hotelling curved simultaneous confidence regions for a regression line. In addition to his statistical research at Stanford, Hotelling worked in mathematical economics. Of the notable papers he wrote, one in 1929 dealt with a problem of optimizing price and location in a competition between two entities in a spatial setting. The other paper in 1931 dealt with exhaustible natural resources, in which he showed that in equilibrium, the prices of such natural resources will have a tendency to rise over time at a percentage rate that equals the national interest rate. In 1931, Hotelling was recruited to Columbia University to be a professor of economics, and also to undertake the initiation of mathematical statis- 1 tics at Columbia. On July 1, 1942, Hotelling, W. Allen Wallis and Jacob Wolfowitz became the charter members of the renowned Statistical Research Group (SRG) which was based at Columbia University during World War II and remained in existence until September 30, 1945. (See Wallis (1980) for details concerning the SRG.) The SRG attracted an extraordinary group of research statisticians to Columbia, and its goal was to support the Armed Forces in improving the quality and efficency of their war efforts. As part of the SRG effort, Hotelling developed methods for control charts for multivari- ate data (Hotelling, 1947), and Abraham Wald did his fundamental research establishing the field of sequential analysis. During his career at Columbia University prior to the War, Hotelling con- tinued with his innovative developments in statistics and mathematical eco- nomics. He introduced the idea of principal component analysis in his 1933 and 1936 papers as a way of understanding the structure of large numbers of correlated multivariate observations, and he generalized the notions of cor- relation and multiple correlation to introduce canonical correlation analysis which allows one to measure the strength of relationship between two de- pendent sets of multivariate observations, and also understand the structure of the relationships between them (Hotelling, 1936). In 1940, he wrote with great foresight a paper on how statistics should be best taught in universities. Hotelling (1940) anticipated the growth of statistics and, at that time, inno- vatively argued that the subject of statistics should be taught in universities by statisticians in departments of statistics. In mathematical economics, two notable papers of this period were one in 1935 uniting demand and utility and one in 1938 introducing the “welfare equilibrium principle.” Hotelling was president of the Institute of Mathematical Statistics in 1941, having been one of the three original founding leaders of the Institute in 1935. He also served as president of the Econometrics Society in 1936-37, and was actively involved with the Cowles Commission essentially from its beginning. One year after the end of the World War II, Hotelling was recruited in 1946 to the University of North Carolina at Chapel Hill to start upon his ar- rival a Department of Mathematical Statistics. This department was to be a complement to the Department of Experimental Statistics at North Carolina State University at Raleigh, and together the two departments plus groups in social sciences, sociology, and biostatistics were to constitute an Institute of Statistics. Hotelling remained chairman at Chapel Hill until 1952 and formally retired in 1966; however, aftewards he continued to remain active in the department. At North Carolina, he continued his research, publishing 2 papers in 1947 and 1951 on hypothesis tests related to multivariate analysis of variance, and introduced the criteria which continues to be referred to as the Lawley-Hotelling trace. At both Columbia University and at the University of North Carolina, Hotelling excelled at attracting outstanding colleagues. Hotelling was inti- mately involved in bringing Abraham Wald to Columbia, as well as helping to attract Jacob Wolfowitz and W. Allen Wallis. At Chapel Hill such renowned statisticians as R. C. Bose, Wassily Hoeffding, P. L. Hsu, William Madow, Herbert Robbins, and S. N. Roy, were drawn there by Hotelling. He also was successful at developing young researchers who later would be renowned in their careers. He was an early mentor of both Milton Friedman and Kenneth Arrow, both of whom were later to win the Nobel Prize in Economics. Hotelling’s best known statistical contributions in multivariate analy- sis remain vital and current to present times. These specifically include Hotelling’s T 2, principal components, and a number of correlational tech- niques. Although introduced in 1908, Student’s t-test remains as one of the most used statistical procedures for univariate data. Hotelling (1931) had recog- nized that experiments often have multiple measurements on each individual, and thus multiple univariate t-tests would be correlated. Hotelling’s elegant solution was to propose a vector formulation of Student’s test which yields a quadratic form whose distribution under the null hypothesis is that of an F -distribution. In particular, he showed that the general distribution of the T 2 does not depend on nuisance parameters, but only on a quadratic form in the population mean vector, in which the matrix of the quadratic form is the inverse of the population covariance matrix. In showing this, Hotelling made use of invariance, thereby anticipating a theory developed much later. The multivariate version of Student’s t-statistic remains known as Hotelling’s T 2 statistic. To untangle the correlation and variability that exist among multiple measurements x1,...xq on an individual, Hotelling (1933) introduced princi- pal components. Principal components are uncorrelated linear combinations of the original measurements, each successfully decreasing in variation, and yet in total preserving the variation of the original measurements. Hotelling showed that the theoretical solution to the principal component problem involved finding the characteristic roots of a population covariance matrix. This then naturally led to the study of the distribution of the roots of the sample covariance matrix and thereby opened a new research area of statis- 3 tics involving roots of determinantal equations. Because characteristic roots of a covariance matrix were not readily computed numerically at that time, Hotelling suggested a power method which had the effect of accentuating the largest and smallest roots. This procedure was adopted for sometime by numerical analysts until more effective factorization methods were later developed. Beginning with his early research, Hotelling was interested in relations between variables. His first publication in 1925 dealt with the distribution of correlation ratios. In 1936, he introduced the concept of canonical correla- tions. To handle relationships between two sets of multiple measurements on an individual, he extended the multiple correlation coefficient which had been previously introduced to study the correlation between a single variable y and multiple measures x1,...,xq. The first canonical correlation between mea- sures y1,...,yp and x1,...,xq is the maximum correlation between separate normalized linear combinations of the x’s and the y’s. Subsequent canoni- cal correlations are similarly defined, but constrained to be uncorrelated of earlier chosen canonical variates. In data analysis, the first canonical variate provides what might be termed “the most predictable criterion,” which was studied by Hotelling in 1935 in the context of educational psychology. In 1936, Hotelling, jointly with Margaret Pabst, studied rank correlations, and in 1953 presented a Royal Statistical Society paper on correlations and their transforms. This paper remains as one of the definitive papers that discusses properties of correlation and Fisher’s z-transformation on Fisher’s z-transformation. For other reviews and discussions about Hotelling, see Olkin, Ghurye, Hoeffding, Madow and Mann (1960), Rubin (1960), and Darnell (1990). A complete bibliography for Hotelling is given in Olkin et al (1960) and his articles on mathematical economics are reprinted in Darnell (1990). Hotelling was married in 1920 to Floy Tracy and they had two children. She died in 1932, and Hotelling later married Susanna Edmundson in 1934 and together they had five sons, and a daughter (who died in her infancy).
Recommended publications
  • April 2, 2015 Probabilistic Voting in Models of Electoral Competition By
    April 2, 2015 Probabilistic Voting in Models of Electoral Competition by Peter Coughlin Department of Economics University of Maryland College Park, MD 20742 Abstract The pioneering model of electoral competition was developed by Harold Hotelling and Anthony Downs. The model developed by Hotelling and Downs and many subsequent models in the literature about electoral competition have assumed that candidates embody policies and, if a voter is not indifferent between the policies embodied by two candidates, then the voter’s choices are fully determined by his preferences on possible polices. More specifically, those models have assumed that if a voter prefers the policies embodied by one candidate then the voter will definitely vote for that candidate. Various authors have argued that i) factors other than policy can affect a voter’s decision and ii) those other factors cause candidates to be uncertain about who a voter will vote for. These authors have modeled the candidates’ uncertainty by using a probabilistic description of the voters’ choice behavior. This paper provides a framework that is useful for discussing the model developed by Hotelling and Downs and for discussing other models of electoral competition. Using that framework, the paper discusses work that has been done on the implications of candidates being uncertain about whom the individual voters in the electorate will vote for. 1. An overview The initial step toward the development of the first model of electoral competition was taken by Hotelling (1929), who developed a model of duopolists in which each firm chooses a location for its store. Near the end of his paper, he briefly described how his duopoly model could be reinterpreted as a model of competition between two political parties.
    [Show full text]
  • Harold Hotelling 1895–1973
    NATIONAL ACADEMY OF SCIENCES HAROLD HOTELLING 1895–1973 A Biographical Memoir by K. J. ARROW AND E. L. LEHMANN Any opinions expressed in this memoir are those of the authors and do not necessarily reflect the views of the National Academy of Sciences. Biographical Memoirs, VOLUME 87 PUBLISHED 2005 BY THE NATIONAL ACADEMIES PRESS WASHINGTON, D.C. HAROLD HOTELLING September 29, 1895–December 26, 1973 BY K. J. ARROW AND E. L. LEHMANN AROLD HOTELLING WAS A man of many interests and talents. HAfter majoring in journalism at the University of Washington and obtaining his B.A in that field in 1919, he did his graduate work in mathematics at Princeton, where he received his Ph.D. in 1924 with a thesis on topology. Upon leaving Princeton, he took a position as research associate at the Food Research Institute of Stanford Univer- sity, from where he moved to the Stanford Mathematics Department as an associate professor in 1927. It was during his Stanford period that he began to focus on the two fields— statistics and economics—in which he would do his life’s work. He was one of the few Americans who in the 1920s realized the revolution that R. A. Fisher had brought about in statistics and he spent six months in 1929 at the Rothamstead (United Kingdom) agricultural research station to work with Fisher. In 1931 Hotelling accepted a professorship in the Eco- nomics Department of Columbia University. He taught a course in mathematical economics, but most of his energy during his 15 years there was spent developing the first program in the modern (Fisherian) theory of statistics.
    [Show full text]
  • AMSTATNEWS the Membership Magazine of the American Statistical Association •
    January 2015 • Issue #451 AMSTATNEWS The Membership Magazine of the American Statistical Association • http://magazine.amstat.org AN UPDATE to the American Community Survey Program ALSO: Guidelines for Undergraduate Programs in Statistical Science Updated Meet Brian Moyer, Director of the Bureau of Economic Analysis AMSTATNEWS JANUARY 2015 • ISSUE #451 Executive Director Ron Wasserstein: [email protected] Associate Executive Director and Director of Operations Stephen Porzio: [email protected] features Director of Science Policy 3 President’s Corner Steve Pierson: [email protected] 5 Highlights of the November 2014 ASA Board of Directors Director of Education Meeting Rebecca Nichols: [email protected] 7 ASA Leaders Reminisce: Meet ASA Past President Managing Editor Megan Murphy: [email protected] Marie Davidian Production Coordinators/Graphic Designers 11 Benefits of the New All-Member Forum Sara Davidson: [email protected] Megan Ruyle: [email protected] 12 ASA, STATS.org Partner to Help Raise Media Statistical Literacy Publications Coordinator 13 White House Issues Policy Directive Bolstering Federal Val Nirala: [email protected] Statistical Agencies Advertising Manager 14 An Update to the American Community Survey Program Claudine Donovan: [email protected] 17 CHANCE Highlights: Special Issue Devoted to Women in Contributing Staff Members Statistics Jeff Myers • Amy Farris • Alison Smith 18 JQAS Highlights: Football, Golf, Soccer, Fly-Fishing Featured Amstat News welcomes news items and letters from readers on matters in December Issue of interest to the association and the profession. Address correspondence to Managing Editor, Amstat News, American Statistical Association, 732 North Washington Street, Alexandria VA 22314-1943 USA, or email amstat@ 19 NISS Meeting Addresses Transition amstat.org.
    [Show full text]
  • 13Th International Workshop on Matrices and Statistics Program And
    13th International Workshop on Matrices and Statistics B¸edlewo, Poland August 18–21, 2004 Program and abstracts Organizers • Stefan Banach International Mathematical Center, Warsaw • Committee of Mathematics of the Polish Academy of Sciences, Warsaw • Faculty of Mathematics and Computer Science, Adam Mickiewicz Uni- versity, Pozna´n • Institute of Socio-Economic Geography and Spatial Management, Faculty of Geography and Geology, Adam Mickiewicz University, Pozna´n • Department of Mathematical and Statistical Methods, Agricultural Uni- versity, Pozna´n This meeting has been endorsed by the International Linear Algebra Society. II Sponsors of the 13th International Workshop on Matrices and Statistics III Mathematical Research and Conference Center in B¸edlewo IV edited by A. Markiewicz Department of Mathematical and Statistical Methods, Agricultural University, Pozna´n,Poland and W. Wo ly´nski Faculty of Mathematics and Computer Science, Adam Mickiewicz University, Pozna´n,Poland Contents Part I. Introduction Poetical Licence The New Intellectual Aristocracy ............ 3 Richard William Farebrother Part II. Local Information Part III. Program Part IV. Ingram Olkin Ingram Olkin, Statistical Statesman .......................... 21 Yadolah Dodge Why is matrix analysis part of the statistics curriculum ...... 25 Ingram Olkin A brief biography and appreciation of Ingram Olkin .......... 31 A conversation with Ingram Olkin ............................ 34 Bibliography .................................................. 58 Part V. Abstracts Asymptotic
    [Show full text]
  • Jacob Wolfowitz 1910–1981
    NATIONAL ACADEMY OF SCIENCES JACOB WOLFOWITZ 1910–1981 A Biographical Memoir by SHELEMYAHU ZACKS Any opinions expressed in this memoir are those of the author and do not necessarily reflect the views of the National Academy of Sciences. Biographical Memoirs, VOLUME 82 PUBLISHED 2002 BY THE NATIONAL ACADEMY PRESS WASHINGTON, D.C. JACOB WOLFOWITZ March 19, 1910–July 16, 1981 BY SHELEMYAHU ZACKS ACOB WOLFOWITZ, A GIANT among the founders of modern Jstatistics, will always be remembered for his originality, deep thinking, clear mind, excellence in teaching, and vast contributions to statistical and information sciences. I met Wolfowitz for the first time in 1957, when he spent a sab- batical year at the Technion, Israel Institute of Technology. I was at the time a graduate student and a statistician at the building research station of the Technion. I had read papers of Wald and Wolfowitz before, and for me the meeting with Wolfowitz was a great opportunity to associate with a great scholar who was very kind to me and most helpful. I took his class at the Technion on statistical decision theory. Outside the classroom we used to spend time together over a cup of coffee or in his office discussing statistical problems. He gave me a lot of his time, as though I was his student. His advice on the correct approach to the theory of statistics accompanied my development as statistician for many years to come. Later we kept in touch, mostly by correspondence and in meetings of the Institute of Mathematical Statistics. I saw him the last time in his office at the University of Southern Florida in Tampa, where he spent the last years 3 4 BIOGRAPHICAL MEMOIRS of his life.
    [Show full text]
  • An Experimental Investigation of the Hotelling Rule
    Price Formation Of Exhaustible Resources: An Experimental Investigation of the Hotelling Rule Christoph Neumann1, Energy Economics, Energy Research Center of Lower Saxony, 38640 Goslar, Germany, +49 (5321) 3816 8067, [email protected] Mathias Erlei, Institute of Management and Economics, Clausthal University of Technology, 38678 Clausthal-Zellerfeld, Germany +49 (5323) 72 7625, [email protected] Keywords Non-renewable resource, Hotelling rule, Experiment, Continuous Double Auction Overview Although Germany has an ambitious energy strategy with the aim of a low carbon economy, around 87% of the primary energy consumption was based on the fossil energies oil, coal, gas and uranium in 2012, which all belong to the category of exhaustible resources (BMWi 2013). Harold Hotelling described in 1931 the economic theory of exhaustible resources (Hotelling 1931). The Hotelling rule states that the prices of exhaustible resources - more specifically the scarcity rent - will rise at the rate of interest, and consumption will decline over time. The equilibrium implies social optimality. However, empirical analysis shows that market prices of exhaustible resources rarely follow theoretical price paths. Nevertheless, Hotelling´s rule “continues to be a central feature of models of non-renewable resource markets” (Livernois 2009). We believe that there are difficulties in the (traditional) empirical verification but this should not lead to the invalidity of the theory in general. Our research, by using experimental methods, shows that the Hotelling rule has its justification. Furthermore, we think that the logic according to the Hotelling rule is one influencing factor among others in the price formation of exhaustible resources, therefore deviations are possible in real markets.
    [Show full text]
  • IMS Presidential Address Teaching Statistics in the Age of Data Science
    IMS Presidential Address Teaching Statistics in the Age of Data Science Jon A. Wellner University of Washington, Seattle IMS Annual Meeting, & JSM, Baltimore, July 31, 2017 IMS Annual Meeting and JSM Baltimore STATISTICS and DATA SCIENCE • What has happened and is happening? B Changes in degree structures: many new MS degree programs in Data Science. B Changes in Program and Department Names; 2+ programs with the name \Statistics and Data Science" Yale and Univ Texas at Austin. B New pathways in Data Science and Machine Learning at the PhD level: UW, CMU, and ::: • Changes (needed?) in curricula / teaching? IMS Presidential Address, Baltimore, 31 July 2017 1.2 ? Full Disclosure: 1. Task from my department chair: a. Review the theory course offerings in the Ph.D. program in Statistics at the UW. b. Recommend changes in the curriculum, if needed. 2. I will be teaching Statistics 581 and 582, Advanced Statistical Theory during Fall and Winter quarters 2017-2018. What should I be teaching? ? IMS Presidential Address, Baltimore, 31 July 2017 1.3 Exciting times for Statistics and Data Science: • Increasing demand! • Challenges of \big data": B challenges for computation B challenges for theory • Changes needed in statistical education? IMS Presidential Address, Baltimore, 31 July 2017 1.4 Exciting times for Statistics and Data Science: • Increasing demand! Projections, Bureau of Labor Statistics, 2014-24: Job Description Increase % • Statisticians 34% • Mathematicians 21% • Software Developer 17% • Computer and Information Research Scientists
    [Show full text]
  • Asymptotic Theory for Canonical Correlation Analysis
    Journal of Multivariate Analysis 70, 129 (1999) Article ID jmva.1999.1810, available online at http:ÂÂwww.idealibrary.com on Asymptotic Theory for Canonical Correlation Analysis T. W. Anderson Department of Statistics, Stanford University, Stanford, California 94305-4065 Received November 30, 1998 The asymptotic distribution of the sample canonical correlations and coefficients of the canonical variates is obtained when the nonzero population canonical correlations are distinct and sampling is from the normal distribution. The asymptotic distributions are also obtained for reduced rank regression when one set of variables is treated as independent (stochastic or nonstochastic) and the other set View metadata,as dependent. citation Earlier and similar work papers is corrected. at core.ac.uk 1999 Academic Press brought to you by CORE AMS 1991 subject classifications: 62H10, 62H20. provided by Elsevier - Publisher Connector Key Words: canonical variates; reduced rank regression; maximum likelihood estimators; test of rank. 1. INTRODUCTION Hotelling (1936) proposed canonical correlations as invariant measures of relationships between two sets of variates. Suppose that the two random vectors Y and X of p and q components ( pq), respectively, have the covariance matrix 7 7 7= YY YX (1.1) \7XY 7XX+ with 7YY and 7XX nonsingular. The first canonical correlation, say \1 ,is the maximum correlation between linear combinations U=:$Y and V=#$X. The maximizing linear combinations normalized so var U= var V=1 and denoted U1=:$1 Y and V1=#$1 X are the first canonical variates. The second canonical correlation \2 is the maximum correlation between linear combinations U=:$Y and V=#$X uncorrelated with U1 and V1 .
    [Show full text]
  • Adalékok Wald Ábrahám Életrajzához Additions to Abraham Wald's Biography Adăugări La Biografia Lui Abraham Wald FERENC Márta, LŐRINCZ Annamária, OLÁH-GÁL Róbert
    Adalékok Wald Ábrahám életrajzához Additions to Abraham Wald's biography Adăugări la biografia lui Abraham Wald FERENC Márta, LŐRINCZ Annamária, OLÁH-GÁL Róbert Sapientia Erdélyi Magyar Tudományegyetem, Csíkszeredai Kar, [email protected], [email protected], [email protected] Összefoglaló Száz évvel Bolyai János születése után Kolozsváron született egy másik nagy, de sajnos ke- vébé ismert matematikus, Wald Ábrahám. Wald Ábrahám ortodox-zsidó (hasszid) családban született. Sajnos nagyon kevés dokumentum maradt meg Wald életéről. A modern statisztikák- ban és az ökonometriában Wald nevét sok tétel őrzi. Ebben a cikkben eredeti dokumentumokat mutatunk be Wald Ábrahám életéről, nevezetesen: a kolozsvári piarista gimnázium matrikulai nyilvántartását, és 3 Wald Ábrahám által Alexits Györgynek magyarul írt levelet. A levéltári anyagok bemutatása forrásközlés. A cikk végén hangsúlyozzuk Wald Ábrahám szellemi és anyagi örökségének megőrzésének fontosságát. Wald örökségének megőrzéséhez emléktáblát kellene felállítani a Waldek szülői házának falán, Kolozsváron. Abstract One hundred years after the birth of János Bolyai, another well-known mathematician, Ábrahám Wald, was born in Cluj-Napoca. Ábrahám Wald was born into a Jewish-Orthodox family. Unfortu- nately, we don't have many documents about Wald's life. In modern statistics and econometrics many theorems of Wald's name are related. In this article we present original documents about the life of Ábrahám Wald, namely: the matriculation register from the Piarist High School in Cluj, and 3 letters of Ábrahám Wald written to György Alexits in Hungarian. Our presentation is an authentic first publi- cation. At the end of this article, we emphasize the importance of commemorating the intellectual and material heritage of Ábrahám Wald.
    [Show full text]
  • Subsidies, Savings and Sustainable Technology Adoption: Field Experimental Evidence from Mozambique∗
    Subsidies, Savings and Sustainable Technology Adoption: Field Experimental Evidence from Mozambique∗ Michael R. Carter University of California, Davis, NBER, BREAD and the Giannini Foundation Rachid Laajaj Universidad de los Andes Dean Yang University of Michigan, NBER and BREAD July 6, 2016 Abstract We conducted a randomized experiment in Mozambique exploring the inter- action of technology adoption subsidies with savings interventions. Theoretically, combining technology subsidies with savings interventions could either promote technology adoption (dynamic enhancement), or reduce adoption by encouraging savings accumulation for self-insurance and other purposes (dynamic substitution). Empirically, the latter possibility dominates. Subsidy-only recipients raised fertil- izer use in the subsidized season and for two subsequent unsubsidized seasons. Consumption rose, but was accompanied by higher consumption risk. By con- trast, when paired with savings interventions, subsidy impacts on fertilizer use disappear. Instead, households accumulate bank savings, which appear to serve as self-insurance. Keywords: Savings, subsidies, technology adoption, fertilizer, risk, agriculture, Mozam- bique JEL classification: C93, D24, D91, G21, O12, O13, O16, Q12, Q14 ∗Contacts: [email protected]; [email protected]; [email protected]. Acknowlegements: An- iceto Matias and Ines Vilela provided outstanding field management. This research was conducted in collabora- tion with the International Fertilizer Development Corporation (IFDC), and in particular we thank Alexander Fernando, Robert Groot, Erik Schmidt, and Marcel Vandenberg. We appreciate the feedback we received from seminar participants at Brown, PACDEV 2015, the University of Washington, Erasmus, the Institute for the Study of Labor (IZA), Development Economics Network Berlin (DENeB), the \Improving Productivity in De- veloping Countries" conference (Goodenough College London), UC Berkeley, Stanford, and Yale.
    [Show full text]
  • Price Formation of Exhaustible Resources: an Experimental Investigation of the Hotelling Rule
    A Service of Leibniz-Informationszentrum econstor Wirtschaft Leibniz Information Centre Make Your Publications Visible. zbw for Economics Neumann, Christoph; Erlei, Mathias Working Paper Price Formation of Exhaustible Resources: An Experimental Investigation of the Hotelling Rule TUC Working Papers in Economics, No. 13 Provided in Cooperation with: Clausthal University of Technology, Department of Economics Suggested Citation: Neumann, Christoph; Erlei, Mathias (2014) : Price Formation of Exhaustible Resources: An Experimental Investigation of the Hotelling Rule, TUC Working Papers in Economics, No. 13, Technische Universität Clausthal, Abteilung für Volkswirtschaftslehre, Clausthal-Zellerfeld, http://dx.doi.org/10.21268/20161213-152658 This Version is available at: http://hdl.handle.net/10419/107454 Standard-Nutzungsbedingungen: Terms of use: Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen Documents in EconStor may be saved and copied for your Zwecken und zum Privatgebrauch gespeichert und kopiert werden. personal and scholarly purposes. Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle You are not to copy documents for public or commercial Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich purposes, to exhibit the documents publicly, to make them machen, vertreiben oder anderweitig nutzen. publicly available on the internet, or to distribute or otherwise use the documents in public. Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen (insbesondere CC-Lizenzen) zur Verfügung
    [Show full text]
  • Education Research 2007
    USING STATISTICS EFFECTIVELY in mathematics education research 2007 A report from a series of workshops organized by the American Statistical Association with funding from the National Science Foundation The American Statistical Association ® USING STATISTICS EFFECTIVELY IN MATHEMATICS EDUCATION RESEARCH A report from a series of workshops organized by the American Statistical Association with funding from the National Science Foundation Working Group on Statistics in Mathematics Education Research Richard Scheaffer, Chair Richard Lehrer Martha Aliaga Frank K. Lester Marie Diener-West Ingram Olkin Joan Garfield Dennis Pearl Traci Higgins Alan Schoenfeld Sterling Hilton Juliet Shaffer Gerunda Hughes Edward Silver Brian Junker William Smith Henry Kepner F. Michael Speed Jeremy Kilpatrick Patrick Thompson 2007 1 PREFACE This report had its genesis in a telephone call to the American Statistical Association (ASA) from the Education and Human Resources Directorate of the National Science Foundation. The essence of the questions asked was, “Can the statistics community offer any contributions to improving the quality of mathematics education research? If so, are you willing to contribute to discussions on the issue?” Knowing that mathematics education was in the national limelight and that statisticians value research on applied problems, the answer to both was a qualified “yes”, with the qualification being that ASA was not an education research organization and, if they were to be fruitful, the discussions would have to include mathematics education researchers. The initial discussion did, in fact, appear to be fruitful, leading to an NSF-funded project to hold a series of workshops that would bring together statisticians and mathematics education researchers for deeper discussions.
    [Show full text]