Using OWL/RDFS for Building Semantic Web Applications

Total Page:16

File Type:pdf, Size:1020Kb

Using OWL/RDFS for Building Semantic Web Applications Using OWL/RDFS for Building Semantic Web Applications Xavier Lopez, Ph.D., Director, Oracle Server Technologies Zhe Wu, Ph.D., Consultant Member, Oracle Server Technologies Agenda • Introduction to Semantic Web and Oracle 11g Semantic Technologies • What is semantic web? • Business use cases • Capabilities overview • Architecture/Query/Store/Inference/Java APIs • Scalability and performance • Web ontology languages overview • RDFS/OWL • Using RDFS/OWL in your semantic applications • Summary Introduction to Semantic Web and Business Use Cases Semantic Data Management Characteristics • Discovery of data relationships across… • Structured data (database, apps, web services) • Unstructured data (email, office documents) Multi-data types (graphs, spatial, text, sensors) • Text Mining & Web Mining infrastructure • Terabytes of structured & unstructured data • Queries are not defined in advance • Schemas are continuously evolving • Associate more meaning (context) to enterprise data to enable its (re)use across applications • Allow sharing and reuse of enterprise and web data. • Built on open, industry W3C standards: • SQL, XML, RDF, OWL, SPARQL Case Study: National Intelligence Ontology Engineering Modeling Process Information RDF/OWL Extraction Processed OWL Categorization, Feature/ Document Ontologies term Extraction Web Resources Collection Domain Specific Knowledge Base News, Email, RSS SQL/SPARQL Query Content Mgmt. Systems Explore Browsing, Presentation, Reporting, Visualization, Query Analyst Data Integration Platform in Health Informatics Enterprise Information Consumers (EICs) Access Patient Workforce Clinical Care Business Analytics Management Intelligence Run-Time Metadata Model Virtual Deploy Relate Integration Server (Semantic Knowledge base) Model Physical Access LIS CIS HTB HIS Data Integration Platform in Health Informatics Enterprise Information Consumers (EICs) Access Patient Workforce Clinical Care Business Analytics Management Intelligence Run-Time Metadata Model Virtual Deploy Relate Integration Server (Semantic Knowledge base) Model Physical Access LIS CIS HTB HIS Semantic Data Management Workflow Edit & Load, Query Applications & Transaction Systems Transform & Inference Analysis Unstructured Content •Entity • RDF/OWL Data • Graph Extraction & Management Visualization Transform • SQL & SPARQL • Link Analysis Query RSS, email •Ontology • Statistical Engineering • Inferencing Analysis •Categorization • Semantic Rules • Faceted Search Other Data •Custom • Scalability & • Pattern Discovery Formats Scripting Security • Text Mining Data Partners Partners Sources Oracle 11g RDF/OWL Graph Data Management Key Capabilities: • Oracle 11g is the leading • Native RDF graph data store commercial database with native Load / • Manages billions of triples RDF/OWL data management Storage • Fast batch, bulk and incremental load • Scalable & secure platform for wide-range of semantic • SQL: SEM_Match applications Query • SPARQL: via Jena plug-in • Readily scales to ultra-large • Ontology assisted query of RDBMS data repositories (+1 billion) • Choice of SQL or SPARQL query • Leverages Oracle Partitioning • Forward chaining model Reasoning • RDFS++ OWL, OWL Prime and Advanced Compression. RAC • User defined rule base supported • Growing ecosystem of 3rd party tools partners Semantic Technology Partners Integrated Tools and Solution Providers: Commitment to W3C Semantic Standards • Our implementation entirely based on W3C standards (RDF, RDFS, OWL) • SPARQL support through Jena • Members of following W3C Web Semantic Activities: • W3C Data Access Working Group (DAWG) • W3C OWL Working group • W3C Semantic Web Education & Outreach (SWEO) • W3C Health Care & Life Sciences Interest Group (HCLS) • W3C Multimedia Semantics Incubator group • W3C Semantic Web Rules Language (SWRL) 11 Oracle 11g Semantic Technologies 12 The following is intended to outline our general product direction. It is intended for information purposes only, and may not be incorporated into any contract. It is not a commitment to deliver any material, code, or functionality, and should not be relied upon in making purchasing decisions. The development, release, and timing of any features or functionality described for Oracle’s products remains at the sole discretion of Oracle. Capabilities Overview INFER QUERY Query RDF/ Ontology- RDF/S User OWL data Assisted defined and Query of OWL rules ontologies Enterprise Data Incr. DML Batch- • RDF/OWL Load Relational data data STORE • Ontologies & Bulk- rule bases Load 14 Store Semantic Data • Native graph data store in Oracle database • Implemented using relational tables/views • Optimized for semantic data • Scales to very large datasets • No limits to amount of data that can be stored • Stored along with other relational data • Leverages decades of experience • Can be combined with other relational data • Business Data • XML • Location • Images, Video 15 Store Semantic Data: APIs • Incremental DMLs (small number of changes) Recommended loading method • Insert for very small • Delete number of triples • GraphOracleSem.add, delete • Batch loader • BatchImport • OracleBulkUpdateHandler.addInBatch(…) • Bulk loader (large number of changes) Recommended loading method • sem_apis.bulk_load_from_staging_table(…) for very large • OracleBulkUpdateHandler.addInBulk(…) number of triples 16 Infer Semantic Data • Native inferencing in the database for • RDF, RDFS, and a rich subset of OWL semantics (OWLSIF, OWLPRIME, RDFS++) • User-defined rules • Forward chaining. • New relationships/triples are inferred and stored ahead of query time • Removes on-the-fly reasoning and results in fast query times • Proof generation • Show one deduction path 17 OWL Subsets Supported • RDFS++ • RDFS plus owl:sameAs and owl:InverseFunctionalProperty • OWLSIF (OWL with IF semantics) • Based on Dr. Horst’s pD* vocabulary¹ • OWLPrime • rdfs:subClassOf, subPropertyOf, domain, range • owl:TransitiveProperty, SymmetricProperty, FunctionalProperty, InverseFunctionalProperty, inverseOf • owl:sameAs, differentFrom OWL DL • owl:disjointWith, complementOf, OWL Lite • owl:hasValue, allValuesFrom, someValuesFrom OWLPrime • owl:equivalentClass, equivalentProperty • Jointly determined with domain experts, customers and partners 18 1 Completeness, decidability and complexity of entailment for RDF Schema and a semantic extension involving the OWL vocabulary Infer Semantic Data: APIs • SEM_APIS.CREATE_ENTAILMENT( Typical Usage: • Index_name • First load RDF/OWL data • sem_models(‘GraphTBox’, ‘GraphABox’, …), • Call create_entailment to Recommended • sem_rulebases(‘OWLPrime’), generate inferred graph API • passes, • Query both original graph and for inference • Inf_components, inferred data • Options Inferred graph contains only new ) triples! Saves time & • Use “PROOF=T” to generate inference proof resources • SEM_APIS.VALIDATE_ENTAILMENT( • sem_models((‘GraphTBox’, ‘GraphABox’, …), Typical Usage: • sem_rulebases(‘OWLPrime’), • First load RDF/OWL data • Criteria, • Call create_entailment to • Max_conflicts, generate inferred graph • Options • Call validate_entailment to find inconsistencies ) • Java API: GraphOracleSem.performInference() 19 Query Semantic Data • Choice of SQL or SPARQL • SPARQL-like graph queries can be embedded in SQL • Key advantages • Graph queries can be integrated with enterprise relational data • Graph queries can be enhanced with relational operators. • E.g. replace, substr, concatenation, to_number, … • Jena Adaptor for Oracle can be used, includes a full SPARQL API • Oracle plans to natively support SPARQL 20 Query Semantic Data: APIs • Graph query using SEM_MATCH select g.s, t.frequency from table(sem_match ( -- query graph + relational '(?s <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> <http://www.w3.org/2002/07/owl#Class>)', sem_models('nci1'), null, null, null)) g, terms t where substr(g.s, instr(g.s,'#',-1)+1)= t.subject; -- using a predicate to tie select o from table(sem_match ( ‘ -- query original graph + inferred (<http://www.mindswap.org/2003/nciOncology.owl#Finger_Fracture> <http://www.w3.org/2000/01/rdf-schema#subClassOf> ?o)', Important for sem_models('nci'), sem_rulebases('owlprime'), null, null)); multi-model query performance select o from table(sem_match ( ‘ -- query multi-graphs + inferred (<http://www.mindswap.org/2003/nciOncology.owl#Finger_Fracture> <http://www.w3.org/2000/01/rdf-schema#subClassOf> ?o)', sem_models('nci', 'gene'), sem_rulebases('owlprime'), null, null, null, 'ALLOW_DUP=T’)); • Graph query using Jena Adaptor 21 http://www.oracle.com/technology/obe/11gr1_db/datamgmt/nci_semantic_network/nci_Semantics_les01.htm OBE Query Semantic Data: Semantic Operators • Scalable, efficient SQL operators to perform ontology- assisted query against enterprise relational data Query: “Find all entries in diagnosis column ID DIAGNOSIS that are related to ‘Upper_Extremity_Fracture’” Patients 1 Hand_Fracture Syntactic query against relational table will not work! diagnosis 2 Rheumatoid_Arthritis table SELECT p_id, diagnosis FROM Patients Zero Matches! WHERE diagnosis = ‘Upper_Extremity_Fracture; Traditional Syntactic query against relational data New Semantic query against relational data (while consulting ontology) SELECT p_id, diagnosis Upper_Extremity_Fracture FROM Patients rdfs:subClassOf WHERE SEM_RELATED ( diagnosis, Arm_Fracture ‘rdfs:subClassOf’, rdfs:subClassOf rdfs:subClassOf ‘Upper_Extremity_Fracture’, ‘Medical_ontology’) = 1; Forearm_Fracture Elbow_Fracture Hand_Fracture rdfs:subClassOf Finger_Fracture 22 Query
Recommended publications
  • Basic Querying with SPARQL
    Basic Querying with SPARQL Andrew Weidner Metadata Services Coordinator SPARQL SPARQL SPARQL SPARQL SPARQL Protocol SPARQL SPARQL Protocol And SPARQL SPARQL Protocol And RDF SPARQL SPARQL Protocol And RDF Query SPARQL SPARQL Protocol And RDF Query Language SPARQL SPARQL Protocol And RDF Query Language SPARQL Query SPARQL Query Update SPARQL Query Update - Insert triples SPARQL Query Update - Insert triples - Delete triples SPARQL Query Update - Insert triples - Delete triples - Create graphs SPARQL Query Update - Insert triples - Delete triples - Create graphs - Drop graphs Query RDF Triples Query RDF Triples Triple Store Query RDF Triples Triple Store Data Dump Query RDF Triples Triple Store Data Dump Subject – Predicate – Object Query Subject – Predicate – Object ?s ?p ?o Query Dog HasName Cocoa Subject – Predicate – Object ?s ?p ?o Query Cocoa HasPhoto ------- Subject – Predicate – Object ?s ?p ?o Query HasURL http://bit.ly/1GYVyIX Subject – Predicate – Object ?s ?p ?o Query ?s ?p ?o Query SELECT ?s ?p ?o Query SELECT * ?s ?p ?o Query SELECT * WHERE ?s ?p ?o Query SELECT * WHERE { ?s ?p ?o } Query select * WhErE { ?spiderman ?plays ?oboe } http://deathbattle.wikia.com/wiki/Spider-Man http://www.mmimports.com/wp-content/uploads/2014/04/used-oboe.jpg Query SELECT * WHERE { ?s ?p ?o } Query SELECT * WHERE { ?s ?p ?o } Query SELECT * WHERE { ?s ?p ?o } Query SELECT * WHERE { ?s ?p ?o } LIMIT 10 SELECT * WHERE { ?s ?p ?o } LIMIT 10 http://dbpedia.org/snorql SELECT * WHERE { ?s ?p ?o } LIMIT 10 http://dbpedia.org/snorql SELECT * WHERE { ?s
    [Show full text]
  • A Hierarchical SVG Image Abstraction Layer for Medical Imaging
    A Hierarchical SVG Image Abstraction Layer for Medical Imaging Edward Kim1, Xiaolei Huang1, Gang Tan1, L. Rodney Long2, Sameer Antani2 1Department of Computer Science and Engineering, Lehigh University, Bethlehem, PA; 2Communications Engineering Branch, National Library of Medicine, Bethesda, MD ABSTRACT As medical imaging rapidly expands, there is an increasing need to structure and organize image data for efficient analysis, storage and retrieval. In response, a large fraction of research in the areas of content-based image retrieval (CBIR) and picture archiving and communication systems (PACS) has focused on structuring information to bridge the “semantic gap”, a disparity between machine and human image understanding. An additional consideration in medical images is the organization and integration of clinical diagnostic information. As a step towards bridging the semantic gap, we design and implement a hierarchical image abstraction layer using an XML based language, Scalable Vector Graphics (SVG). Our method encodes features from the raw image and clinical information into an extensible “layer” that can be stored in a SVG document and efficiently searched. Any feature extracted from the raw image including, color, texture, orientation, size, neighbor information, etc., can be combined in our abstraction with high level descriptions or classifications. And our representation can natively characterize an image in a hierarchical tree structure to support multiple levels of segmentation. Furthermore, being a world wide web consortium (W3C) standard, SVG is able to be displayed by most web browsers, interacted with by ECMAScript (standardized scripting language, e.g. JavaScript, JScript), and indexed and retrieved by XML databases and XQuery. Using these open source technologies enables straightforward integration into existing systems.
    [Show full text]
  • Mapping Spatiotemporal Data to RDF: a SPARQL Endpoint for Brussels
    International Journal of Geo-Information Article Mapping Spatiotemporal Data to RDF: A SPARQL Endpoint for Brussels Alejandro Vaisman 1, * and Kevin Chentout 2 1 Instituto Tecnológico de Buenos Aires, Buenos Aires 1424, Argentina 2 Sopra Banking Software, Avenue de Tevuren 226, B-1150 Brussels, Belgium * Correspondence: [email protected]; Tel.: +54-11-3457-4864 Received: 20 June 2019; Accepted: 7 August 2019; Published: 10 August 2019 Abstract: This paper describes how a platform for publishing and querying linked open data for the Brussels Capital region in Belgium is built. Data are provided as relational tables or XML documents and are mapped into the RDF data model using R2RML, a standard language that allows defining customized mappings from relational databases to RDF datasets. In this work, data are spatiotemporal in nature; therefore, R2RML must be adapted to allow producing spatiotemporal Linked Open Data.Data generated in this way are used to populate a SPARQL endpoint, where queries are submitted and the result can be displayed on a map. This endpoint is implemented using Strabon, a spatiotemporal RDF triple store built by extending the RDF store Sesame. The first part of the paper describes how R2RML is adapted to allow producing spatial RDF data and to support XML data sources. These techniques are then used to map data about cultural events and public transport in Brussels into RDF. Spatial data are stored in the form of stRDF triples, the format required by Strabon. In addition, the endpoint is enriched with external data obtained from the Linked Open Data Cloud, from sites like DBpedia, Geonames, and LinkedGeoData, to provide context for analysis.
    [Show full text]
  • Validating RDF Data Using Shapes
    83 Validating RDF data using Shapes a Jose Emilio Labra Gayo ​ ​ a University​ of Oviedo, Spain Abstract RDF forms the keystone of the Semantic Web as it enables a simple and powerful knowledge representation graph based data model that can also facilitate integration between heterogeneous sources of information. RDF based applications are usually accompanied with SPARQL stores which enable to efficiently manage and query RDF data. In spite of its well known benefits, the adoption of RDF in practice by web programmers is still lacking and SPARQL stores are usually deployed without proper documentation and quality assurance. However, the producers of RDF data usually know the implicit schema of the data they are generating, but they don't do it traditionally. In the last years, two technologies have been developed to describe and validate RDF content using the term shape: Shape Expressions (ShEx) and Shapes Constraint Language (SHACL). We will present a motivation for their appearance and compare them, as well as some applications and tools that have been developed. Keywords RDF, ShEx, SHACL, Validating, Data quality, Semantic web 1. Introduction In the tutorial we will present an overview of both RDF is a flexible knowledge and describe some challenges and future work [4] representation language based of graphs which has been successfully adopted in semantic web 2. Acknowledgements applications. In this tutorial we will describe two languages that have recently been proposed for This work has been partially funded by the RDF validation: Shape Expressions (ShEx) and Spanish Ministry of Economy, Industry and Shapes Constraint Language (SHACL).ShEx was Competitiveness, project: TIN2017-88877-R proposed as a concise and intuitive language for describing RDF data in 2014 [1].
    [Show full text]
  • Towards Ontology Based BPMN Implementation. Sophea Chhun, Néjib Moalla, Yacine Ouzrout
    Towards ontology based BPMN Implementation. Sophea Chhun, Néjib Moalla, Yacine Ouzrout To cite this version: Sophea Chhun, Néjib Moalla, Yacine Ouzrout. Towards ontology based BPMN Implementation.. SKIMA, 6th Conference on Software Knowledge Information Management and Applications., Jan 2012, Chengdu, China. 8 p. hal-01551452 HAL Id: hal-01551452 https://hal.archives-ouvertes.fr/hal-01551452 Submitted on 6 Nov 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. 1 Towards ontology based BPMN implementation CHHUN Sophea, MOALLA Néjib and OUZROUT Yacine University of Lumiere Lyon2, laboratory DISP, France Natural language is understandable by human and not machine. None technical persons can only use natural language to specify their business requirements. However, the current version of Business process management and notation (BPMN) tools do not allow business analysts to implement their business processes without having technical skills. BPMN tool is a tool that allows users to design and implement the business processes by connecting different business tasks and rules together. The tools do not provide automatic implementation of business tasks from users’ specifications in natural language (NL). Therefore, this research aims to propose a framework to automatically implement the business processes that are expressed in NL requirements.
    [Show full text]
  • A State-Of-The-Art Survey on Semantic Web Mining
    Intelligent Information Management, 2013, 5, 10-17 http://dx.doi.org/10.4236/iim.2013.51002 Published Online January 2013 (http://www.scirp.org/journal/iim) A State-of-the-Art Survey on Semantic Web Mining Qudamah K. Quboa, Mohamad Saraee School of Computing, Science, and Engineering, University of Salford, Salford, UK Email: [email protected], [email protected] Received November 9, 2012; revised December 9, 2012; accepted December 16, 2012 ABSTRACT The integration of the two fast-developing scientific research areas Semantic Web and Web Mining is known as Se- mantic Web Mining. The huge increase in the amount of Semantic Web data became a perfect target for many re- searchers to apply Data Mining techniques on it. This paper gives a detailed state-of-the-art survey of on-going research in this new area. It shows the positive effects of Semantic Web Mining, the obstacles faced by researchers and propose number of approaches to deal with the very complex and heterogeneous information and knowledge which are pro- duced by the technologies of Semantic Web. Keywords: Web Mining; Semantic Web; Data Mining; Semantic Web Mining 1. Introduction precisely answer and satisfy the web users’ requests [1,5, 6]. Semantic Web is a part of the second generation web Semantic Web Mining is an integration of two important (Web2.0) and its original idea derived from the vision scientific areas: Semantic Web and Data Mining [1]. Se- W3C’s director and the WWW founder, Sir Tim Berners- mantic Web is used to give a meaning to data, creating complex and heterogeneous data structure, while Data Lee.
    [Show full text]
  • Poolparty Semantic Suite Functional Overview
    PoolParty Semantic Suite Functional Overview Andreas Blumauer CEO & Managing Partner Semantic Web Company / PoolParty Semantic Suite 2 Semantic Web Company (SWC) ▸ Founded in 2004, based in Vienna ▸ Privately held 3 ▸ 50 FTE ▸ Software Engineers & Consultants for Introducing NLP, Semantics and Machine learning Semantic Semantic Web AI ▸ Developer & Vendor of Company PoolParty Semantic Suite ▸ Participating in projects with €2.5 million funding for R&D ▸ ~30% revenue growth/year ▸ SWC named to KMWorld’s ‘100 Companies That Matter in Knowledge Management’ in 2016, 2017 and 2018 ▸ www.semantic-web.com 2017 2016 PoolParty Semantic Suite ▸ Most complete Semantic Middleware on the Global Market ▸ Semantic AI: Fusion of Knowledge 4 Graphs, NLP, and Machine Learning ▸ W3C standards compliant Fact sheet: PoolParty ▸ First release in 2009 ▸ Current version 7.0 ▸ On-premises or cloud-based ▸ Over 200 installations world-wide ▸ Named as Sample Vendor in Gartner’s Hype Cycle for AI 2018 ▸ KMWorld listed PoolParty as Trend-Setting Product 2015, 2016, 2017, and 2018 ▸ www.poolparty.biz We work with Global Fortune Companies, and with some of the largest GOs and NGOs from over 20 countries. SWC head- US UK quarters West US Selected Customer References East 5 ● Credit Suisse ● Boehringer Ingelheim Selected ● Roche ● adidas Customer ● The Pokémon Company ● Fluor AUS/ References ● Harvard Business School NZL ● Wolters Kluwer and Partners ● Philips ● Nestlé ● Electronic Arts Selected Partners ● Springer Nature ● Pearson - Always Learning ● Enterprise Knowledge ● Healthdirect Australia ● Mekon Intelligent Content Solutions ● World Bank Group ● Soitron ● Canadian Broadcasting Corporation ● Accenture ● Oxford University Press ● EPAM Systems ● International Atomic Energy Agency ● BAON Enterprises ● Siemens ● Findwise ● Singapore Academy of Law ● Tellura Semantics ● Inter-American Development Bank ● HPC ● Council of the E.U.
    [Show full text]
  • Semantic Technologies for Systems Engineering (ST4SE)
    Semantic Technologies for Systems Engineering (ST4SE) Update at INCOSE IW, 27 Jan 2019, Torrance, CA, USA Hans Peter de Koning European Space Agency, ESA/ESTEC, Noordwijk, The Netherlands Based on earlier presentations and contributions by other ST4SE Core Team Members Objectives of the ST4SE Foundation To promote and champion the open-source development and utilization of ontologies and semantic technologies to support system engineering practice, education, and research 1. Provide a semantically rich language to communicate among systems engineers and other stakeholders 2. Define patterns that can be used to check for consistency and completeness 3. Support querying of information from model 4. Focus on adding value by balancing the expected benefits from being formal and the cost of being formal ST4SE Update | INCOSE IW | 2019-01-27, Torrance, CA, USA 2 MBSE Challenge – 3 Kinds of Communication . Person ↔ Person . Machine ↔ Machine . Person ↔ Machine Person . All bi-directional (of course) . All need to work flawlessly Machine ST4SE Update | INCOSE IW | 2019-01-27, Torrance, CA, USA 3 Outline . Background on Semantic Technologies • Knowledge representation, reasoning, querying . Semantic Technologies for System Engineering • Motivation • Scope and focus • Relationship between ST4SE and SysML 2.0 . ST4SE Approach • Open-source foundation • Bootstrapping: (best) practices for defining, demonstrating and documenting patterns ST4SE Update | INCOSE IW | 2019-01-27, Torrance, CA, USA 4 Increasing levels of semantic precision (and understanding
    [Show full text]
  • Computational Integrity for Outsourced Execution of SPARQL Queries
    Computational integrity for outsourced execution of SPARQL queries Serge Morel Student number: 01407289 Supervisors: Prof. dr. ir. Ruben Verborgh, Dr. ir. Miel Vander Sande Counsellors: Ir. Ruben Taelman, Joachim Van Herwegen Master's dissertation submitted in order to obtain the academic degree of Master of Science in Computer Science Engineering Academic year 2018-2019 Computational integrity for outsourced execution of SPARQL queries Serge Morel Student number: 01407289 Supervisors: Prof. dr. ir. Ruben Verborgh, Dr. ir. Miel Vander Sande Counsellors: Ir. Ruben Taelman, Joachim Van Herwegen Master's dissertation submitted in order to obtain the academic degree of Master of Science in Computer Science Engineering Academic year 2018-2019 iii c Ghent University The author(s) gives (give) permission to make this master dissertation available for consultation and to copy parts of this master dissertation for personal use. In the case of any other use, the copyright terms have to be respected, in particular with regard to the obligation to state expressly the source when quoting results from this master dissertation. August 16, 2019 Acknowledgements The topic of this thesis concerns a rather novel and academic concept. Its research area has incredibly talented people working on a very promising technology. Understanding the core principles behind proof systems proved to be quite difficult, but I am strongly convinced that it is a thing of the future. Just like the often highly-praised artificial intelligence technology, I feel that verifiable computation will become very useful in the future. I would like to thank Joachim Van Herwegen and Ruben Taelman for steering me in the right direction and reviewing my work quickly and intensively.
    [Show full text]
  • Rdfa in XHTML: Syntax and Processing Rdfa in XHTML: Syntax and Processing
    RDFa in XHTML: Syntax and Processing RDFa in XHTML: Syntax and Processing RDFa in XHTML: Syntax and Processing A collection of attributes and processing rules for extending XHTML to support RDF W3C Recommendation 14 October 2008 This version: http://www.w3.org/TR/2008/REC-rdfa-syntax-20081014 Latest version: http://www.w3.org/TR/rdfa-syntax Previous version: http://www.w3.org/TR/2008/PR-rdfa-syntax-20080904 Diff from previous version: rdfa-syntax-diff.html Editors: Ben Adida, Creative Commons [email protected] Mark Birbeck, webBackplane [email protected] Shane McCarron, Applied Testing and Technology, Inc. [email protected] Steven Pemberton, CWI Please refer to the errata for this document, which may include some normative corrections. This document is also available in these non-normative formats: PostScript version, PDF version, ZIP archive, and Gzip’d TAR archive. The English version of this specification is the only normative version. Non-normative translations may also be available. Copyright © 2007-2008 W3C® (MIT, ERCIM, Keio), All Rights Reserved. W3C liability, trademark and document use rules apply. Abstract The current Web is primarily made up of an enormous number of documents that have been created using HTML. These documents contain significant amounts of structured data, which is largely unavailable to tools and applications. When publishers can express this data more completely, and when tools can read it, a new world of user functionality becomes available, letting users transfer structured data between applications and web sites, and allowing browsing applications to improve the user experience: an event on a web page can be directly imported - 1 - How to Read this Document RDFa in XHTML: Syntax and Processing into a user’s desktop calendar; a license on a document can be detected so that users can be informed of their rights automatically; a photo’s creator, camera setting information, resolution, location and topic can be published as easily as the original photo itself, enabling structured search and sharing.
    [Show full text]
  • Semantic Description of Web Services
    Semantic Description of Web Services Thabet Slimani CS Department, Taif University, P.O.Box 888, 21974, KSA Abstract syntaxes) and in terms of the paradigms proposed for The tasks of semantic web service (discovery, selection, employing these in practice. composition, and execution) are supposed to enable seamless interoperation between systems, whereby human intervention is This paper is dedicated to provide an overview of these kept at a minimum. In the field of Web service description approaches, expressing their classification in terms of research, the exploitation of descriptions of services through commonalities and differences. It provides an semantics is a better support for the life-cycle of Web services. understanding of the technical foundation on which they The large number of developed ontologies, languages of are built. These techniques are classified from a range of representations, and integrated frameworks supporting the research areas including Top-down, Bottom-up and Restful discovery, composition and invocation of services is a good Approaches. indicator that research in the field of Semantic Web Services (SWS) has been considerably active. We provide in this paper a This paper does also provide some grounding that could detailed classification of the approaches and solutions, indicating help the reader perform a more detailed analysis of the their core characteristics and objectives required and provide different approaches which relies on the required indicators for the interested reader to follow up further insights objectives. We provide a little detailed comparison and details about these solutions and related software. between some approaches because this would require Keywords: SWS, SWS description, top-down approaches, addressing them from the perspective of some tasks bottom-up approaches, RESTful services.
    [Show full text]
  • Rdfs:Frbr– Towards an Implementation Model for Library Catalogs Using Semantic Web Technology
    rdfs:frbr– Towards an Implementation Model for Library Catalogs Using Semantic Web Technology Stefan Gradmann SUMMARY. The paper sets out from a few basic observations (biblio- graphic information is still mostly part of the ‘hidden Web,’ library au- tomation methods still have a low WWW-transparency, and take-up of FRBR has been rather slow) and continues taking a closer look at Se- mantic Web technology components. This results in a proposal for im- plementing FRBR as RDF-Schema and of RDF-based library catalogues built on such an approach. The contribution concludes with a discussion of selected strategic benefits resulting from such an approach. [Article copies available for a fee from The Haworth Document Delivery Service: 1-800-HAWORTH. E-mail address: <[email protected]> Web- site: <http://www.HaworthPress.com> © 2005 by The Haworth Press, Inc. All rights reserved.] Stefan Gradmann, PhD, is Head, Hamburg University “Virtual Campus Library” Unit, which is part of the computing center and has a mission of providing information management services to the university as a whole, including e-publication services and open access to electronic scientific information resources. Address correspondence to: Stefan Gradmann, Virtuelle Campusbibliothek Regionales Rechenzentrum der Universität Hamburg, Schlüterstrasse 70, D-20146 Hamburg, Germany (E-mail: [email protected]). [Haworth co-indexing entry note]: “rdfs:frbr–Towards an Implementation Model for Library Cata- logs Using Semantic Web Technology.” Gradmann, Stefan. Co-published simultaneously in Cataloging & Classification Quarterly (The Haworth Information Press, an imprint of The Haworth Press, Inc.) Vol. 39, No. 3/4, 2005, pp. 63-75; and: Functional Requirements for Bibliographic Records (FRBR): Hype or Cure-All? (ed: Patrick Le Boeuf) The Haworth Information Press, an imprint of The Haworth Press, Inc., 2005, pp.
    [Show full text]