Functions and Regulation of Endogenous Retrovirus Elements During Zygotic Genome Activation: Implications for Improving Somatic Cell Nuclear Transfer Efficiency
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Genome-Wide Analysis of Macrosatellite
Schaap et al. BMC Genomics 2013, 14:143 http://www.biomedcentral.com/1471-2164/14/143 RESEARCH ARTICLE Open Access Genome-wide analysis of macrosatellite repeat copy number variation in worldwide populations: evidence for differences and commonalities in size distributions and size restrictions Mireille Schaap1, Richard JLF Lemmers1, Roel Maassen1, Patrick J van der Vliet1, Lennart F Hoogerheide2, Herman K van Dijk3, Nalan Baştürk4,5, Peter de Knijff1 and Silvère M van der Maarel1* Abstract Background: Macrosatellite repeats (MSRs), usually spanning hundreds of kilobases of genomic DNA, comprise a significant proportion of the human genome. Because of their highly polymorphic nature, MSRs represent an extreme example of copy number variation, but their structure and function is largely understudied. Here, we describe a detailed study of six autosomal and two X chromosomal MSRs among 270 HapMap individuals from Central Europe, Asia and Africa. Copy number variation, stability and genetic heterogeneity of the autosomal macrosatellite repeats RS447 (chromosome 4p), MSR5p (5p), FLJ40296 (13q), RNU2 (17q) and D4Z4 (4q and 10q) and X chromosomal DXZ4 and CT47 were investigated. Results: Repeat array size distribution analysis shows that all of these MSRs are highly polymorphic with the most genetic variation among Africans and the least among Asians. A mitotic mutation rate of 0.4-2.2% was observed, exceeding meiotic mutation rates and possibly explaining the large size variability found for these MSRs. By means of a novel Bayesian approach, statistical support for a distinct multimodal rather than a uniform allele size distribution was detected in seven out of eight MSRs, with evidence for equidistant intervals between the modes. -
An Alu Element-Based Model of Human Genome Instability George Wyndham Cook, Jr
Louisiana State University LSU Digital Commons LSU Doctoral Dissertations Graduate School 2013 An Alu element-based model of human genome instability George Wyndham Cook, Jr. Louisiana State University and Agricultural and Mechanical College, [email protected] Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_dissertations Recommended Citation Cook, Jr., George Wyndham, "An Alu element-based model of human genome instability" (2013). LSU Doctoral Dissertations. 2090. https://digitalcommons.lsu.edu/gradschool_dissertations/2090 This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Doctoral Dissertations by an authorized graduate school editor of LSU Digital Commons. For more information, please [email protected]. AN ALU ELEMENT-BASED MODEL OF HUMAN GENOME INSTABILITY A Dissertation Submitted to the Graduate Faculty of the Louisiana State University and Agricultural and Mechanical College in partial fulfillment of the requirements for the degree of Doctor of Philosophy in The Department of Biological Sciences by George Wyndham Cook, Jr. B.S., University of Arkansas, 1975 May 2013 TABLE OF CONTENTS LIST OF TABLES ...................................................................................................... iii LIST OF FIGURES .................................................................................................... iv LIST OF ABBREVIATIONS ...................................................................................... -
DUX4, a Zygotic Genome Activator, Is Involved in Oncogenesis and Genetic Diseases Anna Karpukhina, Yegor Vassetzky
DUX4, a Zygotic Genome Activator, Is Involved in Oncogenesis and Genetic Diseases Anna Karpukhina, Yegor Vassetzky To cite this version: Anna Karpukhina, Yegor Vassetzky. DUX4, a Zygotic Genome Activator, Is Involved in Onco- genesis and Genetic Diseases. Ontogenez / Russian Journal of Developmental Biology, MAIK Nauka/Interperiodica, 2020, 51 (3), pp.176-182. 10.1134/S1062360420030078. hal-02988675 HAL Id: hal-02988675 https://hal.archives-ouvertes.fr/hal-02988675 Submitted on 17 Nov 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. ISSN 1062-3604, Russian Journal of Developmental Biology, 2020, Vol. 51, No. 3, pp. 176–182. © Pleiades Publishing, Inc., 2020. Published in Russian in Ontogenez, 2020, Vol. 51, No. 3, pp. 210–217. REVIEWS DUX4, a Zygotic Genome Activator, Is Involved in Oncogenesis and Genetic Diseases Anna Karpukhinaa, b, c, d and Yegor Vassetzkya, b, * aCNRS UMR9018, Université Paris-Sud Paris-Saclay, Institut Gustave Roussy, Villejuif, F-94805 France bKoltzov Institute of Developmental Biology of the Russian Academy of Sciences, -
The Expression of Human Endogenous Retroviruses Is Modulated by the Tat Protein of HIV‐1
The Expression of Human Endogenous Retroviruses is modulated by the Tat protein of HIV‐1 by Marta Jeannette Gonzalez‐Hernandez A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Immunology) in The University of Michigan 2012 Doctoral Committee Professor David M. Markovitz, Chair Professor Gary Huffnagle Professor Michael J. Imperiale Associate Professor David J. Miller Assistant Professor Akira Ono Assistant Professor Christiane E. Wobus © Marta Jeannette Gonzalez‐Hernandez 2012 For my family and friends, the most fantastic teachers I have ever had. ii Acknowledgements First, and foremost, I would like to thank David Markovitz for his patience and his scientific and mentoring endeavor. My time in the laboratory has been an honor and a pleasure. Special thanks are also due to all the members of the Markovitz laboratory, past and present. It has been a privilege, and a lot of fun, to work near such excellent scientists and friends. You all have a special place in my heart. I would like to thank all the members of my thesis committee for all the valuable advice, help and jokes whenever needed. Our collaborators from the Bioinformatics Core, particularly James Cavalcoli, Fan Meng, Manhong Dai, Maureen Sartor and Gil Omenn gave generous support, technical expertise and scientific insight to a very important part of this project. Thank you. Thanks also go to Mariana Kaplan’s and Akira Ono’s laboratory for help with experimental designs and for being especially generous with time and reagents. iii Table of Contents Dedication ............................................................................................................................ ii Acknowledgements ............................................................................................................. iii List of Figures ................................................................................................................... -
Detection of HERV‑K6 and HERV‑K11 Transpositions in the Human Genome
BIOMEDICAL REPORTS 9: 53-59, 2018 Detection of HERV‑K6 and HERV‑K11 transpositions in the human genome BUKET CAKMAK GUNER1, ELIF KARLIK2, SEVGI MARAKLI1 and NERMIN GOZUKIRMIZI1 1Department of Molecular Biology and Genetics, Faculty of Science, Istanbul University, 34134 Istanbul; 2Department of Biotechnology, Institution of Science, Istanbul University, 34134 Istanbul, Turkey Received November 19, 2017; Accepted April 24, 2018 DOI: 10.3892/br.2018.1096 Abstract. Mobile genetic elements classed as transposons analysed HERV‑K movements among individuals. This is the comprise an estimated 45% of the human genome, and 8% of first report to investigate HERV‑K6 and HERV‑K11 retrotrans- these elements are human endogenous retroviruses (HERVs). poson polymorphisms between the genders and different age Endogenous retroviruses are retrotransposons, containing 5' groups. and 3' long terminal repeat sequences and encoding envelope, group‑specific antigen and DNA polymerase proteins. The Introduction aim of the present study was to analyse genome integration polymorphisms of HERV type K member 6 (HERV‑K6) and Human endogenous retroviruses (HERVs) belonging to the HERV‑K11 by using the retrotransposon based molecular superfamily of transposable and retrotransposable genetic marker technique, inter‑retrotransposon amplified polymor- elements represent ~8% of the human genome (1). HERV phism (IRAP). For this purpose, blood samples of 18 healthy type K (HERV‑K) is the sole group of endogenous retroviruses individuals within the age range of 10‑79 years (10 females that is established to contain human‑specific members. Group and 8 males) were collected, genomic DNAs were isolated HERV‑K (also known as human mouse mammary tumour and IRAP‑polymerase chain reaction (PCR) was performed. -
Retrotransposon Long Interspersed Nucleotide Element1 (LINE1) Is
The Japanese Society of Developmental Biologists Develop. Growth Differ. (2012) 54, 673–685 doi: 10.1111/j.1440-169X.2012.01368.x Original Article Retrotransposon long interspersed nucleotide element-1 (LINE-1) is activated during salamander limb regeneration Wei Zhu,1 Dwight Kuo,2 Jason Nathanson,3 Akira Satoh,4,5 Gerald M. Pao,1 Gene W. Yeo,3 Susan V. Bryant,5 S. Randal Voss,6 David M. Gardiner5*and Tony Hunter1* 1Molecular and Cell Biology Laboratory and Laboratory of Genetics, Salk Institute for Biological Studies, La Jolla, California 92037, Departments of 2Bioengineering and 3Cellular and Molecular Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, USA; 4Okayama University, R.C.I.S. Okayama-city, Okayama, 700-8530, Japan; 5Department of Developmental and Cell Biology, University of California at Irvine, Irvine, California 92697, and 6Department of Biology and Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, Kentucky 40506, USA Salamanders possess an extraordinary capacity for tissue and organ regeneration when compared to mam- mals. In our effort to characterize the unique transcriptional fingerprint emerging during the early phase of sala- mander limb regeneration, we identified transcriptional activation of some germline-specific genes within the Mexican axolotl (Ambystoma mexicanum) that is indicative of cellular reprogramming of differentiated cells into a germline-like state. In this work, we focus on one of these genes, the long interspersed nucleotide element-1 (LINE-1) retrotransposon, which is usually active in germ cells and silent in most of the somatic tissues in other organisms. LINE-1 was found to be dramatically upregulated during regeneration. -
Ervmap Analysis Reveals Genome-Wide Transcription of INAUGURAL ARTICLE Human Endogenous Retroviruses
ERVmap analysis reveals genome-wide transcription of INAUGURAL ARTICLE human endogenous retroviruses Maria Tokuyamaa, Yong Konga, Eric Songa, Teshika Jayewickremea, Insoo Kangb, and Akiko Iwasakia,c,1 aDepartment of Immunobiology, Yale School of Medicine, New Haven, CT 06520; bDepartment of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520; and cHoward Hughes Medical Institute, Chevy Chase, MD 20815 This contribution is part of the special series of Inaugural Articles by members of the National Academy of Sciences elected in 2018. Contributed by Akiko Iwasaki, October 23, 2018 (sent for review August 24, 2018; reviewed by Stephen P. Goff and Nir Hacohen) Endogenous retroviruses (ERVs) are integrated retroviral elements regulates expression of IFN-γ–responsive genes, such as AIM2, that make up 8% of the human genome. However, the impact of APOL1, IFI6, and SECTM1 (16). ERV elements can drive ERVs on human health and disease is not well understood. While transcription of genes, generate chimeric transcripts with protein- select ERVs have been implicated in diseases, including autoim- coding genes in cancer, serve as splice donors or acceptors mune disease and cancer, the lack of tools to analyze genome- for neighboring genes, and be targets of recombination and in- wide, locus-specific expression of proviral autonomous ERVs has crease genomic diversity (17, 18). ERVs that are elevated in hampered the progress in the field. Here we describe a method breast cancer tissues correlate with the expression of granzyme called ERVmap, consisting of an annotated database of 3,220 hu- and perforin levels, implying a possible role of ERVs in immune man proviral ERVs and a pipeline that allows for locus-specific surveillance of tumors (19). -
Effects of Activation of the LINE-1 Antisense Promoter on the Growth of Cultured Cells
www.nature.com/scientificreports OPEN Efects of activation of the LINE‑1 antisense promoter on the growth of cultured cells Tomoyuki Honda1*, Yuki Nishikawa1, Kensuke Nishimura1, Da Teng1, Keiko Takemoto2 & Keiji Ueda1 Long interspersed element 1 (LINE‑1, or L1) is a retrotransposon that constitutes ~ 17% of the human genome. Although ~ 6000 full‑length L1s spread throughout the human genome, their biological signifcance remains undetermined. The L1 5′ untranslated region has bidirectional promoter activity with a sense promoter driving L1 mRNA production and an antisense promoter (ASP) driving the production of L1‑gene chimeric RNAs. Here, we stimulated L1 ASP activity using CRISPR‑Cas9 technology to evaluate its biological impacts. Activation of the L1 ASP upregulated the expression of L1 ASP‑driven ORF0 and enhanced cell growth. Furthermore, the exogenous expression of ORF0 also enhanced cell growth. These results indicate that activation of L1 ASP activity fuels cell growth at least through ORF0 expression. To our knowledge, this is the frst report demonstrating the role of the L1 ASP in a biological context. Considering that L1 sequences are desilenced in various tumor cells, our results indicate that activation of the L1 ASP may be a cause of tumor growth; therefore, interfering with L1 ASP activity may be a potential strategy to suppress the growth. Te human genome contains many transposable element-derived sequences, such as endogenous retroviruses and long interspersed element 1 (LINE-1, or L1). L1 is one of the major classes of retrotransposons, and it constitutes ~ 17% of the human genome1. Full-length L1 consists of a 5′ untranslated region (UTR), two open reading frames (ORFs) that encode the proteins ORF1p and ORF2p, and a 3′ UTR with a polyadenylation signal. -
Whole-Genome Sequencing Reveals Principles of Brain Retrotransposition in Neurodevelopmental Disorders
Cell Research (2018) 28:187-203. © 2018 IBCB, SIBS, CAS All rights reserved 1001-0602/18 $ 32.00 ORIGINAL ARTICLE www.nature.com/cr Whole-genome sequencing reveals principles of brain retrotransposition in neurodevelopmental disorders Jasmine Jacob-Hirsch1, 2, Eran Eyal1, Binyamin A Knisbacher2, Jonathan Roth3, 5, Karen Cesarkas1, Chen Dor1, Sarit Farage-Barhom1, Vered Kunik1, Amos J Simon1, Moran Gal2, Michal Yalon4, Sharon Moshitch-Moshkovitz1, Rick Tearle6, Shlomi Constantini3, 5, Erez Y Levanon2, Ninette Amariglio1, 2, Gideon Rechavi1, 5 1Cancer Research Center and the Wohl Institute of Translational Medicine, the Chaim Sheba Medical Center, Tel Hashomer, Is- rael; 2Mina and Everard Goodman Faculty of Life Sciences, Bar Ilan University, Israel; 3Department of Pediatric Neurosurgery, Dana Children’s Hospital, Tel Aviv Medical Center, Israel; 4Department of Pediatric Hematology-Oncology, Edmond and Lily Sa- fra Children’s Hospital, The Chaim Sheba Medical Center, Tel Hashomer, Israel; 5Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; 6Complete Genomics, 2071 Stierlin Court, Mountain View, CA 94043, USA Neural progenitor cells undergo somatic retrotransposition events, mainly involving L1 elements, which can be potentially deleterious. Here, we analyze the whole genomes of 20 brain samples and 80 non-brain samples, and char- acterized the retrotransposition landscape of patients affected by a variety of neurodevelopmental disorders including Rett syndrome, tuberous sclerosis, ataxia-telangiectasia and autism. We report that the number of retrotranspositions in brain tissues is higher than that observed in non-brain samples and even higher in pathologic vs normal brains. The majority of somatic brain retrotransposons integrate into pre-existing repetitive elements, preferentially A/T rich L1 sequences, resulting in nested insertions. -
Demonstration of Potential Link Between Helicobacter Pylori Related Promoter Cpg Island Methylation and Telomere Shortening in Human Gastric Mucosa
www.impactjournals.com/oncotarget/ Oncotarget, Vol. 7, No. 28 Research Paper Demonstration of potential link between Helicobacter pylori related promoter CpG island methylation and telomere shortening in human gastric mucosa Tomomitsu Tahara1, Tomoyuki Shibata1, Masaaki Okubo1, Tomohiko Kawamura1, Noriyuki Horiguchi1, Takamitsu Ishizuka1, Naoko Nakano1, Mitsuo Nagasaka1, Yoshihito Nakagawa1, Naoki Ohmiya1 1Department of Gastroenterology, Fujita Health University School of Medicine, Toyoake, Japan Correspondence to: Tomomitsu Tahara, email: [email protected] Keywords: DNA methylation, telomere length, gastric mucosa, H. pylori, gastritis Received: October 24, 2015 Accepted: May 02, 2016 Published: June 01, 2016 ABSTRACT Background: Telomere length shortening in Helicobacter pylori (H. pylori) infected gastric mucosa constitutes the earliest steps toward neoplastic transformation. In addition to this genotoxic changes, epigenetic changes such as promoter CpG island (PCGI) methylation are frequently occurred in H. pylori infected gastric mucosa. The aim of this study was to investigate a potential link between H. pylori related PCGI methylation and telomere length shortening in the human gastric mucosa. Methods: Telomere length was measured in non-neoplastic gastric mucosa from 106 cancer-free subjects. To identify H. pylori related PCGI methylation, bisulfite pyrosequencing was used to quantify the methylation of 49 PCGIs from 47 genes and LINE1 repetitive element Results: We identified five PCGIs (IGF2, SLC16A12, SOX11, P2RX7 and MYOD1), which the methylation is closely associated with H. pylori infection. Hypermethylation of all these PCGIs was associated with development of pathological state from normal to mild, active, and atrophic gastritis (P<0.001) and lower pepsinogen I/ II ratio (P<0.05), an indicator for gastric mucosal atrophy. -
The Abundance of Processed Pseudogenes Derived from Glycolytic Genes Is Correlated with Their Expression Level
147 The abundance of processed pseudogenes derived from glycolytic genes is correlated with their expression level Laura McDonell and Guy Drouin Abstract: The abundance of processed pseudogenes in different vertebrate species is known to be proportional to the length of their oogenesis. However, this hypothesis cannot explain why, in a given species, certain genes produce more processed pseudogenes than others. In particular, one would expect that all genes of the glycolytic pathway would generate roughly the same number of processed pseudogenes. However, some glycolitic genes generate more processed pseudogenes than others. Here, we show that there is a positive correlation between the abundance of processed pseudogene generated from glycolytic genes and their level of expression. The variation in expression level of different glycolytic genes likely reflects the fact that some of them, such a GAPDH , have functions other than those they play in glycolysis. Furthermore, the age distribution of GAPDH -processed pseudogenes corresponds to the age distribution of LINE1 elements, which are the source of the reverse transcriptase that generates processed pseudogenes. These results support the hypothesis that gene expression levels affect the level of processed pseudogene production. Key words: glycolytic genes, GAPDH, processed pseudogenes, transcription, gene expression. Résumé : L’abondance des pseudogènes remaniés dans différentes espèces vertébrées est proportionnelle à la durée de l ’o- vogenèse chez ces espèces. Cependant, cette hypothèse ne peut expliquer pourquoi, dans une espèce donnée, certains gènes produisent plus de pseudogènes remaniés que d ’autres. En particulier, on pourrait s ’attendre à ce que tous les gènes de la voie glycolytique généreraient des nombres similaires de pseudogènes remaniés. -
LINE1 Inhibition (With Nucleoside Reverse Transcriptase Inhibitors)
Cognitive Vitality Reports® are reports written by neuroscientists at the Alzheimer’s Drug Discovery Foundation (ADDF). These scientific reports include analysis of drugs, drugs-in- development, drug targets, supplements, nutraceuticals, food/drink, non-pharmacologic interventions, and risk factors. Neuroscientists evaluate the potential benefit (or harm) for brain health, as well as for age-related health concerns that can affect brain health (e.g., cardiovascular diseases, cancers, diabetes/metabolic syndrome). In addition, these reports include evaluation of safety data, from clinical trials if available, and from preclinical models. LINE1 inhibition (with nucleoside reverse transcriptase inhibitors) Evidence Summary L1 activation may be associated with age-related diseases, and nucleoside reverse transcriptase inhibitors (NRTIs) suppress L1 activation and may be beneficial in age-related diseases. Neuroprotective Benefit: Increased retrotransposition of transposable elements is implicated in neurodegenerative diseases, so NRTIs could theoretically reverse these actions, but only preclinical evidence exists to date. Aging and related health concerns: Preclinical studies suggest that NRTIs may be an effective anti-aging therapy, and clinical studies suggest they may be effective for cancer. Safety: NRTIs are associated with some mild side effects and rare severe, possibly life- threatening, side effects. 1 Availability: Available with Dose: Depends on the Molecular Formula: N/A prescription (as generics) NRTI Molecular weight: N/A Half-life: Depends on the BBB: Possibly penetrant NRTI in animal models Clinical trials: Many for HIV, Observational studies: one for ALS Many What is it? Retrotransposons are stretches of DNA that can replicate and reinsert into other parts of the genome. Their presence in the DNA comes from retroviral infection of germline cells throughout evolutionary history.