Hidden Markov Models, Theory and Applications.Indd

Total Page:16

File Type:pdf, Size:1020Kb

Hidden Markov Models, Theory and Applications.Indd HIDDEN MARKOV MODELS, THEORY AND APPLICATIONS Edited by Przemyslaw Dymarski Hidden Markov Models, Theory and Applications Edited by Przemyslaw Dymarski Published by InTech Janeza Trdine 9, 51000 Rijeka, Croatia Copyright © 2011 InTech All chapters are Open Access articles distributed under the Creative Commons Non Commercial Share Alike Attribution 3.0 license, which permits to copy, distribute, transmit, and adapt the work in any medium, so long as the original work is properly cited. After this work has been published by InTech, authors have the right to republish it, in whole or part, in any publication of which they are the author, and to make other personal use of the work. Any republication, referencing or personal use of the work must explicitly identify the original source. Statements and opinions expressed in the chapters are these of the individual contributors and not necessarily those of the editors or publisher. No responsibility is accepted for the accuracy of information contained in the published articles. The publisher assumes no responsibility for any damage or injury to persons or property arising out of the use of any materials, instructions, methods or ideas contained in the book. Publishing Process Manager Ivana Lorkovic Technical Editor Teodora Smiljanic Cover Designer Martina Sirotic Image Copyright Jenny Solomon, 2010. Used under license from Shutterstock.com First published March, 2011 Printed in India A free online edition of this book is available at www.intechopen.com Additional hard copies can be obtained from [email protected] Hidden Markov Models, Theory and Applications, Edited by Przemyslaw Dymarski p. cm. ISBN 978-953-307-208-1 free online editions of InTech Books and Journals can be found at www.intechopen.com Contents Preface IX Part 1 Tutorials and Theoretical Issues 1 Chapter 1 History and Theoretical Basics of Hidden Markov Models 3 Guy Leonard Kouemou Chapter 2 Hidden Markov Models in Dynamic System Modelling and Diagnosis 27 Tarik Al-ani Chapter 3 Theory of Segmentation 51 Jüri Lember, Kristi Kuljus and Alexey Koloydenko Chapter 4 Classification of Hidden Markov Models: Obtaining Bounds on the Probability of Error and Dealing with Possibly Corrupted Observations 85 Eleftheria Athanasopoulou and Christoforos N. Hadjicostis Part 2 Hidden Markov Models in Speech and Time-domain Signals Processing 111 Chapter 5 Hierarchical Command Recognition Based on Large Margin Hidden Markov Models 113 Przemyslaw Dymarski Chapter 6 Modeling of Speech Parameter Sequence Considering Global Variance for HMM-Based Speech Synthesis 131 Tomoki Toda Chapter 7 Using Hidden Markov Models for ECG Characterisation 151 Krimi Samar, Ouni Kaïs and Ellouze Noureddine Chapter 8 Hidden Markov Models in the Neurosciences 169 Blaettler Florian, Kollmorgen Sepp, Herbst Joshua and Hahnloser Richard VI Contents Chapter 9 Volcano-Seismic Signal Detection and Classification Processing Using Hidden Markov Models - Application to San Cristóbal and Telica Volcanoes, Nicaragua 187 Gutiérrez, Ligdamis, Ramírez, Javier, Ibañez, Jesús and Benítez, Carmen Chapter 10 A Non-Homogeneous Hidden Markov Model for the Analysis of Multi-Pollutant Exceedances Data 207 Francesco Lagona, Antonello Maruotti and Marco Picone Part 3 Hidden Markov Models in Image and Spatial Structures Analysis 223 Chapter 11 Continuous Hidden Markov Models for Depth Map-Based Human Activity Recognition 225 Zia Uddin and Tae-Seong Kim Chapter 12 Applications of Hidden Markov Models in Microarray Gene Expression Data 249 Huimin Geng, Xutao Deng and Hesham H Ali Chapter 13 Application of HMM to the Study of Three-Dimensional Protein Structure 269 Christelle Reynès, Leslie Regad, Stéphanie Pérot, Grégory Nuel and Anne-Claude Camproux Chapter 14 Control Theoretic Approach to Platform Optimization using HMM 291 Rahul Khanna, Huaping Liu and Mariette Awad Preface Hidden Markov Models (HMMs), although known for decades, have made a big ca- reer nowadays and are still in state of development. This book presents theoretical is- sues and a variety of HMMs applications. Each of the 14 chapters addresses theoretical problems and refers to some applications, but the more theoretical parts are presented in Part 1 and the application oriented chapters are grouped in Part 2 and 3. Chapter 1 has an introductory character: the basic concepts (e.g. Maximum Likeli- hood, Maximum a Posteriori and Maximum Mutual Information approaches to the HMM training) are explained. Problems of discriminative training are also discussed in1 (2) and (5) – in particular the Large Margin approach. Chapter (3) discusses the united approach to the HMM segmentation (decoding) problem based on statistical learning. The Viterbi training is compared with the Baum-Welch training in (2). The HMM evaluation problem is analyzed in (4), where the probability of classifi cation er- ror in presence of corrupted observations (e.g. caused by sensor failures) is estimated. Chapter (6) presents the Global Variance constrained trajectory training algorithm for the HMMs used for speech signal generation. The Hidden Semi-Markov Models and Hidden Markov Trees are described in (7), the Pair HMMs in (8) and the Non-homo- geneous HMMs in (10). The association of HMMs with other techniques, e.g. wavelet transforms (7) has proved useful for some applications. The HMMs applications concerning recognition, classifi cation and alignment of sig- nals described in time domain are presented in Part 2. In (5) the hierarchical recog- nition of spoken commands and in (6) the HMMs application in the Text-To-Speech synthesis is described. Chapter (7) presents the algorithms of the ECG signal analysis and segmentation. In (8) HMM applications in neurosciences are discussed, i.e. the brain activity modeling, the separation of signals generated by single neurons given a muti-neuron recording and the identifi cation and alignment of birdsong. In (9) the classifi cation of seismic signals is described and in (10) multi-pollutant exceedances data are analyzed. The applications referring to images, spatial structures and other data are presented in Part 3. Moving pictures (in forms of depth silhouett es) are recognized in the Human Ac- tivity Recognition System described in (11). Some applications concern computational 1 Numbers of chapters are referred in parentheses X Preface biology, bioinformatics and medicine. Predictions of gene functions and genetic abnor- malities are discussed in (12), a 3-dimensional protein structure analyzer is described in (13) and a diagnosis of the sleep apnea syndrome is presented in (2). There are also applications in engineering: design of the energy effi cient systems (e.g. server plat- forms) is described in (14) and condition-based maintenance of machines – in (2). I hope that the reader will fi nd this book useful and helpful for their own research. Przemyslaw Dymarski Warsaw University of Technology,Department of Electronics and Information Technology, Institute of Telecommunications Poland Part 1 Tutorials and Theoretical Issues 1 History and Theoretical Basics of Hidden Markov Models Guy Leonard Kouemou EADS Deutschland GmbH, Germany 1. Introduction The following chapter can be understood as one sort of brief introduction to the history and basics of the Hidden Markov Models. Hidden Markov Models (HMMs) are learnable finite stochastic automates. Nowadays, they are considered as a specific form of dynamic Bayesian networks. Dynamic Bayesian networks are based on the theory of Bayes (Bayes & Price, 1763). A Hidden Markov Model consists of two stochastic processes. The first stochastic process is a Markov chain that is characterized by states and transition probabilities. The states of the chain are externally not visible, therefore “hidden”. The second stochastic process produces emissions observable at each moment, depending on a state-dependent probability distribution. It is important to notice that the denomination “hidden” while defining a Hidden Markov Model is referred to the states of the Markov chain, not to the parameters of the model. The history of the HMMs consists of two parts. On the one hand there is the history of Markov process and Markov chains, and on the other hand there is the history of algorithms needed to develop Hidden Markov Models in order to solve problems in the modern applied sciences by using for example a computer or similar electronic devices. 1.1. Brief history of Markov process and Markov chains Andrey Andreyevich Markov (June 14, 1856 – July 20, 1922) was a Russian mathematician. He is best known for his work on the theory of stochastic Markov processes. His research area later became known as Markov process and Markov chains. Andrey Andreyevich Markov introduced the Markov chains in 1906 when he produced the first theoretical results for stochastic processes by using the term “chain” for the first time. In 1913 he calculated letter sequences of the Russian language. A generalization to countable infinite state spaces was given by Kolmogorov (1931). Markov chains are related to Brownian motion and the ergodic hypothesis, two topics in physics which were important in the early years of the twentieth century. But Markov appears to have pursued this out of a mathematical motivation, namely the extension of the law of large numbers to dependent events. Out of this approach grew a general statistical instrument, the so-called stochastic Markov process. In mathematics generally, probability theory and statistics particularly, a Markov process can be considered as a time-varying
Recommended publications
  • Learning and Estimation of Single Molecule Behavior
    Learning and Estimation of Single Molecule Behavior Sivaraman Rajaganapathy1;a, James Melbourne1;b, Tanuj Aggarwal2;c, Rachit Shrivastava1;d, and Murti V. Salapaka1;e Abstract— Data analysis in single molecule studies often of tension. The unfolding of a domain leads to a step involves estimation of parameters and the detection of abrupt change in the length of the protein. How much time is changes in measured signals. For single molecule studies, tools needed for the domains to unfold, the relationship to the for automated analysis that are crucial for rapid progress, need to be effective under large noise magnitudes, and often must force applied, the changes in the structure under folding assume little or no prior knowledge of parameters being stud- and unfolding events are questions that are studied with ied. This article examines an iterated, dynamic programming AFM based force spectroscopy. Most of the studies involve based step detection algorithm (SDA). It is established that numerous iterations of experiments. Often, data is collected given a prior estimate, an iteration of the SDA necessarily from a large number of experiments, not just to ensure a improves the estimate. The analysis provides an explanation and a confirmation of the effectiveness of the learning and high confidence on statistical information, but also because estimation capabilities of the algorithm observed empirically. experiment success rates are sometimes intentionally kept Further, an alternative application of the SDA is demonstrated, low. For example, in single molecule force spectroscopy, wherein the parameters of a worm-like chain (WLC) model the protein solution is diluted enough to ensure that the are estimated, for the automated analysis of data from single the success rate of an attachment forming between the tip molecule protein pulling experiments.
    [Show full text]
  • Poisson Processes Stochastic Processes
    Poisson Processes Stochastic Processes UC3M Feb. 2012 Exponential random variables A random variable T has exponential distribution with rate λ > 0 if its probability density function can been written as −λt f (t) = λe 1(0;+1)(t) We summarize the above by T ∼ exp(λ): The cumulative distribution function of a exponential random variable is −λt F (t) = P(T ≤ t) = 1 − e 1(0;+1)(t) And the tail, expectation and variance are P(T > t) = e−λt ; E[T ] = λ−1; and Var(T ) = E[T ] = λ−2 The exponential random variable has the lack of memory property P(T > t + sjT > t) = P(T > s) Exponencial races In what follows, T1;:::; Tn are independent r.v., with Ti ∼ exp(λi ). P1: min(T1;:::; Tn) ∼ exp(λ1 + ··· + λn) . P2 λ1 P(T1 < T2) = λ1 + λ2 P3: λi P(Ti = min(T1;:::; Tn)) = λ1 + ··· + λn P4: If λi = λ and Sn = T1 + ··· + Tn ∼ Γ(n; λ). That is, Sn has probability density function (λs)n−1 f (s) = λe−λs 1 (s) Sn (n − 1)! (0;+1) The Poisson Process as a renewal process Let T1; T2;::: be a sequence of i.i.d. nonnegative r.v. (interarrival times). Define the arrival times Sn = T1 + ··· + Tn if n ≥ 1 and S0 = 0: The process N(t) = maxfn : Sn ≤ tg; is called Renewal Process. If the common distribution of the times is the exponential distribution with rate λ then process is called Poisson Process of with rate λ. Lemma. N(t) ∼ Poisson(λt) and N(t + s) − N(s); t ≥ 0; is a Poisson process independent of N(s); t ≥ 0 The Poisson Process as a L´evy Process A stochastic process fX (t); t ≥ 0g is a L´evyProcess if it verifies the following properties: 1.
    [Show full text]
  • Stochastic Processes and Applications Mongolia 2015
    NATIONAL UNIVERSITY OF MONGOLIA Stochastic Processes and Applications Mongolia 2015 27th July - 7th August 2015 National University of Mongolia Ulan Bator Mongolia National University of Mongolia 1 1 Basic information Venue: The meeting will take place at the National University of Mongolia. The map below shows the campus of the University which is located in the North-Eastern block relative to the Government Palace and Chinggis Khaan Square (see the red circle with arrow indicating main entrance in map below) in the very heart of down-town Ulan Bator. • All lectures, contributed talks and tutorials will be held in the Room 320 at 3rd floor, Main building, NUM. • Registration and Opening Ceremony will be held in the Academic Hall (Round Hall) at 2nd floor of the Main building. • The welcome reception will be held at the 2nd floor of the Broadway restaurant pub which is just on the West side of Chinggis Khaan Square (see the blue circle in map below). NATIONAL UNIVERSITY OF MONGOLIA 2 National University of Mongolia 1 Facilities: The main venue is equipped with an electronic beamer, a blackboard and some movable white- boards. There will also be magic whiteboards which can be used on any vertical surface. White-board pens and chalk will be provided. Breaks: Refreshments will be served between talks (see timetable below) at the conference venue. Lunches: Arrangements for lunches will be announced at the start of the meeting. Accommodation: Various places are being used for accommodation. The main accommodation are indi- cated on the map below relative to the National University (red circle): The Puma Imperial Hotel (purple circle), H9 Hotel (black circle), Ulanbaatar Hotel (blue circle), Student Dormitories (green circle) Mentoring: A mentoring scheme will be running which sees more experienced academics linked with small groups of junior researchers.
    [Show full text]
  • One-Network Adversarial Fairness
    One-network Adversarial Fairness Tameem Adel Isabel Valera Zoubin Ghahramani Adrian Weller University of Cambridge, UK MPI-IS, Germany University of Cambridge, UK University of Cambridge, UK [email protected] [email protected] Uber AI Labs, USA The Alan Turing Institute, UK [email protected] [email protected] Abstract is general, in that it may be applied to any differentiable dis- criminative model. We establish a fairness paradigm where There is currently a great expansion of the impact of machine the architecture of a deep discriminative model, optimized learning algorithms on our lives, prompting the need for ob- for accuracy, is modified such that fairness is imposed (the jectives other than pure performance, including fairness. Fair- ness here means that the outcome of an automated decision- same paradigm could be applied to a deep generative model making system should not discriminate between subgroups in future work). Beginning with an ordinary neural network characterized by sensitive attributes such as gender or race. optimized for prediction accuracy of the class labels in a Given any existing differentiable classifier, we make only classification task, we propose an adversarial fairness frame- slight adjustments to the architecture including adding a new work performing a change to the network architecture, lead- hidden layer, in order to enable the concurrent adversarial op- ing to a neural network that is maximally uninformative timization for fairness and accuracy. Our framework provides about the sensitive attributes of the data as well as predic- one way to quantify the tradeoff between fairness and accu- tive of the class labels.
    [Show full text]
  • Remote Sensing
    remote sensing Article A Method for the Estimation of Finely-Grained Temporal Spatial Human Population Density Distributions Based on Cell Phone Call Detail Records Guangyuan Zhang 1, Xiaoping Rui 2,* , Stefan Poslad 1, Xianfeng Song 3 , Yonglei Fan 3 and Bang Wu 1 1 School of Electronic Engineering and Computer Science, Queen Mary University of London, London E1 4NS, UK; [email protected] (G.Z.); [email protected] (S.P.); [email protected] (B.W.) 2 School of Earth Sciences and Engineering, Hohai University, Nanjing 211000, China 3 College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China; [email protected] (X.S.); [email protected] (Y.F.) * Correspondence: [email protected] Received: 10 June 2020; Accepted: 8 August 2020; Published: 10 August 2020 Abstract: Estimating and mapping population distributions dynamically at a city-wide spatial scale, including those covering suburban areas, has profound, practical, applications such as urban and transportation planning, public safety warning, disaster impact assessment and epidemiological modelling, which benefits governments, merchants and citizens. More recently, call detail record (CDR) of mobile phone data has been used to estimate human population distributions. However, there is a key challenge that the accuracy of such a method is difficult to validate because there is no ground truth data for the dynamic population density distribution in time scales such as hourly. In this study, we present a simple and accurate method to generate more finely grained temporal-spatial population density distributions based upon CDR data. We designed an experiment to test our method based upon the use of a deep convolutional generative adversarial network (DCGAN).
    [Show full text]
  • On Construction of Hybrid Logistic Regression-Naıve Bayes Model For
    JMLR: Workshop and Conference Proceedings vol 52, 523-534, 2016 PGM 2016 On Construction of Hybrid Logistic Regression-Na¨ıve Bayes Model for Classification Yi Tan & Prakash P. Shenoy [email protected], [email protected] University of Kansas School of Business 1654 Naismith Drive Lawrence, KS 66045 Moses W. Chan & Paul M. Romberg fMOSES.W.CHAN, [email protected] Advanced Technology Center Lockheed Martin Space Systems Sunnyvale, CA 94089 Abstract In recent years, several authors have described a hybrid discriminative-generative model for clas- sification. In this paper we examine construction of such hybrid models from data where we use logistic regression (LR) as a discriminative component, and na¨ıve Bayes (NB) as a generative com- ponent. First, we estimate a Markov blanket of the class variable to reduce the set of features. Next, we use a heuristic to partition the set of features in the Markov blanket into those that are assigned to the LR part, and those that are assigned to the NB part of the hybrid model. The heuristic is based on reducing the conditional dependence of the features in NB part of the hybrid model given the class variable. We implement our method on 21 different classification datasets, and we compare the prediction accuracy of hybrid models with those of pure LR and pure NB models. Keywords: logistic regression, na¨ıve Bayes, hybrid logistic regression-na¨ıve Bayes 1. Introduction Data classification is a very common task in machine learning and statistics. It is considered an in- stance of supervised learning. For a standard supervised learning problem, we implement a learning algorithm on a set of training examples, which are pairs consisting of an input object, a vector of explanatory variables F1;:::;Fn, called features, and a desired output object, a response variable C, called class variable.
    [Show full text]
  • Extinction, Survival and Duality to P-Jump Processes
    Markov branching processes with disasters: extinction, survival and duality to p-jump processes by Felix Hermann and Peter Pfaffelhuber Albert-Ludwigs University Freiburg Abstract A p-jump process is a piecewise deterministic Markov process with jumps by a factor of p. We prove a limit theorem for such processes on the unit interval. Via duality with re- spect to probability generating functions, we deduce limiting results for the survival proba- bilities of time-homogeneous branching processes with arbitrary offspring distributions, un- derlying binomial disasters. Extending this method, we obtain corresponding results for time-inhomogeneous birth-death processes underlying time-dependent binomial disasters and continuous state branching processes with p-jumps. 1 Introduction Consider a population evolving according to a branching process ′. In addition to reproduction events, global events called disasters occur at some random times Z(independent of ′) that kill off every individual alive with probability 1 p (0, 1), independently of each other.Z The resulting process of population sizes will be called− a branching∈ process subject to binomial disasters with survival probability p. ProvidedZ no information regarding fitness of the individuals in terms of resistance against disasters, this binomial approach appears intuitive, since the survival events of single individuals are iid. Applications span from natural disasters as floods and droughts to effects of radiation treatment or chemotherapy on cancer cells as well as antibiotics on popula- tions of bacteria. Also, Bernoulli sampling comes into mind as in the Lenski Experiment (cf. arXiv:1808.00073v2 [math.PR] 7 Jan 2019 Casanova et al., 2016). In the general setting of Bellman-Harris processes with non-lattice lifetime-distribution subject to binomial disasters, Kaplan et al.
    [Show full text]
  • Data-Driven Topo-Climatic Mapping with Machine Learning Methods
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by RERO DOC Digital Library Nat Hazards (2009) 50:497–518 DOI 10.1007/s11069-008-9339-y ORIGINAL PAPER Data-driven topo-climatic mapping with machine learning methods A. Pozdnoukhov Æ L. Foresti Æ M. Kanevski Received: 31 October 2007 / Accepted: 19 December 2008 / Published online: 16 January 2009 Ó Springer Science+Business Media B.V. 2009 Abstract Automatic environmental monitoring networks enforced by wireless commu- nication technologies provide large and ever increasing volumes of data nowadays. The use of this information in natural hazard research is an important issue. Particularly useful for risk assessment and decision making are the spatial maps of hazard-related parameters produced from point observations and available auxiliary information. The purpose of this article is to present and explore the appropriate tools to process large amounts of available data and produce predictions at fine spatial scales. These are the algorithms of machine learning, which are aimed at non-parametric robust modelling of non-linear dependencies from empirical data. The computational efficiency of the data-driven methods allows producing the prediction maps in real time which makes them superior to physical models for the operational use in risk assessment and mitigation. Particularly, this situation encounters in spatial prediction of climatic variables (topo-climatic mapping). In complex topographies of the mountainous regions, the meteorological processes are highly influ- enced by the relief. The article shows how these relations, possibly regionalized and non- linear, can be modelled from data using the information from digital elevation models.
    [Show full text]
  • Joint Pricing and Inventory Control for a Stochastic Inventory System With
    Joint pricing and inventory control for a stochastic inventory system with Brownian motion demand Dacheng Yao Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing, 100190, China; [email protected] Abstract In this paper, we consider an infinite horizon, continuous-review, stochastic inventory system in which cumulative customers' demand is price-dependent and is modeled as a Brownian motion. Excess demand is backlogged. The revenue is earned by selling products and the costs are incurred by holding/shortage and ordering, the latter consists of a fixed cost and a proportional cost. Our objective is to simultaneously determine a pricing strategy and an inventory control strategy to maximize the expected long-run average profit. Specifically, the pricing strategy provides the price pt for any time t ≥ 0 and the inventory control strategy characterizes when and how much we need to order. We show that an (s∗;S∗; p∗) policy is ∗ ∗ optimal and obtain the equations of optimal policy parameters, where p = fpt : t ≥ 0g. ∗ Furthermore, we find that at each time t, the optimal price pt depends on the current inventory level z, and it is increasing in [s∗; z∗] and is decreasing in [z∗; 1), where z∗ is a negative level. Keywords: Stochastic inventory model, pricing, Brownian motion demand, (s; S; p) policy, impulse control, drift rate control. arXiv:1608.03033v2 [math.OC] 11 Jul 2017 1 Introduction Exogenous selling price is always assumed in the classic production/inventory models; see e.g., Scarf(1960) and the research thereafter. In practice, however, dynamic pricing is one important tool for revenue management by balancing customers' demand and inventory level.
    [Show full text]
  • A Discriminative Model to Predict Comorbidities in ASD
    A Discriminative Model to Predict Comorbidities in ASD The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:38811457 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA i Contents Contents i List of Figures ii List of Tables iii 1 Introduction 1 1.1 Overview . 2 1.2 Motivation . 2 1.3 Related Work . 3 1.4 Contribution . 4 2 Basic Theory 6 2.1 Discriminative Classifiers . 6 2.2 Topic Modeling . 10 3 Experimental Design and Methods 13 3.1 Data Collection . 13 3.2 Exploratory Analysis . 17 3.3 Experimental Setup . 18 4 Results and Conclusion 23 4.1 Evaluation . 23 4.2 Limitations . 28 4.3 Future Work . 28 4.4 Conclusion . 29 Bibliography 30 ii List of Figures 3.1 User Zardoz's post on AutismWeb in March 2006. 15 3.2 User Zardoz's only other post on AutismWeb, published in February 2006. 15 3.3 Number of CUIs extracted per post. 17 3.4 Distribution of associated ages extracted from posts. 17 3.5 Number of posts written per author . 17 3.6 Experimental Setup . 22 4.1 Distribution of AUCs for single-concept word predictions . 25 4.2 Distribution of AUCs for single-concept word persistence . 25 4.3 AUC of single-concept word vs.
    [Show full text]
  • Renewal and Regenerative Processes
    Chapter 2 Renewal and Regenerative Processes Renewal and regenerative processes are models of stochastic phenomena in which an event (or combination of events) occurs repeatedly over time, and the times between occurrences are i.i.d. Models of such phenomena typically focus on determining limiting averages for costs or other system parameters, or establishing whether certain probabilities or expected values for a system converge over time, and evaluating their limits. The chapter begins with elementary properties of renewal processes, in- cluding several strong laws of large numbers for renewal and related stochastic processes. The next part of the chapter covers Blackwell’s renewal theorem, and an equivalent key renewal theorem. These results are important tools for characterizing the limiting behavior of probabilities and expectations of stochastic processes. We present strong laws of large numbers and central limit theorems for Markov chains and regenerative processes in terms of a process with regenerative increments (which is essentially a random walk with auxiliary paths). The rest of the chapter is devoted to studying regenera- tive processes (including ergodic Markov chains), processes with regenerative increments, terminating renewal processes, and stationary renewal processes. 2.1 Renewal Processes This section introduces renewal processes and presents several examples. The discussion covers Poisson processes and renewal processes that are “embed- ded” in stochastic processes. We begin with notation and terminology for point processes that we use in later chapters as well. Suppose 0 ≤ T1 ≤ T2 ≤ ... are finite random times at which a certain event occurs. The number of the times Tn in the interval (0,t]is ∞ N(t)= 1(Tn ≤ t),t≥ 0.
    [Show full text]
  • Performance Comparison of Different Pre-Trained Deep Learning Models in Classifying Brain MRI Images
    ACTA INFOLOGICA dergipark.org.tr/acin DOI: 10.26650/acin.880918 RESEARCH ARTICLE Performance Comparison of Different Pre-Trained Deep Learning Models in Classifying Brain MRI Images Beyin MR Görüntülerini Sınıflandırmada Farklı Önceden Eğitilmiş Derin Öğrenme Modellerinin Performans Karşılaştırması Onur Sevli1 ABSTRACT A brain tumor is a collection of abnormal cells formed as a result of uncontrolled cell division. If tumors are not diagnosed in a timely and accurate manner, they can cause fatal consequences. One of the commonly used techniques to detect brain tumors is magnetic resonance imaging (MRI). MRI provides easy detection of abnormalities in the brain with its high resolution. MR images have traditionally been studied and interpreted by radiologists. However, with the development of technology, it becomes more difficult to interpret large amounts of data produced in reasonable periods. Therefore, the development of computerized semi-automatic or automatic methods has become an important research topic. Machine learning methods that can predict by learning from data are widely used in this field. However, the extraction of image features requires special engineering in the machine learning process. Deep learning, a sub-branch of machine learning, allows us to automatically discover the complex hierarchy in the data and eliminates the limitations of machine learning. Transfer learning is to transfer the knowledge of a pre-trained neural network to a similar model in case of limited training data or the goal of reducing the workload. In this study, the performance of the pre-trained Vgg-16, ResNet50, Inception v3 models in classifying 253 brain MR images were evaluated. The Vgg-16 model showed the highest success with 94.42% accuracy, 83.86% recall, 100% precision and 91.22% F1 score.
    [Show full text]