Food Properties Handbook Data and Models of Water Activity. I: Solutions

Total Page:16

File Type:pdf, Size:1020Kb

Food Properties Handbook Data and Models of Water Activity. I: Solutions This article was downloaded by: 10.3.98.104 On: 29 Sep 2021 Access details: subscription number Publisher: CRC Press Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: 5 Howick Place, London SW1P 1WG, UK Food Properties Handbook M. Shafiur Rahman Data and Models of Water Activity. I: Solutions and Liquid Foods Publication details https://www.routledgehandbooks.com/doi/10.1201/9781420003093.ch3 Piotr P. Lewicki Published online on: 28 May 2009 How to cite :- Piotr P. Lewicki. 28 May 2009, Data and Models of Water Activity. I: Solutions and Liquid Foods from: Food Properties Handbook CRC Press Accessed on: 29 Sep 2021 https://www.routledgehandbooks.com/doi/10.1201/9781420003093.ch3 PLEASE SCROLL DOWN FOR DOCUMENT Full terms and conditions of use: https://www.routledgehandbooks.com/legal-notices/terms This Document PDF may be used for research, teaching and private study purposes. Any substantial or systematic reproductions, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden. The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The publisher shall not be liable for an loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material. CHAPTER 3 Data and Models of Water Activity. I: Solutions and Liquid Foods Piotr P. Lewicki CONTENTS 3.1 Introduction............................................................................................................................ 33 3.2 Water Activity of Solutions and Liquid Foods ..................................................................... 37 3.3 Semiempirical Equations .......................................................................................................48 3.4 Empirical Equations............................................................................................................... 54 References....................................................................................................................................... 62 3.1 INTRODUCTION Food is a multicomponent and multiphase system that is usually not in a thermodynamic equilibrium. This lack of equilibrium causes many chemical and physical changes, which are passed within the material during storage. Processing creates domains within the food with higher and lower concentration of constituents. Concentration gradients result in diffusion, which in turn enable contact between substrates and can facilitate chemical reactions. Redistribution of constituents, especially water, affects rheological properties of the material, hence its texture, structure, ability to creep and relax all change during storage. Interactions between polymers strongly influence properties of the material and depend on rotational and translational diffusion of polymer chains. In materials with interphase boundaries, mass and surface forces cause changes of structure and constituents, spatial concentration. Destabilization of foams and coalescence of emulsions is a macroscopic result of those changes. All the above-mentioned examples show that food is a dynamic system, far from the equilibrium state, which undergoes many changes during storage. Research conducted over the years prove that the course and the dynamics of all those changes are related to the thermodynamic state of water in the material (Lewicki, 2004). The thermodynamic state of water in food arises firstly from unusual properties of water and its ability to form strong hydrogen bonds. Interactions with hydrophilic solute lead to the formation of structure water and hydration water. On the other hand, an interaction with hydrophobic solute affects the structure of the solvent water. A clathrate-like structure is formed. Water molecule mobility in both structure and hydration state as well as in clathrate-like structure is reduced. In the presence of electrolytes, ionic interactions also occur and induce some structuring of water Downloaded By: 10.3.98.104 At: 10:12 29 Sep 2021; For: 9781420003093, chapter3, 10.1201/9781420003093.ch3 ß 2008 by Taylor & Francis Group, LLC. molecules. Finally, porosity of the material, which is quite common for foods, also affects the thermodynamic state of water. Curvature of the solvent surface in capillaries, in drops or interstices, reduces the ability of water molecules to do the work. The thermodynamic state of water is expressed by its Gibbs free energy, which is a criterion of feasibility of chemical or physical transformation. The Gibbs free energy is quantitatively expressed by the equation: G ¼ H À TS (3:1) where H is the enthalpy (J) T is the temperature (K) S is the entropy (J=K) and can be understood as total energy (H) diminished by unavailable energy (TS) Gibbs free energy in differential form: dG ¼ dH À TdS À SdT (3:2) Substituting dH ¼ dE þ PdV þ VdP and dE ¼ TdS – PdV yield the differential change in the Gibbs free energy: dG ¼ VdP À SdT (3:3) where E is the internal energy (J) P is the pressure (Pa) V is the volume (m3) The above equation applies to a homogeneous system of constant composition in which only work of expansion takes place. In an open multicomponent system, the Gibbs free energy will depend not only on the temperature and pressure, but also on the amount of each component present in the system. Hence G ¼ f (T, P, n1, n2, ..., nn)(3:4) where n1, n2,...,nn is the number of moles of component 1, 2, . , n. Under this situation, change of Gibbs free energy is described by the equation: @G @G Xnj @G dG ¼ dP þ dT þ dn (3:5) @P @T @n i T,nj P,nj ni T,P,nj in which i denotes that component where concentration changes and j denotes all those components where concentration remains constant. The partial molar Gibbs free energy @G (3:6) @n i T,P,nj expressed by Equation 3.6 is called chemical potential of component i and is denoted as mi.It represents the change in Gibbs free energy of the system caused by addition of one mole of Downloaded By: 10.3.98.104 At: 10:12 29 Sep 2021; For: 9781420003093, chapter3, 10.1201/9781420003093.ch3 ß 2008 by Taylor & Francis Group, LLC. component i keeping temperature, total pressure, and number of moles of all other components constant. Then Equation 3.3 can be written as follows: X ¼ À þ : dG VdP SdT midni (3 7) Gibbs has shown that for any system the necessary and sufficient condition for equilibrium is the equality of chemical potential of component i in all phases. That is I ¼ II ¼ III : mi mi mi (3 8) where the superscripts refer to different phases. Dividing Equation 3.3 by the number of moles of component i, the following can be written: dG V S ¼ dP À dT (3:9) dni dni dni Denoting V=dni ¼ vi and S=dni ¼ si, Equation 3.9 becomes ¼ À : dmi vidP sidT (3 10) where 3 vi is the molar volume (m =mol) si is the molar entropy J=(mol K) At constant temperature ¼ : dmi vidP (3 11) Taking the substance as an ideal gas, Lewis obtained chemical potential in terms of easily measurable properties. RT RT v ¼ and dm ¼ dP (3:12) i P i P where R is the gas constant (J=mol K). Integrating Equation 3.12 the following formula is obtained: À ¼ p : mi mi RT ln (3 13) p where mi is the chemical potential of component i at standard conditions p is the initial pressure in the system In a real system properties of gases deviate from the ideal one and to account for the deviation Lewis proposed a new function called fugacity, f. Hence, Equation 3.13 for a real gas takes the following form: À ¼ fi : mi mi RT ln (3 14) fi In a pure ideal gas fi ¼ pi, the partial pressure of the gas. The no ideality of the gas follows from the existence of intermolecular forces (Prausnitz, 1969). The ratio between fugacities is called activity, a. Hence, Equation 3.14 becomes À ¼ : mi mi RT ln ai (3 15) Downloaded By: 10.3.98.104 At: 10:12 29 Sep 2021; For: 9781420003093, chapter3, 10.1201/9781420003093.ch3 ß 2008 by Taylor & Francis Group, LLC. Table 3.1 Fugacity and Activity of Water Vapor in Equilibrium with the Liquid at Saturation and at Pressure 0.01 MPa Temperature (8C) Pressure (kPa) Fugacity (kPa) Activity 0.01 0.611 0.611 0.9995 10 1.227 1.226 0.9992 20 2.337 2.334 0.9988 40 7.376 7.357 0.9974 60 19.920 19.821 0.9950 80 47.362 46.945 0.9912 100 101.325 99.856 0.9855 120 198.53 194.07 0.9775 140 361.35 349.43 0.9670 160 618.04 589.40 0.9537 180 1002.7 939.93 0.9374 Source: Adapted from Hass, J.L., Geochim. Cosmochim. Acta, 34, 929, 1970. Analysis of data presented in Table 3.1 shows that in the range of temperatures important for food processing, the water vapor deviates from the ideal gas by not more than by 6%, and at ambient temperature and pressure, the deviation is less than 0.2%. Thus, under the conditions experienced in food processing and storage activity, water vapor at saturation can be assumed to be equal to 1 and it can be written as fw ¼ pw : (3 16) fw pw where pw and pw are the vapor pressure of water in the system and of pure water at the same temperature and total pressure, respectively. Equation 3.16 is used to calculate water activity in food when partial pressure of water vapor over that food is known. Assuming that food is in equilibrium with the gas phase, the activity of gas phase calculated from Equation 3.16 is taken as the activity of water in solid or liquid food according to Equation 3.8. Taking a system consisting of an ideal solution and an ideal gas, the equilibrium state can be described as follows: solution ¼ vapor : mi mi (3 17) An ideal solution behaves analogously to an ideal gas and follows Raoult’s law.
Recommended publications
  • Fish and Fishery Products Hazards and Controls Guidance
    CHAPTER 14: Pathogenic Bacteria Growth and Toxin Formation as a Result of Inadequate Drying This guidance represents the Food and Drug Administration’s (FDA’s) current thinking on this topic. It does not create or confer any rights for or on any person and does not operate to bind FDA or the public. You can use an alternative approach if the approach satisfies the requirements of the applicable statutes and regulations. If you want to discuss an alternative approach, contact the FDA staff responsible for implementing this guidance. If you cannot identify the appropriate FDA staff, call the telephone number listed on the title page of this guidance. UNDERSTAND THE POTENTIAL HAZARD. expected conditions of storage and distribution. Additionally, finished product package closures Pathogenic bacteria growth and toxin formation should be free of gross defects that could expose in the finished product as a result of inadequate the product to moisture during storage and drying of fishery products can cause consumer distribution. Chapter 18 provides guidance on illness. The primary pathogens of concern are control of container closures. Staphylococcus aureus (S. aureus) and Clostridium Some dried products that are reduced oxygen botulinum (C. botulinum). See Appendix 7 for a packaged (e.g., vacuum packaged, modified description of the public health impacts of atmosphere packaged) are dried only enough these pathogens. to control growth and toxin formation by C. botulinum type E and non-proteolytic types B • Control by Drying and F (i.e., types that will not form toxin with Dried products are usually considered shelf stable a water activity of below 0.97).
    [Show full text]
  • Explain What Water Activity Is and How It Relates to Bacterial Growth
    Explain what water activity is and how it relates to bacterial growth. Differentiate between the major types of foodborne illnesses -- infection, intoxication, and toxin-mediated infection. Water in food that is not bound to food molecules can support the growth of bacteria, yeast, and mold. The term water activity (a w) refers to this unbound water. The water activity of a food is not the same thing as its moisture content. Although moist foods are likely to have greater water activity than are dry foods, this is not always so. In fact, a variety of foods may have exactly the same moisture content and yet have quite different water activities. The water activity (a w) of a food is the ratio between the vapor pressure of the food itself, when in a completely undisturbed balance with the surrounding air media, and the vapor pressure of distilled water under identical conditions. A water activity of 0.80 means the vapor pressure is 80 percent of that of pure water. The water activity increases with temperature. The moisture condition of a product can be measured as the equilibrium relative humidity (ERH) expressed in percentage or as the water activity expressed as a decimal. Most foods have a water activity above 0.95 and that will provide sufficient moisture to support the growth of bacteria, yeasts, and mold. The amount of available moisture can be reduced to a point that will inhibit the growth of microorganisms. Water activity values of selected foods Food Water activity Fresh meat and fish .99 Liverwurst .96 Cheese spread .95 Bread .95 Red bean paste .93 Caviar .92 Aged cheddar .85 Fudge sauce .83 Salami .82 Soy sauce .8 Jams and jellies .8 Peanut butter .7 Dried fruit .6 Cookies .3 Instant coffee .2 Predicting Food Spoilage Water activity (a w) has its most useful application in predicting the growth of bacteria, yeast, and mold.
    [Show full text]
  • Near Infrared Spectrophotometric Method for the Determination of Hydration Numbers
    JOURNAL OF RESEARCH af the Natianal Bureau af Standards-A. Physics and Chemistry Val. 68A, No. 6, November- December 1964 Near Infrared Spectrophotometric Method for the Determination of Hydration Numbers Richard A. Durst* and John K. Taylor (July 29, 1964) The 980 mil absarptian band of water is cmplaycd in a new methad far the determinatian of hydratian numbers. '1'110 decrease in the concentration af "free" water is calculated fram thc change in absorbance resulting on the aclditian af an clectrolyte. Data arc given for ChrOl11l C chlonde and nltrate sa.lts in watcr-methanal salutians, ancl an cxtrapolatian is made to gIve the hydratIOn number In pure water. The results abtained by this technique agree WIth the values reparted uSing ather mcthads. 1. Introduction partially with the smrounding water structure. This sphere extends an indefinite distance from the Although aqueous electrolyte solutions have bee n ion until it ultimately blends into the bulk water studied in detail for many years, one of the most structme. Normally, the secondary hydration it; basic properties of such soiutions, the concept of very weak and values found experimentally vary ionic hydrati.on, is still poorly defined. Normally, widely depending on Lhe phenomenon 0 bserved. the effect of the coordinated water molecules is To date, the techniques employed for determining ignored when reactions in aqueous solutions are con­ hydration numbers have resulted in values which sidered. However, in many cases, this can lead to can be di \Tided into two groups: low values which serious errors in the interpretation of results. The seem to approximate the primary hydration numbers numerous experimental techniques which have been and considerably larger values corresponding to the employed to determine hydration numbers Q'ive some primary hydration plus all or part of the secondary indication of the widespread influence of io~- s olvent hydration sphere.
    [Show full text]
  • Clathrate Desalination Method Applied to Produced Waters: Methodology & Results
    Clathrate Desalination Method Applied to Produced Waters: Methodology & Results Patrick Baldoni-Andrey, Hervé Nabet, Matthieu Jacob, Pierre Pédenaud, Philippe Glénat Pascal Le Melinaire, Bruno Mottet producedwaterevents.com Presentation outline - Context and Stakes - Material and Methods - Results -Conclusion and Perspectives 2 Produced Water desalination – Sugar Land – 18jan2017 producedwaterevents.com The context –The E&P concerns Context and Stakes Water associated CAPEX & OPEX: regulatory constraints require efficient water treatments and the stakes are huge! Water production in the oil industry is 3 times the amount of produced oil! 80 3 Produced Water desalination – Sugar Land – 18jan2017 producedwaterevents.com Key Numbers for Total Context and Stakes Injection water Reinjection ≈ 55% mainly seawater If you cannot manage water, you cannot produce oil ! 4 Produced Water desalination – Sugar Land – 18jan2017 producedwaterevents.com Rationale for Produced water desalination Context and Stakes - Chemical Enhanced Oil Recovery - Fresh water Enhanced Oil Recovery - Recycling of produced water in the petroleum process (ex : Steam Assisted Gravity Drainage) - Minimize impact of water disposal in the environment onshore - Potential reuse, access to new resources - Low cost and innovative desalination (no evaporation, no pressure, …) - Value creation with low level calories 5 Produced Water desalination – Sugar Land – 18jan2017 producedwaterevents.com 6 Produced desalination Water – Sugar Land – 18jan2017 Cost of Treatment Reverse Osmosis
    [Show full text]
  • Step Formation Constants of Some Malonato Lanthanide Chelate Species Marvin Lee Adolphson Iowa State University
    Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 1969 Step formation constants of some malonato lanthanide chelate species Marvin Lee Adolphson Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Physical Chemistry Commons Recommended Citation Adolphson, Marvin Lee, "Step formation constants of some malonato lanthanide chelate species " (1969). Retrospective Theses and Dissertations. 3809. https://lib.dr.iastate.edu/rtd/3809 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. 70-13,563 ADOLPHSON, Marvin Lee, 1941- STEP FORMATION CONSTANTS OF SOME MÀLONATO LANTHANIDE CHELATE SPECIES. Iowa State University, Ph.D., 1969 Chemistiy, physical University Microfilms, Inc., Ann Arbor, Michigan THIS DISSERTATION HAS BEEN MICROFILMED EXACTLY AS RECEIVED STEP FORMATION CONSTANTS OF SOME MALONATO LANTHANIDE CHELATE SPECIES by Marvin Lee Adolphson A Dissertation Submitted to the Graduate Faculty in Partial Fulfillment of The Requirements for the Degree of DOCTOR OF PHILOSOPHY Major Subject: Physical Chemistry Approved; Signature was redacted for privacy. In/Charge of Major Work Signature was redacted for privacy. Signature was redacted for privacy. Iowa State University Ames, Iowa 1969 ii TABLE OF CONTENTS Page INTRODUCTION 1 COMPUTATIONS 4 EXPERIMENTAL DETAILS 15 EXPERIMENTAL RESULTS 35 DISCUSSION 56 SUMMARY 88 BIBLIOGRAPHY 89 ACKNOWLEDGMENT S 94 APPENDIX 95 1 INTRODUCTION The motivations for this research were fourfold.
    [Show full text]
  • Characterization of the Solute Transport Properties of the Active Layers of Polyamide Thin Film Composite Membrnes
    CHARACTERIZATION OF THE SOLUTE TRANSPORT PROPERTIES OF THE ACTIVE LAYERS OF POLYAMIDE THIN FILM COMPOSITE MEMBRNES Jingbo Wang A dissertation submitted to the faculty at the University of North Carolina at Chapel Hill in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Department of Environmental Sciences and Engineering in the Gillings School of Global Public Health. Chapel Hill 2018 Approved by: Orlando Coronell Michael Aitken David Couper Rene Lopez Jill Stewart © 2018 Jingbo Wang ALL RIGHTS RESERVED ii ABSTRACT Jingbo Wang: Characterization of the Solute Transport Properties of the Active Layers of Polyamide Thin Film Composite Membranes (Under the direction of Orlando Coronell) The overall objective of this study was to elucidate which parameter among solute partitioning, solute diffusion, and active layer thickness accounts for the differences in solute permeability among polyamide active layers of thin film composite (TFC) membranes. To accomplish the overall goal of this project, the following specific objectives were pursued: (i) to develop a method to measure solute partition coefficient (KS) from aqueous solution into polyamide active layer of TFC membranes; (ii) to quantify the solute partition (KS) and diffusion coefficient (DS) inside polyamide active layers of TFC membranes with a broad range of performance levels; (iii) to determining which parameter among solute partition coefficient (KS), solute diffusion coefficient (DS) and active layer thickness () accounts for the most difference
    [Show full text]
  • Hydration of Ionic Surfactant Micelles from Water Oxygen-I 7 Magnetic Relaxation
    J. Phys. Chem. 1981, 85, 2142-2147 flux of the solute through the membrane, eq 1, mol local hydraulic permeability, eq 3, m4 N-’ s-l m-2 s-l concentration-independentpart of A(x,a),eq 21 and volume flux through the membrane, eq 2, m s-’ 33, m4 N-’s-l local partition coefficient in the membrane, eq 5 coefficient of inverse proportionality of A(x,a)with filtration coefficient or hydraulic permeability, eq the concentration, eq 21 and 33, mol m N-’ s-l 1 and 32, m3 N-’ s-l integral defined by eq 8, s m-l filtration coefficient corrected for concentration space coordinate in transport direction, m effects at small J,, eq 33, m3 N-’ reflection coefficient in eq 1 and 2 membrane thickness, m local reflection coefficient in the membrane, eq 3 pressure, N m-2 average reflection coefficient, eq 25 universal gas constant, N m mol-’ K-’ pore volume fraction of the membrane solute retention in a reverse-osmosis experiment, solute permeability of the membrane in eq 1, m s-l eq 42 partial solute permeability, eq 22, m s-l absolute temperature, K space coordinate in transport direction, m Acknowledgment. We are grateful to Professor Dr. A. dimensionless quantity determined by the structure J. Staverman and Dr. J. van Daalen for critical reading of of the membrane, defined by eq 30 dimensionless quantity, defined by eq 34 the manuscript. dimensionless quantity, defined by eq 35 difference between the concentrations on both sides Supplementary Material Available: Appendix A, pro- of the membrane, eq 1, mol m-3 viding a derivation of eq 3 and 4, and Appendix B, com- difference between the pressures on both sides of paring results at low P6clet values with those of Kedem the membrane, eq 2, N m-2 and Katchalsky for multilayer membranes (7 pages).
    [Show full text]
  • Oac 310:260 Oklahoma State Department of Health
    OAC 310:260 OKLAHOMA STATE DEPARTMENT OF HEALTH CHAPTER 260. GOOD MANUFACTURING PRACTICE REGULATIONS Subchapter Section 1. General Provisions . 310:260-1-1 3. Manufacturing, Processing, Packing or Holding Human Food . 310:260-3-1 5. Pecan Processing . 310:260-5-1 7. Salvageable and Salvaged Merchandise . 310:260-7-1 9. Food Storage Warehouses . 310:260-9-1 11. Licensing, Inspections and Plan Review . 310:260-11-1 13. Special Risk Situations . 310:260-13-1 [Authority: 63 O.S. 1981, Section 1-1101 et seq.] [Source: Codified 12-31-91] SUBCHAPTER 1. GENERAL PROVISIONS Section 310:260-1-1. Purpose; citation 310:260-1-2. Scope 310:260-1-3. Incorporation by reference 310:260-1-4. Memorandums of agreement 310:260-1-5. Exclusion 310:260-1-6. Definitions 310:260-1-1. Purpose; citation (a) The Oklahoma State Board of Health finds and declares that a uniform statewide code is needed to regulate all food manufacturing, processing, packing, holding, transporting or salvaging operations conducting business within the State of Oklahoma, to provide for uniformity in inspecting of such establishments, and to protect the health of consumers by preventing the sale or distribution of foods which have become adulterated or misbranded. (b) These rules and regulations may be cited as the Human Foods Good Manufacturing Practice Regulations. 310:260-1-2. Scope The criteria in subchapter 3 shall apply in determining whether the facilities, methods, practices, and controls used in the manufacture, processing, packing, salvaging or holding of food are in conformance with or are operated or administered in conformity with good manufacturing practices to ensure that food for human consumption is safe and has been prepared, packaged, salvaged, or held under sanitary conditions.
    [Show full text]
  • Food Preservation Methods Department of Food Science Foods Are Freshest and at Optimum Quality at the Time of Their Harvest Or Slaughter
    PURDUE EXTENSION FS-15-W Food Entrepreneurship Series Food Preservation Methods Department of Food Science Foods are freshest and at optimum quality at the time of their harvest or slaughter. To maintain this ous ways to extend the period of time during which quality in foods that will be consumed later, the the food can be shipped, displayed in the store, foods can be preserved by cold, heat, chemical purchased by the consumer, and finally consumed. Katherine Clayton preservatives, or combinations of these methods. The physical and chemical composition of the food science Extension Cold usually means refrigeration or freezing. food helps determine the type of process required outreach specialist Heating involves many processing methods, for preservation. Other factors that influence a such as pasteurization, commercial sterilization, choice of preservation method are the desired end Deidre Bush product, type of packaging, cost, and distribution former Extension assistant and drying. Adding preservative ingredients and processing by means of fermentation are also methods. Kevin Keener ways to preserve foods. food process engineer, The Role of Water Activity and Extension specialist, and A food entrepreneur needs a basic understand- Acidity in Preservation professor of food science ing of the various preservation techniques before starting a business. The two most important chemical composition factors that affect how a food is preserved are Food processing converts harvested or raw water content and acidity. Water content includes foods into forms that are more easily stored and moisture level, but an even more important Department of Food Science consumed, and sometimes into a form that may measurement is water activity.
    [Show full text]
  • Flexibility and Hydration of Amphiphilic Hyperbranched Arabinogalactan-Protein from Plant Exudate: a Volumetric Perspective
    colloids and interfaces Article Flexibility and Hydration of Amphiphilic Hyperbranched Arabinogalactan-Protein from Plant Exudate: A Volumetric Perspective Verónica Mejia Tamayo 1, Michaël Nigen 1, Rafael Apolinar-Valiente 2, Thierry Doco 2 ID , Pascale Williams 2, Denis Renard 3 and Christian Sanchez 1,* 1 UMR IATE, UM-INRA-CIRAD-Montpellier Supagro, 2 Place Pierre Viala, F-34060 Montpellier Cedex, France; [email protected] (V.M.T.); [email protected] (M.N.) 2 UMR SPO, INRA-UM, 2 Place Pierre Viala, F-34060 Montpellier Cedex, France; [email protected] (R.A.-V.); [email protected] (T.D.); [email protected] (P.W.) 3 UR1268 Biopolymères Interactions Assemblages, INRA, F-44300 Nantes, France; [email protected] * Correspondence: [email protected]; Tel.: +33-04-9961-2085 Received: 2 February 2018; Accepted: 13 March 2018; Published: 15 March 2018 Abstract: Plant Acacia gum exudates are composed by glycosylated hydroxyproline-rich proteins, which have a high proportion of heavily branched neutral and charged sugars in the polysaccharide moiety. These hyperbranched arabinogalactan-proteins (AGP) display a complexity arising from its composition, architecture, and conformation, but also from its polydispersity and capacity to form supramolecular assemblies. Flexibility and hydration partly determined colloidal and interfacial properties of AGPs. In the present article, these parameters were estimated based on measurements of density and sound velocity and the determination of volumetric parameters, ◦ e.g., partial specific volume (vs ) and coefficient of partial specific adiabatic compressibility ◦ coefficient (βs ). Measurements were done with Acacia senegal, Acacia seyal, and fractions from the former separated according to their hydrophobicity by Hydrophobic Interaction Chromatography, ◦ ◦ i.e., HIC-F1, HIC-F2, and HIC-F3.
    [Show full text]
  • Good Manufacturing Practices For
    Good Manufacturing Practices for Fermented Dry & Semi-Dry Sausage Products by The American Meat Institute Foundation October 1997 ANALYSIS OF MICROBIOLOGICAL HAZARDS ASSOCIATED WITH DRY AND SEMI-DRY SAUSAGE PRODUCTS Staphylococcus aureus The Microorganism Staphylococcus aureus is often called "staph." It is present in the mucous membranes--nose and throat--and on skin and hair of many healthy individuals. Infected wounds, lesions and boils are also sources. People with respiratory infections also spread the organism by coughing and sneezing. Since S. aureus occurs on the skin and hides of animals, it can contaminate meat and by-products by cross-contamination during slaughter. Raw foods are rarely the source of staphylococcal food poisoning. Staphylococci do not compete very well with other bacteria in raw foods. When other competitive bacteria are removed by cooking or inhibited by salt, S. aureus can grow. USDA's Nationwide Data Collection Program for Steers and Heifers (1995) and Nationwide Pork Microbiological Baseline Data Collection Program: Market Hogs (1996) reported that S. aureus was recovered from 4.2 percent of 2,089 carcasses and 16 percent of 2,112 carcasses, respectively. Foods high in protein provide a good growth environment for S. aureus, especially cooked meat/meat products, poultry, fish/fish products, milk/dairy products, cream sauces, salads with ham, chicken, potato, etc. Although salt or sugar inhibit the growth of some microorganisms, S. aureus can grow in foods with low water activity, i.e., 0.86 under aerobic conditions or 0.90 under anaerobic conditions, and in foods containing high concentrations of salt or sugar. S.
    [Show full text]
  • 4.1. Water Activity
    Results and discussion: Water activity 4.1. WATER ACTIVITY The desorption isotherms of meat with a different NaCl content at different temperatures are shown in Figures 4.1.1, 4.1.2, and 4.1.3. The experimental points and the isotherms predicted by the model type II (GAB and Mújica models with salt dependent coefficients and Clausius- Clayperon equation used to consider the temperature effect) are shown. The means of the NaCl contents of the samples were 0, 0.08, 0.2 and 0.31 kg/kg d.m. The experimental data are reported in appendix B. 5 t=5 ºC 4 3 X, kg/kg 2 1 0 0 0.2 0.4 0.6 0.8 1 aw Figure 4.1.1 Calculated (¾) and experimental (+, !, x,O) desorption isotherms at different NaCl content and at 5 ºC (model type 2). X: water content (kg H2O/kg d.m.). (O): meat 0 kg NaCl/kg d.m. (x) meat 0.08 kg NaCl/kg d.m. (!) meat 0.20 kg NaCl/kg d.m. (+) meat 0.31 kg NaCl/kg d.m. 129 Results and discussion: Water activity 5 t=13 ºC 4 3 X, kg/kg 2 1 0 0 0.2 0.4 0.6 0.8 1 aw Figure 4.1.2 Calculated (¾) and experimental (+, !, x,O) desorption isotherms at different NaCl content and at 13 ºC (model type 2). X: water content (kg H2O/kg d.m.). (O): meat 0 kg NaCl/kg d.m. (x) meat 0.08 kg NaCl/kg d.m.
    [Show full text]