Verification of Non-Regular Program Properties

Total Page:16

File Type:pdf, Size:1020Kb

Verification of Non-Regular Program Properties Verification of Non-Regular Program Properties Roland Axelsson M¨unchen 2010 Verification of Non-Regular Program Properties Roland Axelsson Dissertation am Institut f¨ur Informatik Ludwig–Maximilians–Universit¨at M¨unchen vorgelegt von Roland Axelsson M¨unchen, den 27.4.2010 Erstgutachter: Prof. Dr. Martin Lange Zweitgutachter: Prof. Dr. Thomas Wilke Tag der m¨undlichen Pr¨ufung: 25.6.2010 Abstract Most temporal logics which have been introduced and studied in the past decades can be ∗ embedded into the modal Lµ. This is the case for e.g. PDL, CTL, CTL , ECTL, LTL, etc. and entails that these logics cannot express non-regular program properties. In recent years, some novel approaches towards an increase in expressive power have been made: Fixpoint Logic with Chop enriches Lµ with a sequential composition operator and thereby allows to characterise context-free processes. The Modal Iteration Calculus uses inflation- ary fixpoints to exceed the expressive power of Lµ. Higher-Order Fixpoint Logic (HFL) incorporates a simply typed λ-calculus into a setting with extremal fixpoint operators and even exceeds the expressive power of Fixpoint Logic with Chop. But also PDL has been equipped with context-free programs instead of regular ones. In terms of expressivity there is a natural demand for richer frameworks since program property specifications are simply not limited to the regular sphere. Expressivity however usually comes at the price of an increased computational complexity of logic-related deci- sion problems. For instance are the satisfiability problems for the above mentioned logics undecidable. We investigate in this work the model checking problem of three different log- ics which are capable of expressing non-regular program properties and aim at identifying fragments with feasible model checking complexity. Firstly, we develop a generic method for determining the complexity of model checking PDL over arbitrary classes of programs and show that the border to undecidability runs between PDL over indexed languages and PDL over context-sensitive languages. It is however still in PTIME for PDL over linear indexed languages and in EXPTIME for PDL over indexed languages. We present concrete algorithms which allow implementations of model checkers for these two fragments. We then introduce an extension of CTL in which the until- and release- operators are adorned with formal languages. These are interpreted over labeled paths and restrict the moments on such a path at which the operators are satisfied. The until-operator is for instance satisfied if some path prefix forms a word in the language it is adorned with (besides the usual requirement that until that moment some property has to hold and at that very moment some other property must hold). Again, we determine the computational complexities of the model checking problems for varying classes of allowed languages in either operator. It turns out that either enabling context-sensitive languages in the until or context-free languages in the release- operator renders the model checking problem undecidable while it is EXPTIME-complete for indexed languages in the until and visibly pushdown languages in the release- operator. PTIME-completeness is a result of allowing linear indexed languages in the until and deterministic context-free languages in the release. We do also give concrete model checking algorithms for several interesting fragments of these logics. Finally, we turn our attention to the model checking problem of HFL which we have already studied in previous works. On finite state models it is kEXPTIME-complete for HFLk, the fragment of HFL obtained by restricting functions in the λ-calculus to order k. Novel in this work is however the generalisation (from the first-order case to the case for functions of arbitrary order) of an idea to improve the best and average case behaviour of a model checking algorithm by using partial functions during the fixpoint iteration guided by the neededness of arguments. This is possible, because the semantics of a closed HFL formula is not a total function but the value of a function at some argument. Again, we give a concrete algorithm for such an improved model checker and argue that despite the very high model checking complexity this improvement is very useful in practice and gives feasible results for HFL with lower order fuctions, backed up by a statistical analysis of the number of needed arguments on a concrete example. Furthermore, we show how HFL can be used as a tool for the development of algorithms. Its high expressivity allows to encode a wide variety of problems as instances of model checking already in the first-order fragment. The rather unintuitive – yet very succinct – problem encoding together with an analysis of the behaviour of the above sketched optimisation may give deep insights into the problem. We demonstrate this on the example of the universality problem for nondeterministic finite automata, where a slight variation of the optimised model checking algorithm yields one of the best known methods so far which was only discovered recently. We do also investigate typical model-theoretic properties for each of these logics and com- pare them with respect to expressive power. Zuasmmenfassung Die meisten Temporallogiken, welche in den vergangenen Jahrzehnten eingef¨uhrt und von der Forschung ber¨ucksichtigt wurden, lassen sich in den modalen µ-Kalk¨ul einbetten. Dies betrifft z.B. PDL, CTL, CTL∗, ECTL, LTL, etc. und beinhaltet, dass diese Logiken nicht dazu in der Lage sind, nicht-regul¨are Programmeigenschaften auszudr¨ucken. In den letzten Jahren wurden allerdings eine Reihe ausdruckst¨arkerer Logiken entwickelt: Fixpoint Logic with Chop erweitert den µ-Kalk¨ul um einen Operator f¨ur sequentielle Kom- position und erlaubt es dadurch, logische Charakterisierungen von kontextfreien Prozessen anzugeben. Im Modal Iteration Calculus f¨uhren inflation¨are Fixpunkte dazu, dass seine Ausdrucksst¨arke diejenige des µ-Kalk¨uls ¨ubersteigt. Higher-Order Fixpoint Logic (HFL) vereint in sich einen einfach getypten λ-Kalk¨ul sowie kleinste und gr¨osste Fixpunktquan- toren und ist damit sogar noch ausdrucksst¨arker als Fixpoint Logic with Chop. Selbst PDL wurde in der Vergangenheit bereits mit kontextfreien anstelle von regul¨aren Programmen untersucht. Da Spezifikationen von Programmeigenschaften nicht auf Regularit¨at beschr¨ankt sind, ergibt sich ein nat¨urlicher Bedarf an ausdrucksst¨arkeren Spezifikationsformalismen. Gr¨ossere Ausdrucksst¨arke ist jedoch ¨ublicherweise mit einem Ansteigen der Komplexit¨at der im Zusammenhang mit der Logik stehenden Entscheidungsprobleme verbunden. Beispiels- weise sind die Erf¨ullbarkeitsprobleme f¨ur jede der oben genannten Logiken unentscheidbar. Die vorliegende Arbeit untersucht die Model Checking Probleme von drei verschiedenen Logiken, welche im Stande sind, nicht-regul¨are Eigenschaften auszudr¨ucken und gibt Frag- mente von ihnen an, welche eine in der Praxis noch verwertbare Komplexit¨at in Bezug auf das Model Checking Problem besitzen. Zun¨achst wird eine generische Methode entwickelt, um die Komplexit¨at des Model Check- ing Problems von PDL ¨uber beliebigen Klassen von Programmen zu bestimmen. Es wird gezeigt, dass die Grenze zur Unentscheidbarkeit zwischen PDL ¨uber indexierten Sprachen und PDL ¨uber kontextsensitiven Sprachen verl¨auft. F¨ur PDL ¨uber linear indexierten viii Sprachen ist das Problem noch immer in PTIME und f¨ur PDL ¨uber indexierten Sprachen in EXPTIME. Wir geben f¨ur diese beiden Fragmente konkrete Algorithmen f¨ur eine Im- plementierung an. Im Anschluss f¨uhren wir eine Erweiterung von CTL ein, in welcher die until- und re- lease-Operatoren mit formalen Sprachen ausgestattet sind. Diese Sprachen werden ¨uber beschrifteten Pfaden interpretiert und kennzeichnen die Momente entlang solcher Pfade in welchen die Operatoren erf¨ullt sein m¨ussen. So ist beispielsweise der until-Operator erf¨ullt, falls es einen Pfadpr¨afix gibt, welcher ein Wort in der Sprache bildet, mit der der Oper- ator ausgestattet ist (und die ¨ubliche until-Bedingung gilt, n¨amlich, dass eine bestimmte Eigenschaft in jedem Zustand bis zu diesem Zeitpunkt gegolten hat, sowie dass eine andere in genau jenem Zeitpunkt gilt). Wie im Fall von PDL, bestimmen wir die Komplexit¨at des Model Checking Problems f¨ur verschiedene Klassen von erlaubten Sprachen im jeweiligen Operator. Es stellt sich heraus, dass sowohl die Klasse der kontextsensitiven Sprachen im until- als auch die Klasse der kontextfreien Sprachen im release-Operator zu Unentscheidbarkeit des Model Checking Problems f¨uhren. Es ist EXPTIME-vollst¨andig f¨ur indexierte Sprachen im until- und vis- ibly pushdown Sprachen im release-Operator. Linear indexierte Sprachen im until sowie deterministisch kontextfreie Sprachen im release f¨uhren zu einem PTIME-vollst¨andigen Model Checking Problem. Wir geben ebenfalls wieder konkrete Model Checking Algorith- men f¨ur ausgew¨ahlte Fragmente dieser Logiken an. Schliesslich wenden wir uns dem Model Checking Problem f¨ur HFL zu, welches wir bereits in vorangegangenen Arbeiten untersucht haben. Auf endlichen Modellen ist es kEXPTIME- vollst¨andig f¨ur HFLk (das Fragment von HFL, welches man erh¨alt, wenn man die Ordnung der Funktionen im λ-Kalk¨ul auf k beschr¨ankt). Neu ist jedoch die Verallgemeinerung einer Idee welche f¨ur HFL1 entwickelt wurde und nun auf das gesamte HFL ausgeweitet wird, um das Verhalten des Model Checkers im besten bzw. durchschnittlichen Fall zu verbessern, indem partielle anstelle von totalen
Recommended publications
  • The Structure of Index Sets and Reduced Indexed Grammars Informatique Théorique Et Applications, Tome 24, No 1 (1990), P
    INFORMATIQUE THÉORIQUE ET APPLICATIONS R. PARCHMANN J. DUSKE The structure of index sets and reduced indexed grammars Informatique théorique et applications, tome 24, no 1 (1990), p. 89-104 <http://www.numdam.org/item?id=ITA_1990__24_1_89_0> © AFCET, 1990, tous droits réservés. L’accès aux archives de la revue « Informatique théorique et applications » im- plique l’accord avec les conditions générales d’utilisation (http://www.numdam. org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d’une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright. Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/ Informatique théorique et Applications/Theoretical Informaties and Applications (vol. 24, n° 1, 1990, p. 89 à 104) THE STRUCTURE OF INDEX SETS AND REDUCED INDEXED GRAMMARS (*) by R. PARCHMANN (*) and J. DUSKE (*) Communicated by J. BERSTEL Abstract. - The set of index words attached to a variable in dérivations of indexed grammars is investigated. Using the regularity of these sets it is possible to transform an mdexed grammar in a reducedfrom and to describe the structure ofleft sentential forms of an indexed grammar. Résumé. - On étudie Vensemble des mots d'index d'une variable dans les dérivations d'une grammaire d'index. La rationalité de ces ensembles peut être utilisée pour transformer une gram- maire d'index en forme réduite, et pour décrire la structure des mots apparaissant dans les dérivations gauches d'une grammaire d'index. 1. INTRODUCTION In this paper we will further investigate indexed grammars and languages introduced by Aho [1] as an extension of context-free grammars and lan- guages.
    [Show full text]
  • Iterated Stack Automata and Complexity Classes
    INFORMATION AND COMPUTATION 95, 2 1-75 ( t 99 1) Iterated Stack Automata and Complexity Classes JOOST ENCELFRIET Department of Computer Science, Leiden University. P.O. Box 9.512, 2300 RA Leiden, The Netherlands An iterated pushdown is a pushdown of pushdowns of . of pushdowns. An iterated exponential function is 2 to the 2 to the to the 2 to some polynomial. The main result presented here is that the nondeterministic 2-way and multi-head iterated pushdown automata characterize the deterministic iterated exponential time complexity classes. This is proved by investigating both nondeterministic and alternating auxiliary iterated pushdown automata, for which similar characteriza- tion results are given. In particular it is shown that alternation corresponds to one more iteration of pushdowns. These results are applied to the l-way iterated pushdown automata: (1) they form a proper hierarchy with respect to the number of iterations, and (2) their emptiness problem is complete in deterministic iterated exponential time. Similar results are given for iterated stack (checking stack, non- erasing stack, nested stack, checking stack-pushdown) automata. ? 1991 Academic Press. Inc INTRODUCTION It is well known that several types of 2-way and multi-head pushdown automata and stack automata have the same power as certain time or space bounded Turing machines; see, e.g., Chapter 14 of (Hopcroft and Ullman, 1979), or Sections 13 and 20.2 of (Wagner and Wechsung, 1986). For the deterministic and nondeterministic case such characterizations were given by Fischer (1969) for checking stack automata, by Hopcroft and Ullman (1967b) for nonerasing stack automata, by Cook (1971) for auxiliary pushdown and 2-way stack automata, by Ibarra (1971) for auxiliary (nonerasing and erasing) stack automata, by Beeri (1975) for 2-way and auxiliary nested stack automata, and by van Leeuwen (1976) for auxiliary checking stack-pushdown automata.
    [Show full text]
  • Hairdressing in Groups: a Survey of Combings and Formal Languages 1
    ISSN 1464-8997 493 Geometry & Topology Monographs Volume 1: The Epstein Birthday Schrift Pages 493–509 Hairdressing in groups: a survey of combings and formal languages Sarah Rees Abstract A group is combable if it can be represented by a language of words satisfying a fellow traveller property; an automatic group has a synchronous combing which is a regular language. This article surveys results for combable groups, in particular in the case where the combing is a formal language. AMS Classification 20F10, 20-04, 68Q40; 03D40 Keywords Combings, formal languages, fellow travellers, automatic groups Dedicated to David Epstein on the occasion of his 60th birthday 1 Introduction The aim of this article is to survey work generalising the notion of an automatic group, in particular to classes of groups associated with various classes of formal languages in the same way that automatic groups are associated with regular languages. The family of automatic groups, originally defined by Thurston in an attempt to abstract certain finiteness properties of the fundamental groups of hyperbolic manifolds recognised by Cannon in [12], has been of interest for some time. The defining properties of the family give a geometrical viewpoint on the groups and facilitate computation with them; to such a group is associated a set of paths in the Cayley graph of the group (a ‘language’ for the group) which both satisfies a geometrical ‘fellow traveller condition’ and, when viewed as a set of words, lies in the formal language class of regular languages. (A formal definition is given in section 2.) Epstein et al.’s book [15] gives a full account; the papers [3] and [16] are also useful references (in particular, [16] is very readable and non-technical).
    [Show full text]
  • From Indexed Grammars to Generating Functions∗
    RAIRO-Theor. Inf. Appl. 47 (2013) 325–350 Available online at: DOI: 10.1051/ita/2013041 www.rairo-ita.org FROM INDEXED GRAMMARS TO GENERATING FUNCTIONS ∗ Jared Adams1, Eric Freden1 and Marni Mishna2 Abstract. We extend the DSV method of computing the growth series of an unambiguous context-free language to the larger class of indexed languages. We illustrate the technique with numerous examples. Mathematics Subject Classification. 68Q70, 68R15. 1. Introduction 1.1. Indexed grammars Indexed grammars were introduced in the thesis of Aho in the late 1960s to model a natural subclass of context-sensitive languages, more expressive than context-free grammars with interesting closure properties [1,16]. The original ref- erence for basic results on indexed grammars is [1]. The complete definition of these grammars is equivalent to the following reduced form. Definition 1.1. A reduced indexed grammar is a 5-tuple (N , T , I, P, S), such that 1. N , T and I are three mutually disjoint finite sets of symbols: the set N of non-terminals (also called variables), T is the set of terminals and I is the set of indices (also called flags); 2. S ∈N is the start symbol; 3. P is a finite set of productions, each having the form of one of the following: (a) A → α Keywords and phrases. Indexed grammars, generating functions, functional equations, DSV method. ∗ The third author gratefully acknowledges the support of NSERC Discovery Grant funding (Canada), and LaBRI (Bordeaux) for hosting during the completion of the work. 1 Department of Mathematics, Southern Utah University, Cedar City, 84720, UT, USA.
    [Show full text]
  • Infinite Words As Determined by Languages of Their Prefixes
    INFINITEWORDSASDETERMINEDBY LANGUAGESOFTHEIRPREFIXES tim smith A dissertation submitted in partial fulfillment of the requirements for the degree of Ph.D. in computer science College of Computer and Information Science Northeastern University Boston, MA, USA April 2015 ABSTRACT We explore a notion of complexity for infinite words relating them to languages of their prefixes. An infinite language L determines an infinite word α if every string in L is a prefix of α. If L is regular, it is known that α must be ultimately periodic; conversely, every ul- timately periodic word is determined by some regular language. In this dissertation, we investigate other classes of languages and infi- nite words to see what connections can be made among them within this framework. We make particular use of pumping lemmas as a tool for studying these classes and their relationship to infinite words. • First, we investigate infinite words determined by various types of automata. We consider finite automata, pushdown automata, a generalization of pushdown automata called stack automata, and multihead finite automata, and relate these classes to ultimately periodic words and to a class of infinite words which we call mul- tilinear. • Second, we investigate infinite words determined by the parallel rewriting systems known as L systems. We show that certain infi- nite L systems necessarily have infinite subsets in other L systems, and use these relationships to categorize the infinite words deter- mined by a hierarchy of these systems, showing that it collapses to just three distinct classes of infinite words. • Third, we investigate infinite words determined by indexed gram- mars, a generalization of context-free grammars in which nonter- minals are augmented with stacks which can be pushed, popped, and copied to other nonterminals at the derivation proceeds.
    [Show full text]
  • Indexed Counter Languages Informatique Théorique Et Applications, Tome 26, No 1 (1992), P
    INFORMATIQUE THÉORIQUE ET APPLICATIONS J. DUSKE M. MIDDENDORF R. PARCHMANN Indexed counter languages Informatique théorique et applications, tome 26, no 1 (1992), p. 93-113 <http://www.numdam.org/item?id=ITA_1992__26_1_93_0> © AFCET, 1992, tous droits réservés. L’accès aux archives de la revue « Informatique théorique et applications » im- plique l’accord avec les conditions générales d’utilisation (http://www.numdam. org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d’une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright. Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/ Informatique théorique et Applications/Theoretical Informaties and Applications (vol. 26, n° 1, 1992, p. 93 à 113) INDEXED COUNTER LANGUAGES (*) by J. DUSKE (x), M. MIDDENDORF (*) and R. PARCHMANN (*) Communicated by J. BERSTEL Abstract. — Starting with the characterization of context-free counter languages by rightlinear indexed grammars with one index, indexed counter grammars are introduced and investigated. The family of indexed counter languages is a full AFL properly contained in the family of indexed languages and incomparable with the full trio oflinear indexed languages. Furthermore by modifying the dérivation mode, a characterization of type-0 languages by indexed counter grammars is given. Résumé. - Après une caractêrisation des langages algébriques à compteurs par des grammaires indexées linéaires droites d'index 1, on introduit et étudie les grammaires indexées à compteurs. La famille des langages indexés à compteurs est une AFL proprement contenue dans la famille des langages indexés, et incomparable au cône rationnel des langages indexés linéaires.
    [Show full text]
  • A Formal Model for Context-Free Languages Augmented with Reduplication
    A FORMAL MODEL FOR CONTEXT-FREE LANGUAGES AUGMENTED WITH REDUPLICATION Walter J. Savitch Department of Computer Science and Engineering University of California, San Diego La Jolla, CA 92093 A model is presented to characterize the class of languages obtained by adding reduplication to context-free languages. The model is a pushdown automaton augmented with the ability to check reduplication by using the stack in a new way. The class of languages generated is shown to lie strictly between the context-free languages and the indexed languages. The model appears capable of accommodating the sort of reduplications that have been observed to occur in natural languages, but it excludes many of the unnatural constructions that other formal models have permitted. 1 INTRODUCTION formal language. Indeed, most of the known, convinc- ing arguments that some natural language cannot (or Context-free grammars are a recurrent theme in many, almost cannot) be weakly generated by a context-free perhaps most, models of natural language syntax. It is grammar depend on a reduplication similar to the one close to impossible to find a textbook or journal that exhibited by this formal language. Examples include the deals with natural language syntax but that does not respectively construct in English (Bar-Hillel and Shamir include parse trees someplace in its pages. The models 1964), noun-stem reduplication and incorporation in used typically augment the context-free grammar with Mohawk (Postal 1964), noun reduplication in Bambara some additional computational power so that the class (Culy 1985), cross-serial dependency of verbs and ob- of languages described is invariably larger, and often jects :in certain subordinate clause constructions in much larger, than the class of context-free languages.
    [Show full text]
  • Indexed Languages and Unification Grammars*
    21 Indexed Languages and Unification Grammars* Tore Burheim^ A bstract Indexed languages are interesting in computational linguistics because they are the least class of languages in the Chomsky hierarchy that has not been shown not to be adequate to describe the string set of natural language sent­ ences. We here define a class of unification grammars that exactly describe the class of indexed languages. 1 Introduction The occurrence of purely syntactical cross-serial dependencies in Swiss-German shows that context-free grammars can not describe the string sets of natural lan­ guage [Shi85]. The least class in the Chomsky hierarchy that can describe unlimited cross-serial dependencies is indexed grammars [Aho 68]. Gazdar discuss in [Gaz88] the applicability of indexed grammars to natural languages, and show how they can be used to describe different syntactic structures. We are here going to study how we can describe the class of indexed languages with a unification grammar formalism. After defining indexed grammars and a simple unification grammar framework we show how we can define an equivalent unification grammar for any given indexed grammar. Two grammars are equivalent if they generate the same language. With this background we define a class of unification grammars and show that this class describes the clciss of indexed languages. 2 Indexed grammars Indexed grammars is a grammar formalism with generative capacity between con­ text-free grammars and context-sensitive grammars. Context-free grammars can not describe cross-serial dependencies due to the pumping lemma, while indexed grammars can. However, the class of languages generated by indexed grammars, -the indexed languages, is a proper subset of context-sensitive languages [Aho 68].
    [Show full text]
  • Extended Macro Grammars and Stack Controlled Machines
    JOURNAL OF COMPUTER AND SYSTEM SClENCFS 29, 366-408 (1984) Extended Macro Grammars and Stack Controlled Machines JOOSTENGELFRIET AND GIORA SLUTZKI* Departmenl qf Applied Mathematics, Twente University of Technology, P.O. Box 217, 75OOAE Enschede, The Netherlands ReceivedJuly 26, 1983;revised July 2, 1984 K-extended basic macro grammars are introduced, where K is any class of languages. The class B(K) of languages generated by such grammars is investigated, together with the class LB(K) of languages generated by the corresponding linear basic grammars. For any full semi- AFL K, B(K) is a full AFL closed under iterated LB(K)-substitution, but not necessarily under substitution. For any machine type D, the stack controlled machine type corresponding to D is introduced, denoted S(D), and the checking-stack controlled machine type CS(D). The data structure of this machine is a stack which controls a pushdown of data structures from D. If D accepts K, then S(D) accepts B(K) and CS(D) accepts LB(K). Thus the classes B(K) are characterized by stack controlled machines and the classes LB(K), i.e., the full hyper-AFLs, by checking-stack controlled machines. A full basic-AFL is a full AFL K such that B(K)& K. Every full basic-AFL is a full hyper-AFL, but not vice versa. The class of 01 macro languages (i.e., indexed languages, i.e., nested stack automaton languages) is a full basic-AFL, properly containing the smallest full basic-AFL. The latter is generated by the ultrabasic macro gram- mars and accepted by the nested stack automata with bounded depth of nesting (and properly contains the stack languages, the ETOL languages, i.e., the smallest full hyper-AFL, and the basic macro languages).
    [Show full text]
  • Arxiv:Math/9812028V1 [Math.GR] 4 Dec 1998 Emti N Agaetertccaatrztoso Vi of [17]
    ON GROUPS WHOSE WORD PROBLEM IS SOLVED BY A NESTED STACK AUTOMATON ROBERT GILMAN AND MICHAEL SHAPIRO Abstract. Accessible groups whose word problems are accepted by a deterministic nested stack automaton with limited erasing are virtually free. 1. Introduction. During the past several years combinatorial group theory has received an in- fusion of ideas both from topology and from the theory of formal languages. The resulting interplay between groups, the geometry of their Cayley dia- grams, and associated formal languages has led to several developments in- cluding the introduction of automatic groups [6], hyperbolic groups [12], and geometric and language–theoretic characterizations of virtually free groups [17]. We will restrict our attention to finitely generated groups. For any such group the language of all words which define the identity is called the word problem of the group. By words we mean words over the generators. Of course the word problem depends on the choice of generators. In [17] virtu- ally free groups are shown to be exactly those groups whose word problem with respect to any set of generators is a context–free language. We are in- terested in investigating groups whose word problems lie in other language classes. Formal languages are often defined in terms of the type of machine which can tell whether or not a given word is in the language. Such a machine is said to accept the language. Context–free languages are accepted by push- arXiv:math/9812028v1 [math.GR] 4 Dec 1998 down automata, and those context–free languages which are word problems are accepted by the subclass of deterministic limited erasing pushdown au- tomata [17, Lemma 3].
    [Show full text]
  • Hairdressing in Groups: a Survey of Combings and Formal Languages 1
    ISSN 1464-8997 493 Geometry & Topology Monographs Volume 1: The Epstein Birthday Schrift Pages 493{509 Hairdressing in groups: a survey of combings and formal languages Sarah Rees Abstract A group is combable if it can be represented by a language of words satisfying a fellow traveller property; an automatic group has a synchronous combing which is a regular language. This article surveys results for combable groups, in particular in the case where the combing is a formal language. AMS Classication 20F10, 20-04, 68Q40; 03D40 Keywords Combings, formal languages, fellow travellers, automatic groups Dedicated to David Epstein on the occasion of his 60th birthday 1 Introduction The aim of this article is to survey work generalising the notion of an automatic group, in particular to classes of groups associated with various classes of formal languages in the same way that automatic groups are associated with regular languages. The family of automatic groups, originally dened by Thurston in an attempt to abstract certain niteness properties of the fundamental groups of hyperbolic manifolds recognised by Cannon in [12], has been of interest for some time. The dening properties of the family give a geometrical viewpoint on the groups and facilitate computation with them; to such a group is associated a set of paths in the Cayley graph of the group (a ‘language’ for the group) which both satises a geometrical ‘fellow traveller condition’ and, when viewed as a set of words, lies in the formal language class of regular languages. (A formal denition is given in section 2.) Epstein et al.’s book [15] gives a full account; the papers [3] and [16] are also useful references (in particular, [16] is very readable and non-technical).
    [Show full text]
  • Pushdown Automata 1 Formal Definition
    Abstract. This chapter introduces Pushdown Au- finite tomata, and presents their basic theory. The two control δ top A language families defined by pda (acceptance by final state, resp. by empty stack) are shown to be equal. p stack The pushdown languages are shown to be equal to . the context-free languages. Closure properties of the . context-free languages are given that can be obtained ···a ··· using this characterization. Determinism is considered, input tape and it is formally shown that deterministic pda are less powerfull than the general class. Figure 1: Pushdown automaton Pushdown Automata input. Otherwise, it reaches the end of the input, which is then accepted only if the stack is empty. A pushdown automaton is like a finite state automa- ton that has a pushdown stack as additional mem- ory. Thus, it is a finite state device equipped with a 1 Formal Definition one-way input tape and a ‘last-in first-out’ external memory that can hold unbounded amounts of infor- The formal specification of a pushdown automaton mation; each individual stack element contains finite extends that of a finite state automaton by adding information. The usual stack access is respected: the an alphabet of stack symbols. For technical reasons automaton is able to see (test) only the topmost sym- the initial stack is not empty, but it contains a single bol of the stack and act based on its value, it is able symbol which is also specified. Finally the transition to pop symbols from the top of the stack, and to push relation must also account for stack inspection and symbols onto the top of the stack.
    [Show full text]