Using Xml Languages for Modeling and Web-Visualization of Geographical Legacy Data

Total Page:16

File Type:pdf, Size:1020Kb

Using Xml Languages for Modeling and Web-Visualization of Geographical Legacy Data USING XML LANGUAGES FOR MODELING AND WEB-VISUALIZATION OF GEOGRAPHICAL LEGACY DATA Brigitte Mathiak, Andreas Kupfer and Karl Neumann Institut f¨urInformationssysteme - TU Braunschweig M¨uhlenpfordtstr. 23, 38100 Braunschweig, Germany {mathiak, kupfer, neumann}@idb.cs.tu-bs.de Abstract In our aim to modernize geographical legacy data from the German office of geographical survey with XML languages, we first modeled the data in GML, a standard language for geography markup. The resulting model has then been used as a template for a JAVA application that assembles the necessary informa- tion from the legacy data and writes it into a GML document. During the second part of our work we mapped GML with the extensible style-sheet language for transformation (XSLT) into scalable vector graphics (SVG). The resulting SVG graphics share close resemblance to official maps. Keywords: GML, SVG, XSLT, geographical data, XML 1. Introduction For the exchange of geographical data and its computer-based usage the Internet becomes more and more important (Kraak and Brown, 2000). In this context special techniques for the unification of the geographical data formats are necessary to provide means for the format-independent exchange of the data (Fidalgo et al., 2003). XML (Harold and Means, 2002; Goldfarb and Prescod, 2003) gains more and more importance in the field of Internet data exchange. Therefore it is quite obvious to apply XML to geographical data as well. XML provides the base for GML (geography markup language), a language specified by the Open Geospatial Consortium (OGC, 2001), an international consortium of about 200 companies and organizations. GML was designed as an open standard to permit the exchange of geographical data without estab- lishing too many constraints on how the data is structured. GML works with XML Schema (E. van der Vlist, 2003), defining several schema types which can be used or derived in a customized model. It also provides a theoretical framework for the structure, yet leaves enough individuality to fit almost every given data set. Our goal is to improve the usability of data from the German office of ge- ographical survey by using XML. This legacy data has not been structurally changed for over a decade. Thus making it a challenging starting point for a GML model. Additionally to the model definition we also implemented a JAVA application which transforms the legacy data to the GML model. As a further step to demonstrate the improved usability, we decided to attempt a visualiza- tion (Kraak and Ormeling, 2002) of GML by using even more XML languages. The obvious choice for the graphical description language was SVG (scalable vector graphics) (W3C, 2000). For the transformation from GML to SVG (Guo et al., 2003) we used a third XML language: extensible style sheet language for transformation (XSLT) (Kay, 2001; W3C, 1999; Bex et al., 2002). XSLT documents contain instructions for the transformation of XML documents into differently structured XML documents. We use the open source XSLT proces- sor Xalan (Apache, 2003) for transformation, but any XSLT-conform processor will do as well. Cascading style sheets (CSS) (Meyer, 2002) control the style of the various cartographic objects. Adjustments to the map’s style can be eas- ily made by either changing the CSS or in more complicated cases changing the standardized XSLT templates. This paper gives a short overview over the mentioned XML languages and the structure of the geographical legacy data. We also discuss the applications of the languages in the transformation process. In section 2 we describe GML, our customized GML model and how we transformed the legacy data into it. Sections 3 and 4 give introductions to SVG and XSLT and how we used them to produce map-like graphics from the GML data. Section 5 contains a summary of the whole process. 2. Geography Markup Language GML or Geography Markup Language is an XML based encoding standard for geographic information developed by the Open Geospatial Consortium (OGC). The main elements of the GML modeling structure are geographic fea- tures, which represent real world geographical objects. Their geometric prop- erties are modeled by a uniform geometric definition using two-dimensional coordinates. The current version of GML is GML 3.1 (OGC, 2004), though the version used in this case study is GML 2.0 (OGC, 2001). GML 2.0 is defined in XML Schema (XSD) and is divided into three parts for structur- ing purposes: Geometry schema (geometry.xsd), feature schema (feature.xsd) and XLinks schema (xlinks.xsd) to provide support for linking the geographi- cal data with other sources and to allow referencing on GML-documents. All three schemas are provided by the OGC. Geometries and Features in GML The geometric properties of GML are strictly defined. There are five geo- metric types, all derived from one abstract GML geometry type. First, ”Point” contains one pair of coordinates, while ”Line” contains more pairs which are connected by straight lines. ”Box” is defined by its lower left corner and upper right corner. ”Linear Ring” is a closed line circuit of at least three different points, additionally the last point must be the same as the first point, so all in all there have to be at least four points. In contrast to ”Linear Ring” a ”Poly- gon” in GML may possess holes, inner boundaries that mark areas that are cut out from the area of the outer boundary. A ”Polygon” therefore consists of one outer boundary and possibly one or more inner boundaries. Abstract Geometry Point LineString Box Polygon innerBoundary 2..* 2 * 1 4..* coords Linear Ring 1 outerBoundary Figure 1. Polygon with holes and the UML schema of the GML geometry While the form of the geometrical description is very exactly defined, the form of the actual features is not. Instead GML offers a structural framework to fit the scenario it is meant to describe. Every model is made up of features. These features have properties. The properties have a name, a type and a value. The structure of the feature, hence the number and types of the properties, is defined by its type. A feature collection is also considered a feature. The contained features are the values of the collection’s property. The contained features may contain other features thereby building a hierarchy. The actually used feature types are user-defined in a XML Schema. The advantage of XML Schema is, that it allows object-oriented handling of the types like derivation or the combination of several types into one substitution group. GML does state some rules that are not directly given by the schemata like naming conventions and the obligatory derivation from the base types. These rules are additional to the ones given by the schemata. GML allows the users to model their own version of GML, fitting their individual needs. This individuality is much needed as geographical data is not very standard- Table 1. Extractions of the respective files corresponding to the object ”Bachstr.” file name lines containing 86118065 objecttype.txt 86118065, 3101 (means street) name.txt 86118065, Bachstr. coordinates.txt 86118065, 4437960.070, 5331818.450, 4437967.200, 5331825.410 86118065, 4437952.980, 5331812.550, 4437960.070, 5331818.450 ized and may contain very different kinds of meta-information. The conform appearance of the data, especially the geometric data, does allow some degree of interchangeability with other GML models, yet it is still general enough to model most geographic scenarios. Modeling landscape data with GML Since GML already models the geography and the base feature outline, the main focus for modeling lies in the definition of new, customized feature types and their relationships. In order to customize the feature types best, we must first have a look at the form of the legacy data. The so-called Digital Landscape Model (DLM) is part of a German project, which has the purpose of digitizing the surface in the Federal Republic of Ger- many topographically and cartographically. It has now been running for over 15 years with great success, yet most of the specification for the data has been made in the initial phase of the project, hence 15 years ago, with no systemat- ical changes since that time. The landscape data for example has a catalogue for object types that encodes the object types into four-digit numbers. So the dataset for a street does not contain the word ”street”, but instead the code 3101 which can be decoded into ”street” using the non-database catalogue. There are about 200 object types and over 1000 attributes, which contain additional information for the object types, like ”width of street” for a street or ”kind of vegetation” for a forest. The attributes are encoded in a similar way as the ob- ject types using a three-letter code for the attribute type and four digits for its value. The original DLM data can be downloaded from the Internet for test pur- poses. An additional program, EDBS-Extra (Rinner, 2001), is used to trans- form the original format into a more accessible format, which uses a quasi relational framework for the data. The transformed information is stored in the file corresponding to the type of information that is extracted, all linked by the ID of the object that the information belongs to (see an example in Table 1). In order to model this data structure in terms of GML a complex type called DLMMemberType is introduced, of which the object types like ”street” are to be instances. The objects themselves are modeled as features, therefore DLM- MemberType is inherited from AbstractFeatureType the GML base type for all features. The DLMMemberType should be able to contain all available data from the DLM to avoid information loss.
Recommended publications
  • Open Source Software Used in Cisco Unified Web and E-Mail Interaction
    Open Source Used In EIM/WIM 9.0(1) This document contains the licenses and notices for open source software used in this product. With respect to the free/open source software listed in this document, if you have any questions or wish to receive a copy of the source code to which you are entitled under the applicable free/open source license(s) (such as the GNU Lesser/General Public License), please contact us at [email protected]. In your requests please include the following reference number 78EE117C99-32799394 Contents 1.1 Apache Log4J 1.2.15 1.1.1 Available under license 1.2 Ext JS 3.4.0 1.2.1 Available under license 1.3 JBoss Application Server 7.1.2 1.3.1 Available under license 1.4 JForum 2.1.8 1.4.1 Available under license 1.5 XML Parser for Java-Xalan 1.4.1 1.5.1 Available under license 1.6 XML Parser for Java-Xerces 1.4.1 1.6.1 Available under license Open Source Used In EIM/WIM 9.0(1) 1 1.1 Apache Log4J 1.2.15 1.1.1 Available under license : Apache License Version 2.0, January 2004 http://www.apache.org/licenses/ TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION 1. Definitions. "License" shall mean the terms and conditions for use, reproduction, and distribution as defined by Sections 1 through 9 of this document. "Licensor" shall mean the copyright owner or entity authorized by the copyright owner that is granting the License.
    [Show full text]
  • OWL 2 Web Ontology Language Quick Reference Guide
    OWL 2 Web Ontology Language Quick Reference W3C Proposed Recommendation 22 September Guide 2009 OWL 2 Web Ontology Language Quick Reference Guide W3C Proposed Recommendation 22 September 2009 This version: http://www.w3.org/TR/2009/PR-owl2-quick-reference-20090922/ Latest version: http://www.w3.org/TR/owl2-quick-reference/ Previous version: http://www.w3.org/TR/2009/WD-owl2-quick-reference-20090611/ (color-coded diff) Editors: Jie Bao, Rensselaer Polytechnic Institute Elisa F. Kendall, Sandpiper Software, Inc. Deborah L. McGuinness, Rensselaer Polytechnic Institute Peter F. Patel-Schneider, Bell Labs Research, Alcatel-Lucent Contributors: Li Ding, Rensselaer Polytechnic Institute Ankesh Khandelwal, Rensselaer Polytechnic Institute This document is also available in these non-normative formats: PDF version, Reference Card. Copyright © 2009 W3C® (MIT, ERCIM, Keio), All Rights Reserved. W3C liability, trademark and document use rules apply. Abstract The OWL 2 Web Ontology Language, informally OWL 2, is an ontology language for the Semantic Web with formally defined meaning. OWL 2 ontologies provide classes, properties, individuals, and data values and are stored as Semantic Web documents. OWL 2 ontologies can be used along with information written in RDF, and OWL 2 ontologies themselves are primarily exchanged as RDF documents. The OWL 2 Document Overview describes the overall state of OWL 2, and should be read before other OWL 2 documents. Page 1 of 15 http://www.w3.org/TR/2009/PR-owl2-quick-reference-20090922/ OWL 2 Web Ontology Language Quick Reference W3C Proposed Recommendation 22 September Guide 2009 This document provides a non-normative quick reference guide to the OWL 2 language.
    [Show full text]
  • SLA Information Technology Division Metadata for Video: Too Much
    3/1/2019 Metadata for Video: Too Much Content, Not Enough Information | SLA Information Technology Division Home About Us » Events » Sections » Enter search keyword SLA Information Technology Division Awards » Making Edgier Easier. We're IT! Current b/ITe (v31n5) » b/ITe Archives Virtual Events What’s New Categorized | Uncategorized Metadata for Video: Too Much Content, Not Enough Information Posted on 31 August 2012. by Wayne Pender, McGill University, 2012 Joe Ann Clifton Student Award Winner (Published September 1, 2012) Abstract Television news libraries have struggled with cataloguing, organizing and storing visual materials for efficient search and retrieval for years. This task has been complicated by the emergence of digital video and the exponential growth in the holdings of television news libraries. In parallel, the ability for non-professionals to shoot, edit and publish videos of increasing production value and complexity on the web has flooded the Internet with videos that appeal to a wide audience and subject interest. The present survey looks at the metadata protocols and practices in place for an internal audience in professional operations and on display for the general public on the Internet. The study finds that the lack of a common metadata schema can make much of the material inaccessible. Literature pertaining to this area is reviewed and future direction is discussed. http://it.sla1.org/2012/08/metadata/ 1/10 3/1/2019 Metadata for Video: Too Much Content, Not Enough Information | SLA Information Technology Division Keywords: metadata, video, XML, RDF, MXF, television, news, YouTube Paper Searching and retrieving visual content is problematic. The search for specific moving images on film and video has long been a task for television news professionals, but now with wide spread availability of video resources on the Internet it has become a task for anyone.
    [Show full text]
  • SVG Tutorial
    SVG Tutorial David Duce *, Ivan Herman +, Bob Hopgood * * Oxford Brookes University, + World Wide Web Consortium Contents ¡ 1. Introduction n 1.1 Images on the Web n 1.2 Supported Image Formats n 1.3 Images are not Computer Graphics n 1.4 Multimedia is not Computer Graphics ¡ 2. Early Vector Graphics on the Web n 2.1 CGM n 2.2 CGM on the Web n 2.3 WebCGM Profile n 2.4 WebCGM Viewers ¡ 3. SVG: An Introduction n 3.1 Scalable Vector Graphics n 3.2 An XML Application n 3.3 Submissions to W3C n 3.4 SVG: an XML Application n 3.5 Getting Started with SVG ¡ 4. Coordinates and Rendering n 4.1 Rectangles and Text n 4.2 Coordinates n 4.3 Rendering Model n 4.4 Rendering Attributes and Styling Properties n 4.5 Following Examples ¡ 5. SVG Drawing Elements n 5.1 Path and Text n 5.2 Path n 5.3 Text n 5.4 Basic Shapes ¡ 6. Grouping n 6.1 Introduction n 6.2 Coordinate Transformations n 6.3 Clipping ¡ 7. Filling n 7.1 Fill Properties n 7.2 Colour n 7.3 Fill Rule n 7.4 Opacity n 7.5 Colour Gradients ¡ 8. Stroking n 8.1 Stroke Properties n 8.2 Width and Style n 8.3 Line Termination and Joining ¡ 9. Text n 9.1 Rendering Text n 9.2 Font Properties n 9.3 Text Properties -- ii -- ¡ 10. Animation n 10.1 Simple Animation n 10.2 How the Animation takes Place n 10.3 Animation along a Path n 10.4 When the Animation takes Place ¡ 11.
    [Show full text]
  • Instruction for Using XML Notepad
    Using XML Notepad to Read, Edit, and Parse FGDC-CSDGM XML Metadata. Currently many tools exist that allow a user to work with XML metadata files. However, most of the main metadata creation/editing tools do not provide a means of validating a metadata record for compliance with the FGDC-CSDGM standard or its variants, such as the Biological Data Profile (BDP) standard. One of the most reliable ways to validate metadata files (that is, check files for completion and/or errors) is with the USGS Metadata Parser (MP) utilities. The MP tool and the other tools distributed in the package were developed by Peter Schweitzer and are freely available online (http://geology.usgs.gov/tools/metadata/tools/doc/mp.html). Once configured properly, MP can process metadata files and be used to produce a text file with a list of all errors found. A user can then use this list of errors to find and correct the problems using a text editor or the metadata editor of their choice. The challenge with this method is that finding and correcting the error within a metadata editor based solely on the error message from MP can be confusing and frustrating. Additionally, if there are many errors or complex problems to correct, the process will require multiple iterations of running MP and subsequently correcting errors in a metadata editor. All in all, the process can be fairly time consuming and onerous, especially for those without a detailed understanding of the FGDC-CSDGM standard. The methodology for metadata editing and validation described in this document tries to address some of these problems with an alternative approach.
    [Show full text]
  • Configurable Editing of XML-Based Variable-Data Documents John Lumley, Roger Gimson, Owen Rees HP Laboratories HPL-2008-53
    Configurable Editing of XML-based Variable-Data Documents John Lumley, Roger Gimson, Owen Rees HP Laboratories HPL-2008-53 Keyword(s): XSLT, SVG, document construction, functional programming, document editing Abstract: Variable data documents can be considered as functions of their bindings to values, and this function could be arbitrarily complex to build strongly-customised but high-value documents. We outline an approach for editing such documents from example instances, which is highly configurable in terms of controlling exactly what is editable and how, capable of being used with a wide variety of XML-based document formats and processing pipelines, if certain reasonable properties are supported and can generate appropriate editors automatically, including web- service deployment. External Posting Date: October 6, 2008 [Fulltext] Approved for External Publication Internal Posting Date: October 6, 2008 [Fulltext] Published and presented at DocEng’08, September 16-19, 2008, São Paulo, Brazil © Copyright 2008 ACM Configurable Editing of XML-based Variable-Data Documents John Lumley, Roger Gimson, Owen Rees Hewlett-Packard Laboratories Filton Road, Stoke Gifford BRISTOL BS34 8QZ, U.K. {john.lumley,roger.gimson,owen.rees}@hp.com ABSTRACT al form of the final document (WYSIWYG rather than declaring Variable data documents can be considered as functions of their intent such as using LaTeX), but when the document is highly vari- bindings to values, and this function could be arbitrarily complex able and there are very many different possible instances, how to to build strongly-customised but high-value documents. We outline do this is not immediately obvious. an approach for editing such documents from example instances, We were also keen to consider that, especially in complex commer- which is highly configurable in terms of controlling exactly what ical document workflows, there may be many distinctly different is editable and how, capable of being used with a wide variety of roles of ‘editor’ and ‘author’ for such documents.
    [Show full text]
  • Cisco XML Schemas
    CHAPTER 14 Cisco XML Schemas This chapter contains information about common XML schemas. The structure and allowable content of the XML request and response instances supported by the Cisco IOS XR XML application programming interface (API) are documented by means of XML schemas (.xsd files). The XML schemas are documented using the standard World Wide Web Consortium (W3C) XML schema language, which provides a much more powerful and flexible mechanism for describing schemas than can be achieved using Document Type Definitions (DTDs). The set of XML schemas consists of a small set of common high-level schemas and a larger number of component-specific schemas as described in this chapter. For more information on the W3C XML Schema standard, see this URL: http://www.w3.org/XML/Schema This chapter contains these sections: • XML Schema Retrieval, page 14-135 • Common XML Schemas, page 14-136 • Component XML Schemas, page 14-136 XML Schema Retrieval The XML schemas that belong to the features in a particular package are obtained as a .tar file from cisco.com. To retrieve the XML schemas, you must: 1. Click this URL to display the Downloads page: http://tools.cisco.com/support/downloads/go/Redirect.x?mdfid=268437899 Note Select Downloads. Only customer or partner viewers can access the Download Software page. Guest users will get an error. 2. Select Cisco IOS XR Software. 3. Select IOS XR XML Schemas. 4. Select the XML schema for your platform. Once untarred, all the XML schema files appear as a flat directory of .xsd files and can be opened with any XML schema viewing application, such as XMLSpy.
    [Show full text]
  • Stylesheet Translations of SVG to VML
    Stylesheet Translations of SVG to VML A Master's Project presented to The Faculty of the Department of Computer Science San Jose State University In Partial Fulfillment of the Requirements for the Degree of Master of Science Julie Nabong Advisor: Dr. Chris Pollett May 2004 Abstract The most common graphics formats on the Web today are JPEG and GIF. In addition to these formats, two XML-based graphic types are available as open standards: SVG and VML. SVG and VML are vector graphic formats. These formats offer benefits such as fast Web download time, zoomable images, and searchable texts. Because these vector graphics are scalable, these images can be viewed in different screen sizes, such as PC displays and handheld devices. SVG and VML implementations are gaining popularity in Internet cartography and zoomable charts. SVG images can be viewed by downloading a plug-in; whereas, VML images are rendered in Microsoft's Internet Explorer browser versions 5.0 and higher. Although SVG may be considered a more mature format than VML, it is unlikely it will be supported natively by Microsoft anytime soon. In this master's project, SVG images will be transformed into VML images contained in an HTML document that can be viewed without a plug-in. SVG images will be manipulated through the Document Object Model API and transformed into VML images using JavaScript, XSLT, and XPath. JavaScript will play an important role in handling functionalities not present in XSLT. This project will address the issue of gradient discrepancies between the two formats, and try to get the speed of the translation as close to that of the plug-in based solution as possible.
    [Show full text]
  • Modularization of XHTML in XML Schema Modularization of XHTML™ in XML Schema
    Modularization of XHTML in XML Schema Modularization of XHTML™ in XML Schema Modularization of XHTML™ in XML Schema W3C Working Draft - 22 March 2001 This version: http://www.w3.org/TR/2001/WD-xhtml-m12n-schema-20010322 (Single HTML file [p.1] , PostScript version, PDF version, ZIP archive, or Gzip’d TAR archive) Latest version: http://www.w3.org/TR/xhtml-m12n-schema Editors: Daniel Austin, Mozquito Technologies AG Shane McCarron, Applied Testing and Technology Copyright ©2001 W3C® (MIT, INRIA, Keio), All Rights Reserved. W3C liability, trademark, document use and software licensing rules apply. Abstract This document describes a methodology for the modularization of XHTML using XML Schema. Modularization of XHTML allows document authors to modify and extend XHTML in a conformant way. Status of This Document This section describes the status of this document at the time of its publication. Other documents may supersede this document. The latest status of this document series is maintained at the W3C. This is the first public "Working Draft" of "Modularization of XHTML in XML Schema" for review by members of the W3C and other interested parties in the general public. It is a stand-alone document to ease its review. Once the methodology described in this document become mature, it will be integrated into a future document forthcoming from the HTML Working Group. This document is still in its early stage, and may be updated, replaced, or obsoleted by other documents at any time. Publication of this Working Draft does not imply endorsement by the W3C, and it is inappropriate to use W3C Working Drafts as reference material or to cite them as other than "work in progress".
    [Show full text]
  • XML: Looking at the Forest Instead of the Trees Guy Lapalme Professor Département D©Informatique Et De Recherche Opérationnelle Université De Montréal
    XML: Looking at the Forest Instead of the Trees Guy Lapalme Professor Département d©informatique et de recherche opérationnelle Université de Montréal C.P. 6128, Succ. Centre-Ville Montréal, Québec Canada H3C 3J7 [email protected] http://www.iro.umontreal.ca/~lapalme/ForestInsteadOfTheTrees/ Publication date April 14, 2019 XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/ XML: Looking at the Forest Instead of the Trees Guy Lapalme Professor Département d©informatique et de recherche opérationnelle Université de Montréal C.P. 6128, Succ. Centre-Ville Montréal, Québec Canada H3C 3J7 [email protected] http://www.iro.umontreal.ca/~lapalme/ForestInsteadOfTheTrees/ Publication date April 14, 2019 Abstract This tutorial gives a high-level overview of the main principles underlying some XML technologies: DTD, XML Schema, RELAX NG, Schematron, XPath, XSL stylesheets, Formatting Objects, DOM, SAX and StAX models of processing. They are presented from the point of view of the computer scientist, without the hype too often associated with them. We do not give a detailed description but we focus on the relations between the main ideas of XML and other computer language technologies. A single compact pretty-print example is used throughout the text to illustrate the processing of an XML structure with XML technologies or with Java programs. We also show how to create an XML document by programming in Java, in Ruby, in Python, in PHP, in E4X (Ecmascript for XML) and in Swift. The source code of the example XML ®les and the programs are available either at the companion web site of this document or by clicking on the ®le name within brackets at the start of the caption of each example.
    [Show full text]
  • SVG-Based Knowledge Visualization
    MASARYK UNIVERSITY FACULTY}w¡¢£¤¥¦§¨ OF I !"#$%&'()+,-./012345<yA|NFORMATICS SVG-based Knowledge Visualization DIPLOMA THESIS Miloš Kaláb Brno, spring 2012 Declaration Hereby I declare, that this paper is my original authorial work, which I have worked out by my own. All sources, references and literature used or excerpted during elaboration of this work are properly cited and listed in complete reference to the due source. Advisor: RNDr. Tomáš Gregar Ph.D. ii Acknowledgement I would like to thank RNDr. Tomáš Gregar Ph.D. for supervising the thesis. His opinions, comments and advising helped me a lot with accomplishing this work. I would also like to thank to Dr. Daniel Sonntag from DFKI GmbH. Saarbrücken, Germany, for the opportunity to work for him on the Medico project and for his supervising of the thesis during my erasmus exchange in Germany. Big thanks also to Jochen Setz from Dr. Sonntag’s team who worked on the server background used by my visualization. Last but not least, I would like to thank to my family and friends for being extraordinary supportive. iii Abstract The aim of this thesis is to analyze the visualization of semantic data and sug- gest an approach to general visualization into the SVG format. Afterwards, the approach is to be implemented in a visualizer allowing user to customize the visualization according to the nature of the data. The visualizer was integrated as an extension of Fresnel Editor. iv Keywords Semantic knowledge, SVG, Visualization, JavaScript, Java, XML, Fresnel, XSLT v Contents Introduction . .3 1 Brief Introduction to the Related Technologies ..........5 1.1 XML – Extensible Markup Language ..............5 1.1.1 XSLT – Extensible Stylesheet Lang.
    [Show full text]
  • The Development of Algorithms for On-Demand Map Editing for Internet and Mobile Users with Gml and Svg
    THE DEVELOPMENT OF ALGORITHMS FOR ON-DEMAND MAP EDITING FOR INTERNET AND MOBILE USERS WITH GML AND SVG Miss. Ida K.L CHEUNG a, , Mr. Geoffrey Y.K. SHEA b a Department of Land Surveying & Geo-Informatics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, email: [email protected] b Department of Land Surveying & Geo-Informatics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, email: [email protected] Commission VI, PS WG IV/2 KEY WORDS: Spatial Information Sciences, GIS, Research, Internet, Interoperability ABSTRACT: The widespread availability of the World Wide Web has led to a rapid increase in the amount of data accessing, sharing and disseminating that gives the opportunities for delivering maps over the Internet as well as small mobile devices. In GIS industry, many vendors or companies have produced their own web map products which have their own version, data model and proprietary data formats without standardization. Such problem has long been an issue. Therefore, Geographic Markup Language (GML) was designed to provide solutions. GML is an XML grammar written in XML Schema for the modelling, transport, and storage of geographic information including both spatial and non-spatial properties of geographic features. GML is developed by Open GIS Consortium in order to promote spatial data interoperability and open standard. Since GML is still a newly developed standard, this promising research field provides a standardized method to integrate web-based mapping information in terms of data modelling, spatial data representation mechanism and graphic presentation. As GML is not for data display, SVG is an ideal vector graphic for displaying geographic data.
    [Show full text]