Mathematics Graduate Bulletin
Total Page:16
File Type:pdf, Size:1020Kb
The University of Utah Department of Mathematics GRADUATEBULLETIN 2021–2022 About the cover In 1970, the artist Robert Smithson (1938–1973) created the Spiral Jetty o the west side of the Promontory Peninsula in the Great Salt Lake in Utah. The artwork was under water for several years, especially after the spring oods in Northern Utah in 1984, but in the last decade, the lake level has dropped considerably. The photo was taken on 19 January 2018, when the shoreline was about 100m from the Jetty. In summer 2021, the water is much further away. The Spiral Jetty is easily reachable by passenger car over a dirt road about 25km southwest of the Golden Spike National Monument, where the east and west lines of the transcontinental railroad were joined together for the rst time on 10 May 1869. GRADUATE MATHEMATICS 2021–2022 Department of Mathematics University of Utah 155 South 1400 East, JWB 233 Salt Lake City, UT 84112-0090, USA Chair: Davar Khoshnevisan Associate Chair (Teaching): Aaron Bertram Associate Chair (Faculty and Instructors): Alla Borisyuk Director of Graduate Studies: Fernando Guevara Vasquez Graduate Program Coordinator: Paula Tooman Graduate Committee: Ken Bromberg Fernando Guevara Vasquez (Chair) Jim Keener Paula Tooman Graduate Recruitment Committee: Fred Adler (EDI rep) Fernando Guevara Vasquez (ex ocio) Sean Howe Paula Tooman Jingyi Zhu (Chair) Cover: Spiral Jetty (Photo: Nelson H. F. Beebe) Editors: Nelson H. F. Beebe, Fernando Guevara Vasquez, and Paula Tooman Contents 1 General information1 1.1 A brief history..................................1 1.2 Departmental research facilities........................2 1.3 Additional research facilities..........................3 1.4 Safety and wellness...............................3 2 Important dates5 2.1 University dates.................................5 2.2 Thesis related dates...............................5 2.3 Departmental dates...............................5 3 Graduate study7 3.1 Relevant groups and people in the Department...............7 3.1.1 Director of Graduate Studies......................7 3.1.2 Graduate Program Coordinator....................7 3.1.3 Graduate Committee..........................7 3.1.4 Graduate Student Advisory Committee (GSAC)...........8 3.2 Benets and opportunities...........................8 3.2.1 Tuition and tuition benet.......................8 3.2.1.1 Dierential tuition......................9 3.2.2 Health insurance............................9 3.2.3 Parental leave.............................. 10 3.2.4 Funded travel for graduate students.................. 10 3.2.5 Other resources for students...................... 11 3.3 Advisors and committees............................ 11 3.3.1 Initial academic mentors........................ 11 3.3.2 Advisors................................. 12 3.3.3 Committee composition........................ 12 3.3.4 When to form your committee.................... 12 3.3.5 Role of the supervisory committee.................. 13 3.3.6 What is a program of study?...................... 13 3.3.7 Deviation from requirements..................... 13 3.4 Exams....................................... 13 3.4.1 Written preliminary and qualifying examinations.......... 13 3.4.1.1 Exam topics.......................... 14 3.4.1.2 When to take exams..................... 15 i ii 3.4.1.3 Normal progress towards passing written exams..... 16 3.4.1.4 Maximum exam attempts.................. 16 3.4.1.5 Responsible faculty...................... 16 3.4.1.6 Nature of the examinations................. 17 3.4.1.7 Grading of the tests...................... 17 3.4.1.8 Announcement of results................... 17 3.4.1.9 Appeals............................. 18 3.4.2 Oral qualifying examinations...................... 18 3.4.2.1 When to schedule oral qualifying exams.......... 19 3.4.3 Final oral examination......................... 19 3.4.4 Students starting before May 2020................... 19 3.5 Evaluation and dismissal of graduate students................ 20 3.5.1 Academic performance......................... 21 3.5.2 Appeals.................................. 22 3.5.3 Guidelines on the student/advisor relationship........... 22 3.5.4 Teaching Assistant performance.................... 23 3.6 Combining Master’s and Ph.D. programs................... 23 3.6.1 Continuing to Ph.D. program from Master’s program........ 23 3.6.2 Earning a Master’s degree while in the Ph.D. program....... 24 3.6.3 Entering the Ph.D. program with a Master’s degree......... 24 3.7 Timelines for normal academic progress................... 24 3.7.1 Masters of Arts and Master of Science degrees........... 24 3.7.2 Ph.D. degree............................... 25 3.8 Outside employment.............................. 27 3.9 Gaining other skills............................... 27 3.9.1 Courses from other departments................... 27 3.10 Applying to graduate study........................... 27 3.11 Housing in Salt Lake City............................ 27 4 Degree requirements 29 4.1 Master of Arts and Master of Science degrees................ 29 4.1.1 Graduate School requirements.................... 29 4.1.2 Departmental requirements — pure mathematics.......... 29 4.1.2.1 Course requirements — pure mathematics........ 29 4.1.2.2 Graduation requirements — pure mathematics...... 30 4.1.3 Departmental requirements — applied mathematics........ 31 4.1.3.1 Course requirements — applied mathematics....... 31 4.1.3.2 Graduation requirements — applied mathematics.... 31 4.1.4 Time limit................................ 31 4.1.5 Transfer credit.............................. 31 4.2 Master of Statistics (Mathematics) program................. 31 4.2.1 Prerequisites............................... 32 4.2.2 Course requirements.......................... 32 4.3 Master of Science in Mathematics Teaching................. 32 4.4 Professional Master of Science and Technology.............. 33 4.5 Doctor of Philosophy degree......................... 33 Last revision: August 21, 2021, 12:17 MDT iii 4.5.1 Graduate School requirements.................... 33 4.5.2 Departmental requirements...................... 34 4.5.2.1 Advisors and Supervisory Committee........... 34 4.5.2.2 Course requirements..................... 34 4.5.2.3 Written preliminary examinations............. 34 4.5.2.4 Oral qualifying examination................. 34 4.5.2.5 Foreign language requirements............... 34 4.5.2.6 Final oral examination.................... 34 4.5.2.7 Teaching requirements of Ph.D. candidate........ 35 4.5.3 Time limit................................ 35 4.5.4 Graduate School schedule for the Ph.D. degree........... 35 5 Syllabi for qualifying examinations 37 5.1 Math 6010 – Linear Models.......................... 37 5.1.1 Topics................................... 37 5.1.2 Texts................................... 37 5.2 Math 6040 – Probability............................ 38 5.2.1 Topics................................... 38 5.2.2 Texts................................... 38 5.3 Math 6070 – Mathematical Statistics..................... 38 5.3.1 Topics................................... 38 5.3.2 Texts................................... 40 5.4 Math 6210 – Real Analysis........................... 40 5.4.1 Topics................................... 40 5.4.2 Texts................................... 40 5.5 Math 6220 – Complex Analysis........................ 41 5.5.1 Topics................................... 41 5.5.2 Texts................................... 41 5.6 Math 6310 – Algebra I............................. 41 5.6.1 Texts................................... 42 5.7 Math 6320 – Algebra II............................. 42 5.7.1 Texts................................... 42 5.8 Math 6410 – Ordinary dierential equations................ 43 5.8.1 Topics................................... 43 5.8.1.1 Texts.............................. 43 5.9 Math 6420 – Partial dierential equations.................. 43 5.9.1 Topics................................... 43 5.9.1.1 Texts.............................. 44 5.10 Math 6510 – Dierentiable Manifolds.................... 44 5.10.1 Topics................................... 44 5.10.2 Texts................................... 45 5.11 Math 6520 – Algebraic Topology....................... 45 5.11.1 Topics................................... 45 5.11.2 Texts................................... 46 5.12 Math 6610 – Analysis of Numerical Methods I............... 46 5.12.1 Topics................................... 46 Last revision: August 21, 2021, 12:17 MDT iv 5.12.2 Texts................................... 46 5.13 Math 6620 – Analysis of Numerical Methods II............... 46 5.13.1 Topics................................... 47 5.13.2 Texts................................... 47 5.14 Math 6710 – Applied Linear Operator and Spectral Methods....... 48 5.14.1 Topics................................... 48 5.14.2 Texts................................... 48 5.15 Math 6720 – Applied Complex Variables and Asymptotic Methods... 49 5.15.1 Topics................................... 49 5.15.2 Texts................................... 49 5.16 Math 6824 – Statistical Inference I...................... 49 5.16.1 Texts................................... 49 5.17 Math 6828 – Statistical Inference II..................... 50 5.17.1 Texts................................... 50 6 Recent Ph.D. students 51 Last revision: August 21, 2021, 12:17 MDT 1 General information This chapter briey describes the Mathematics Department at the University of Utah, and the research facilities available to its members, within