A Short Introduction to Stochastic Optimization
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Stochastic Optimization from Distributed, Streaming Data in Rate-Limited Networks Matthew Nokleby, Member, IEEE, and Waheed U
1 Stochastic Optimization from Distributed, Streaming Data in Rate-limited Networks Matthew Nokleby, Member, IEEE, and Waheed U. Bajwa, Senior Member, IEEE T Abstract—Motivated by machine learning applications in T training samples fξ(t) 2 Υgt=1 drawn independently from networks of sensors, internet-of-things (IoT) devices, and au- the distribution P (ξ), which is supported on a subset of Υ. tonomous agents, we propose techniques for distributed stochastic There are, in particular, two main categorizations of training convex learning from high-rate data streams. The setup involves a network of nodes—each one of which has a stream of data data that, in turn, determine the types of methods that can be arriving at a constant rate—that solve a stochastic convex used to find approximate solutions to the SO problem. These optimization problem by collaborating with each other over rate- are (i) batch training data and (ii) streaming training data. limited communication links. To this end, we present and analyze In the case of batch training data, where all T samples two algorithms—termed distributed stochastic approximation fξ(t)g are pre-stored and simultaneously available, a common mirror descent (D-SAMD) and accelerated distributed stochastic approximation mirror descent (AD-SAMD)—that are based on strategy is sample average approximation (SAA) (also referred two stochastic variants of mirror descent and in which nodes to as empirical risk minimization (ERM)), in which one collaborate via approximate averaging of the local, noisy subgra- minimizes the empirical average of the “risk” function φ(·; ·) dients using distributed consensus. Our main contributions are in lieu of the true expectation. -
Metaheuristics1
METAHEURISTICS1 Kenneth Sörensen University of Antwerp, Belgium Fred Glover University of Colorado and OptTek Systems, Inc., USA 1 Definition A metaheuristic is a high-level problem-independent algorithmic framework that provides a set of guidelines or strategies to develop heuristic optimization algorithms (Sörensen and Glover, To appear). Notable examples of metaheuristics include genetic/evolutionary algorithms, tabu search, simulated annealing, and ant colony optimization, although many more exist. A problem-specific implementation of a heuristic optimization algorithm according to the guidelines expressed in a metaheuristic framework is also referred to as a metaheuristic. The term was coined by Glover (1986) and combines the Greek prefix meta- (metá, beyond in the sense of high-level) with heuristic (from the Greek heuriskein or euriskein, to search). Metaheuristic algorithms, i.e., optimization methods designed according to the strategies laid out in a metaheuristic framework, are — as the name suggests — always heuristic in nature. This fact distinguishes them from exact methods, that do come with a proof that the optimal solution will be found in a finite (although often prohibitively large) amount of time. Metaheuristics are therefore developed specifically to find a solution that is “good enough” in a computing time that is “small enough”. As a result, they are not subject to combinatorial explosion – the phenomenon where the computing time required to find the optimal solution of NP- hard problems increases as an exponential function of the problem size. Metaheuristics have been demonstrated by the scientific community to be a viable, and often superior, alternative to more traditional (exact) methods of mixed- integer optimization such as branch and bound and dynamic programming. -
A Hybrid Global Optimization Method: the One-Dimensional Case Peiliang Xu
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Journal of Computational and Applied Mathematics 147 (2002) 301–314 www.elsevier.com/locate/cam A hybrid global optimization method: the one-dimensional case Peiliang Xu Disaster Prevention Research Institute, Kyoto University, Uji, Kyoto 611-0011, Japan Received 20 February 2001; received in revised form 4 February 2002 Abstract We propose a hybrid global optimization method for nonlinear inverse problems. The method consists of two components: local optimizers and feasible point ÿnders. Local optimizers have been well developed in the literature and can reliably attain the local optimal solution. The feasible point ÿnder proposed here is equivalent to ÿnding the zero points of a one-dimensional function. It warrants that local optimizers either obtain a better solution in the next iteration or produce a global optimal solution. The algorithm by assembling these two components has been proved to converge globally and is able to ÿnd all the global optimal solutions. The method has been demonstrated to perform excellently with an example having more than 1 750 000 local minima over [ −106; 107].c 2002 Elsevier Science B.V. All rights reserved. Keywords: Interval analysis; Hybrid global optimization 1. Introduction Many problems in science and engineering can ultimately be formulated as an optimization (max- imization or minimization) model. In the Earth Sciences, we have tried to collect data in a best way and then to extract the information on, for example, the Earth’s velocity structures and=or its stress=strain state, from the collected data as much as possible. -
Geometric GSI’19 Science of Information Toulouse, 27Th - 29Th August 2019
ALEAE GEOMETRIA Geometric GSI’19 Science of Information Toulouse, 27th - 29th August 2019 // Program // GSI’19 Geometric Science of Information On behalf of both the organizing and the scientific committees, it is // Welcome message our great pleasure to welcome all delegates, representatives and participants from around the world to the fourth International SEE from GSI’19 chairmen conference on “Geometric Science of Information” (GSI’19), hosted at ENAC in Toulouse, 27th to 29th August 2019. GSI’19 benefits from scientific sponsor and financial sponsors. The 3-day conference is also organized in the frame of the relations set up between SEE and scientific institutions or academic laboratories: ENAC, Institut Mathématique de Bordeaux, Ecole Polytechnique, Ecole des Mines ParisTech, INRIA, CentraleSupélec, Institut Mathématique de Bordeaux, Sony Computer Science Laboratories. We would like to express all our thanks to the local organizers (ENAC, IMT and CIMI Labex) for hosting this event at the interface between Geometry, Probability and Information Geometry. The GSI conference cycle has been initiated by the Brillouin Seminar Team as soon as 2009. The GSI’19 event has been motivated in the continuity of first initiatives launched in 2013 at Mines PatisTech, consolidated in 2015 at Ecole Polytechnique and opened to new communities in 2017 at Mines ParisTech. We mention that in 2011, we // Frank Nielsen, co-chair Ecole Polytechnique, Palaiseau, France organized an indo-french workshop on “Matrix Information Geometry” Sony Computer Science Laboratories, that yielded an edited book in 2013, and in 2017, collaborate to CIRM Tokyo, Japan seminar in Luminy TGSI’17 “Topoplogical & Geometrical Structures of Information”. -
Arxiv:1804.07332V1 [Math.OC] 19 Apr 2018
Juniper: An Open-Source Nonlinear Branch-and-Bound Solver in Julia Ole Kr¨oger,Carleton Coffrin, Hassan Hijazi, Harsha Nagarajan Los Alamos National Laboratory, Los Alamos, New Mexico, USA Abstract. Nonconvex mixed-integer nonlinear programs (MINLPs) rep- resent a challenging class of optimization problems that often arise in engineering and scientific applications. Because of nonconvexities, these programs are typically solved with global optimization algorithms, which have limited scalability. However, nonlinear branch-and-bound has re- cently been shown to be an effective heuristic for quickly finding high- quality solutions to large-scale nonconvex MINLPs, such as those arising in infrastructure network optimization. This work proposes Juniper, a Julia-based open-source solver for nonlinear branch-and-bound. Leverag- ing the high-level Julia programming language makes it easy to modify Juniper's algorithm and explore extensions, such as branching heuris- tics, feasibility pumps, and parallelization. Detailed numerical experi- ments demonstrate that the initial release of Juniper is comparable with other nonlinear branch-and-bound solvers, such as Bonmin, Minotaur, and Knitro, illustrating that Juniper provides a strong foundation for further exploration in utilizing nonlinear branch-and-bound algorithms as heuristics for nonconvex MINLPs. 1 Introduction Many of the optimization problems arising in engineering and scientific disci- plines combine both nonlinear equations and discrete decision variables. Notable examples include the blending/pooling problem [1,2] and the design and opera- tion of power networks [3,4,5] and natural gas networks [6]. All of these problems fall into the class of mixed-integer nonlinear programs (MINLPs), namely, minimize: f(x; y) s.t. -
Stochastic Optimization
Stochastic Optimization Marc Schoenauer DataScience @ LHC Workshop 2015 Content 1 Setting the scene 2 Continuous Optimization 3 Discrete/Combinatorial Optimization 4 Non-Parametric Representations 5 Conclusion Content 1 Setting the scene 2 Continuous Optimization 3 Discrete/Combinatorial Optimization 4 Non-Parametric Representations 5 Conclusion Stochastic Optimization Hypotheses Search Space Ω with some topological structure Objective function F assume some weak regularity Hill-Climbing Randomly draw x0 2 Ω and compute F(x0) Initialisation Until(happy) y = Best neighbor(xt) neighbor structure on Ω Compute F(y) If F(y) F (xt) then xt+1 = y accept if improvement else xt+1 = xt Comments Find closest local optimum defined by neighborhood structure Iterate from different x0's Until(very happy) Stochastic Optimization Hypotheses Search Space Ω with some topological structure Objective function F assume some weak regularity Stochastic (Local) Search Randomly draw x0 2 Ω and compute F(x0) Initialisation Until(happy) y = Random neighbor(xt) neighbor structure on Ω Compute F(y) If F(y) F (xt) then xt+1 = y accept if improvement else xt+1 = xt Comments Find one close local optimum defined by neighborhood structure Iterate, leaving current optimum IteratedLocalSearch Stochastic Optimization Hypotheses Search Space Ω with some topological structure Objective function F assume some weak regularity Stochastic (Local) Search { alternative viewpoint Randomly draw x0 2 Ω and compute F(x0) Initialisation Until(happy) y = Move(xt) stochastic variation on -
Adaptive Stochastic Optimization
Industrial and Systems Engineering Adaptive Stochastic Optimization Frank E. Curtis1 and Katya Scheinberg2 1Department of Industrial and Systems Engineering, Lehigh University 2Department of Operations Research and Information Engineering, Cornell University ISE Technical Report 20T-001 Adaptive Stochastic Optimization The purpose of this article is to summarize re- Frank E. Curtis Katya Scheinberg cent work and motivate continued research on ◦ the design and analysis of adaptive stochastic op- January 18, 2020 timization methods. In particular, we present an analytical framework—new for the context Abstract. Optimization lies at the heart of of adaptive deterministic optimization—that sets machine learning and signal processing. Contem- the stage for establishing convergence rate guar- porary approaches based on the stochastic gradi- antees for adaptive stochastic optimization tech- ent method are non-adaptive in the sense that niques. With this framework in hand, we remark their implementation employs prescribed param- on important open questions related to how it eter values that need to be tuned for each appli- can be extended further for the design of new cation. This article summarizes recent research methods. We also discuss challenges and oppor- and motivates future work on adaptive stochastic tunities for their use in real-world systems. optimization methods, which have the potential to offer significant computational savings when 2 Background training large-scale systems. Many problems in ML and SP are formulated as optimization problems. For example, given a 1 Introduction data vector y Rm from an unknown distribu- tion, one often∈ desires to have a vector of model The successes of stochastic optimization algo- parameters x Rn such that a composite objec- ∈ rithms for solving problems arising machine tive function f : Rn R is minimized, as in learning (ML) and signal processing (SP) are → now widely recognized. -
Global Optimization, the Gaussian Ensemble, and Universal Ensemble Equivalence
Probability, Geometry and Integrable Systems MSRI Publications Volume 55, 2007 Global optimization, the Gaussian ensemble, and universal ensemble equivalence MARIUS COSTENIUC, RICHARD S. ELLIS, HUGO TOUCHETTE, AND BRUCE TURKINGTON With great affection this paper is dedicated to Henry McKean on the occasion of his 75th birthday. ABSTRACT. Given a constrained minimization problem, under what condi- tions does there exist a related, unconstrained problem having the same mini- mum points? This basic question in global optimization motivates this paper, which answers it from the viewpoint of statistical mechanics. In this context, it reduces to the fundamental question of the equivalence and nonequivalence of ensembles, which is analyzed using the theory of large deviations and the theory of convex functions. In a 2000 paper appearing in the Journal of Statistical Physics, we gave nec- essary and sufficient conditions for ensemble equivalence and nonequivalence in terms of support and concavity properties of the microcanonical entropy. In later research we significantly extended those results by introducing a class of Gaussian ensembles, which are obtained from the canonical ensemble by adding an exponential factor involving a quadratic function of the Hamiltonian. The present paper is an overview of our work on this topic. Our most important discovery is that even when the microcanonical and canonical ensembles are not equivalent, one can often find a Gaussian ensemble that satisfies a strong form of equivalence with the microcanonical ensemble known as universal equivalence. When translated back into optimization theory, this implies that an unconstrained minimization problem involving a Lagrange multiplier and a quadratic penalty function has the same minimum points as the original con- strained problem. -
Conservative Stochastic Optimization with Expectation Constraints
1 Conservative Stochastic Optimization with Expectation Constraints Zeeshan Akhtar,? Amrit Singh Bedi,y and Ketan Rajawat? Abstract This paper considers stochastic convex optimization problems where the objective and constraint functions involve expectations with respect to the data indices or environmental variables, in addition to deterministic convex constraints on the domain of the variables. Although the setting is generic and arises in different machine learning applications, online and efficient approaches for solving such problems have not been widely studied. Since the underlying data distribution is unknown a priori, a closed-form solution is generally not available, and classical deterministic optimization paradigms are not applicable. Existing approaches towards solving these problems make use of stochastic gradients of the objective and constraints that arrive sequentially over iterations. State-of-the-art approaches, such as those using the saddle point framework, are able to ensure that the optimality gap as well as the constraint violation − 1 decay as O T 2 where T is the number of stochastic gradients. The domain constraints are assumed simple and handled via projection at every iteration. In this work, we propose a novel conservative − 1 stochastic optimization algorithm (CSOA) that achieves zero average constraint violation and O T 2 optimality gap. Further, we also consider the scenario where carrying out a projection step onto the convex domain constraints at every iteration is not viable. Traditionally, the projection operation can be avoided by considering the conditional gradient or Frank-Wolfe (FW) variant of the algorithm. The state-of-the-art − 1 stochastic FW variants achieve an optimality gap of O T 3 after T iterations, though these algorithms have not been applied to problems with functional expectation constraints. -
Monte Carlo Methods for Sampling-Based Stochastic Optimization
Monte Carlo methods for sampling-based Stochastic Optimization Monte Carlo methods for sampling-based Stochastic Optimization Gersende FORT LTCI CNRS & Telecom ParisTech Paris, France Joint works with B. Jourdain, T. Leli`evre,G. Stoltz from ENPC and E. Kuhn from INRA. A. Schreck and E. Moulines from Telecom ParisTech P. Priouret from Paris VI Monte Carlo methods for sampling-based Stochastic Optimization Introduction Simulated Annealing Simulated Annealing (1/2) Let U denote the objective function one wants to minimize. U(x) min U(x) () max exp(−U(x)) () max exp − 8T > 0 x2X x2X x2X T In order to sample from πT? where U(x) π (x) = exp − T T sample successively from a sequence of tempered distributions πT1 , πT2 , ··· with T1 > T2 > ··· > T?. Monte Carlo methods for sampling-based Stochastic Optimization Introduction Simulated Annealing Simulated Annealing (1/2) Let U denote the objective function one wants to minimize. U(x) min U(x) () max exp(−U(x)) () max exp − 8T > 0 x2X x2X x2X T In order to sample from πT? where U(x) π (x) = exp − T T sample successively from a sequence of tempered distributions πT1 , πT2 , ··· with T1 > T2 > ··· > T?. or sample successively from a sequence of (nt-iterated) kernels (PTt (x; ·))t such that πT PT = πT . Monte Carlo methods for sampling-based Stochastic Optimization Introduction Simulated Annealing Simulated Annealing (2/2) Under conditions on X, on the cooling schedule (Tt)t, on the kernels (Pt)t, on the dominating measure and the set of minima, ··· Kirkpatrick, Gelatt and Vecchi. Optimization via Simulated Annealing. Science (1983) Geman and Geman. -
Beyond Developable: Omputational Design and Fabrication with Auxetic Materials
Beyond Developable: Computational Design and Fabrication with Auxetic Materials Mina Konakovic´ Keenan Crane Bailin Deng Sofien Bouaziz Daniel Piker Mark Pauly EPFL CMU University of Hull EPFL EPFL Figure 1: Introducing a regular pattern of slits turns inextensible, but flexible sheet material into an auxetic material that can locally expand in an approximately uniform way. This modified deformation behavior allows the material to assume complex double-curved shapes. The shoe model has been fabricated from a single piece of metallic material using a new interactive rationalization method based on conformal geometry and global, non-linear optimization. Thanks to our global approach, the 2D layout of the material can be computed such that no discontinuities occur at the seam. The center zoom shows the region of the seam, where one row of triangles is doubled to allow for easy gluing along the boundaries. The base is 3D printed. Abstract 1 Introduction We present a computational method for interactive 3D design and Recent advances in material science and digital fabrication provide rationalization of surfaces via auxetic materials, i.e., flat flexible promising opportunities for industrial and product design, engi- material that can stretch uniformly up to a certain extent. A key neering, architecture, art and science [Caneparo 2014; Gibson et al. motivation for studying such material is that one can approximate 2015]. To bring these innovations to fruition, effective computational doubly-curved surfaces (such as the sphere) using only flat pieces, tools are needed that link creative design exploration to material making it attractive for fabrication. We physically realize surfaces realization. A versatile approach is to abstract material and fabrica- by introducing cuts into approximately inextensible material such tion constraints into suitable geometric representations which are as sheet metal, plastic, or leather. -
Couenne: a User's Manual
couenne: a user’s manual Pietro Belotti⋆ Dept. of Mathematical Sciences, Clemson University Clemson SC 29634. Abstract. This is a short user’s manual for the couenne open-source software for global optimization. It provides downloading and installation instructions, an explanation to all options available in couenne, and suggestions on when to use some of its features. 1 Introduction couenne is an Open Source code for solving Global Optimization problems, i.e., problems of the form (P) min f(x) s.t. gj(x) ≤ 0 ∀j ∈ M l u xi ≤ xi ≤ xi ∀i ∈ N0 Z I xi ∈ ∀i ∈ N0 ⊆ N0, n n where f : R → R and, for all j ∈ M, gj : R → R are multivariate (possibly nonconvex) functions, n = |N0| is the number of variables, and x = (xi)i∈N0 is the n-vector of variables. We assume that f and all gj’s are factorable, i.e., they are expressed as Ph Qk ηhk(x), where all functions ηhk(x) are univariate. couenne is part of the COIN-OR infrastructure for Operations Research software1. It is a reformulation-based spatial branch&bound (sBB) [10,11,12], and it implements: – linearization; – branching; – heuristics to find feasible solutions; – bound reduction. Its main purpose is to provide the Optimization community with an Open- Source tool that can be specialized to handle specific classes of MINLP problems, or improved by adding more efficient linearization, branching, heuristic, and bound reduction techniques. ⋆ Email: [email protected] 1 See http://www.coin-or.org Web resources. The homepage of couenne is on the COIN-OR website: http://www.coin-or.org/Couenne and shows a brief description of couenne and some useful links.