P~~ PAGE Blxnlc NOT Fltbaa

Total Page:16

File Type:pdf, Size:1020Kb

P~~ PAGE Blxnlc NOT Fltbaa .*. ..... ' "7 ~78-29014 ,+*:,# b. ASTEROID SURFACE MINERALOGY : EVIDENCE FROM EARTH-BASED TELESCOPE OBSER'JATIONS THOfiMS B. McCORD Ine&itute fop Astm Mvsreitl( of &codi, Bonohtac, &cod$ 96828 P~~ PAGE BlXNlC NOT Fltbaa Surface mineralogy of asteroids can be inferred in many cases using a variety of spectroscopic rmte sensing techniques. Through the appl ication of these techniques, mainly over the past ten years, mineral assemblages analogous to most meteor- ite types have been found as surface materials of asteroids. Conspicuously raw or absent from the main asteroid be1t are ordinary chondri te-1 ike assemblages, whi le carbonaceous mate- rials are common as are metal-silicate assemblages. The dis- tribution of mineral assemblages with asteroid size and distance from the Sun reveals heterogeneity which is surely infomtive of early accretionary and evolution processes, but the precise meanings are yet to be agreed on. Low temperature assemblages are relatively more abundant with increasing distance fm the Sun. A1 1 assemblages generally can be found inside 3.0 AU and metal plus orthopyroxene assem- blages are concentrated inside 2.5 AU. INTRODUCTION Surface mineralogy is one of the most revealing types of information obtainable about asteroids, since direct evidence of the compositf@nal and thermal evolution of the objects is derivable. The mineral assemblages present are more infomtive than elemental abun- dances, for the exact combinations of elements in a mineral and the crystal structure are very sensitive to the composition of the parent materlal and to the temperature and pres- sure history. Near ultraviolet, visible, and near-infrared reflectance spectroscopy is the most definitive avai lable technique 'or the mwte determination of asteroid surface miwral- ogles and petrologies. Electronic absorption features present in the reflectance spectra of asteroids (Figuw 1) are directly related to the mineral phases present (Adams, 1975; McCord et al. , 1978). Polarimetry, infrared radiometry and several other techniques (Morrison, 1978) provide complementary information, such as albedo, which, although not a unique function of minerat- ogy, is very useful in differentiating between mineralogic groups and in resol ing ambigu- ities. Y PREVIOUS CHARACTER1ZATIONS OF ASTER01 D SURFACE MATERIALS kCord et al. (1970) measured the first 0.3-1.1 um spectrum of an asteroid, 4 '.'orta, and identified an absorption feature near 0.9 um (see Figure 1) as due to the mineral py- roxene. Thej suggested that the surface materlal was similar to basa; ~icachondri tic WAVELENGTH (+m) WAVENUMBER (m10,000 cm") WAVENUMBER (mt0.600 c6') ORIGmAt PBGE IS OF POOR QUALITY meteorites. Hapke (1971) comp~wdthe UBV colors of a number of asteroids to a variety of lunar, meteoritic and terrestrial rocks and rock powders. He concluded that the surface material cf these asteroids could be matched by powders similar to a range of the compari- son materials but not by metallic surfaces. Chapman and Salisbury (1973) indicated that some matches between asteroid and meteorite spectra were found for several meteorite types including enstati te chondri tes, a basal tic dchondri te, an optically unusual ordinary chon- d-i te and, possibly, a carbonaceous chondrite. Johnson and Fanale (1973) showed that the a1:~edo and spectral characteristics of some asteroids are similar to C1 and C2 carbonaceous chondrites and others to iron meteorites. The latter two sets of authors noted the problem of defining precisely what constituted a 'match,' and both raised the question of subtle McCoM and Gaffey (1974) utilized absorption features and qenerai spectral properties I to characterize surface materials of 14 asteroids. They identified minera' assemblages similar to carbonaceous chondri te, stony-i ron, iton, basal tic achond-i te and si1 icate-metal meteorites. At that time it was possible to establish the general identity of the spec- Chapman et at. (1975) utilized spectral, albedo and polarization parameters to define two major asteroid groups. The first group was characterized by having low albedos (20.09), strong negative polarizations (>I. 1%) at small phase angies and relatively flat, feature- less spectral reflectance curves. These parameters were similar to those for carbonac~ous chondrites and these asteroids were designated as 'carbonaceous' or C type. The second group was characterized as having higher albedos (3.09). weaker negative polarizations (0.4-1.03 and reddish, sometimes featured spectral curves. These parameters were compara- ble to those for most of the meteorites which contain relatively abundant silicate minerals so this group was designated 'siliceous or stony-iron' or S types. A small minority ' -_ (-10%) of the asteroids could not be classified in this system and were designated 'unclas- 4 .- sifid' or U types. This classification system has been redefined recently by Bowel1 et at. ' -7 (1978). (In this volume, see Morrison, 1978.) ! :,I: This simple classificaticn scheme can be quite useful since it does seem to often separate these two major types of objects and the obse-va tional parameters on which the scheme is based can be measured at present for objects fainter than those for which com- plete spectra can be obtained. The choice of terminology is unfortunate, however, since it implies a specific definition of surface materials in meteoritic terms, which was not intended. Any 'flat-black' spectral curve would be designated C type whether or not the surface material would be characterized as carbonaceous by any other criteria. A similar objection can be raised with respect tc th? 'silSceous' tevminology since it implies a degree of specificity not present in the classification criteria. Thus, while the C and S classification of asteroids cannot be viewed as a description of mineralogy or petrology, it does provide valid characterization with respect to the chosen parameters. Since the groups appear in each of the parameters used (albedo, polari- zation, color!, a single measurement such as UBV color can be used to classify the asteroid (Zellner et at. , 1975; Zcllner et aZ. , 1977b; Zellner and Eowell , 1977; Florrison, 1977a,b). Fig. 1. Typical spectral reflectance curves for the various asteroid spectral groups : I 3 Juno, RA-1; 8 Flora, RA-2; 16 Psyche, RR; 9 Metis, RF; 4 Vesta, A; 349 Dembowska, A; 1 Ceres, F; 141 Luwn, TA; 10 Hygiea, TB; 51 Nemausa, TC; 80 Sappho, TD; and 532 Herculina, TE. Spectral curve for each asteroid is displayed in sevcral formats: left--normalized reflectance versus wavelength (pm); center--normalized reflectance versus energy (wave- number, cm'l; and right--di fference between spectral curve and a l inear 'continuum' fitted through 0.43 pm and 0.73 pm points. (From Gaffey and McCord, 1978. ) ..I ,\ - , . -4*s 8 : i .'\~ '-4 ' I. *; : b I I. , '.. ,G.\; 1. t . j '.- ! .! ! ; I : 't i , , , . This approach can also be utilized to identify anomalous objects (Zellner. 1975; Zellner et at. , 1977a) or to establish possible genetic telationships between ~nell~bersof asteroid dynamical fami 1 ies (Cradle and Zellner, 1977). Chapman (1976) uti1 ired the basic CSM clas- sification system hut identified subdivisions based on ddditional spectral criteria ('slope.' ( 'bend' and 'band depth' ; McCord and Chaplnan. 1975a.b) which are n~ineralogically signi f icant. (I I Johnson ot al. (1975) ~neasuredthe near-infrared reflectance of three asteroids , , through the broad bandpass H, and K filters (1.24, 1.65 and 2.2 11111) and coricluded that J, ! I these were consistent with the infrared reflectdnce of suggested n~eteoritic aaterials. dt H Matson al. (1977a.b) utilized infrared and K reflectances to infer ttut space wedther- , ing processes were relatiiely irioctive on asteroid surfaces in contrast to the surfdces of i1 the Moon and Mercury. A very favorable apparition in early 1375 penllitted the llleasurelllent of a vdriety of spectral data sets for the Earth-approaching asteroid 433 E1.o~. Pieters ,.t ,z!. (1476) measured the 0.33-1.07 IIIII spectral reflectance uf Cros tl!rough 25 ndrrow bdndpdss flltet's. This curve was interpreted as ir~dicatingan asselllhldge of olivine. pyroxene and metal. with metal abundance equal to or greater than that in the H-type chondriteq. Veeder ,*t ,I:. (1976) measured the spectrum of Eros through 11 filters from 0.65-2.2 UIII and cor~cludedthdt their spectral data indicated a mixture of olivine and pyroxene with a nletdl-like phase. Uisniewski (1976) concluded from a hiqher resolution spectrunl (0.4-1.0 ~1111) that this sur- face was best nlatched by a nli~tureof iron or stony-iron n~atcrialwith ordinary chondri tic material (ri'.,~. iron + pyroxene + olivine). but sugq~stedthdt olivine is absent or r'dre. Larson ct dl. (1976) measured the 0.9-2.7 L~III spectral ref!ectdnce curve for Eros and iden- tified Ni-Fe and pyroxene. but found no evidence of olivine or feldspar. The dispute over the olivine content arises bcra8rse of slight differences in the observed spectrn near 1 ~1111, and the uncertainty in the nletal abundance is due to i ncoll~pletequantitative understanding of the spectral contribution of metal in a mixture witr~silicdtes. In d comprehensive article, Gaffey and McCord (1977) presented d detailed n~ineraloq- .t ., ical analysis of 65 dsteroid reflectance spect1.d and drrived at the n~ostcolllplete descrip- tion ,-xisting of the n~ineralassenlbldges present on asteroid surfaces. They also gave d , 'I* review of the field and a detailed discussion of the interpretive techniques apolied to I A derive n~ineralogy. Much of the 111ateria1in the present drticle is derived froni this pd~er t and the reader is referred to it for nore detai led and c~nipreh~nsive infotls,~tion. .; . I .. .-.i f The evolving characterization of the surface mineralogy of the asteroid 3 Vestd is , i illustrative of the in~provingsophistication of the interpretative ~)t'occss. a.
Recommended publications
  • Asteroid Shape and Spin Statistics from Convex Models J
    Asteroid shape and spin statistics from convex models J. Torppa, V.-P. Hentunen, P. Pääkkönen, P. Kehusmaa, K. Muinonen To cite this version: J. Torppa, V.-P. Hentunen, P. Pääkkönen, P. Kehusmaa, K. Muinonen. Asteroid shape and spin statistics from convex models. Icarus, Elsevier, 2008, 198 (1), pp.91. 10.1016/j.icarus.2008.07.014. hal-00499092 HAL Id: hal-00499092 https://hal.archives-ouvertes.fr/hal-00499092 Submitted on 9 Jul 2010 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Accepted Manuscript Asteroid shape and spin statistics from convex models J. Torppa, V.-P. Hentunen, P. Pääkkönen, P. Kehusmaa, K. Muinonen PII: S0019-1035(08)00283-2 DOI: 10.1016/j.icarus.2008.07.014 Reference: YICAR 8734 To appear in: Icarus Received date: 18 September 2007 Revised date: 3 July 2008 Accepted date: 7 July 2008 Please cite this article as: J. Torppa, V.-P. Hentunen, P. Pääkkönen, P. Kehusmaa, K. Muinonen, Asteroid shape and spin statistics from convex models, Icarus (2008), doi: 10.1016/j.icarus.2008.07.014 This is a PDF file of an unedited manuscript that has been accepted for publication.
    [Show full text]
  • ESO's VLT Sphere and DAMIT
    ESO’s VLT Sphere and DAMIT ESO’s VLT SPHERE (using adaptive optics) and Joseph Durech (DAMIT) have a program to observe asteroids and collect light curve data to develop rotating 3D models with respect to time. Up till now, due to the limitations of modelling software, only convex profiles were produced. The aim is to reconstruct reliable nonconvex models of about 40 asteroids. Below is a list of targets that will be observed by SPHERE, for which detailed nonconvex shapes will be constructed. Special request by Joseph Durech: “If some of these asteroids have in next let's say two years some favourable occultations, it would be nice to combine the occultation chords with AO and light curves to improve the models.” 2 Pallas, 7 Iris, 8 Flora, 10 Hygiea, 11 Parthenope, 13 Egeria, 15 Eunomia, 16 Psyche, 18 Melpomene, 19 Fortuna, 20 Massalia, 22 Kalliope, 24 Themis, 29 Amphitrite, 31 Euphrosyne, 40 Harmonia, 41 Daphne, 51 Nemausa, 52 Europa, 59 Elpis, 65 Cybele, 87 Sylvia, 88 Thisbe, 89 Julia, 96 Aegle, 105 Artemis, 128 Nemesis, 145 Adeona, 187 Lamberta, 211 Isolda, 324 Bamberga, 354 Eleonora, 451 Patientia, 476 Hedwig, 511 Davida, 532 Herculina, 596 Scheila, 704 Interamnia Occultation Event: Asteroid 10 Hygiea – Sun 26th Feb 16h37m UT The magnitude 11 asteroid 10 Hygiea is expected to occult the magnitude 12.5 star 2UCAC 21608371 on Sunday 26th Feb 16h37m UT (= Mon 3:37am). Magnitude drop of 0.24 will require video. DAMIT asteroid model of 10 Hygiea - Astronomy Institute of the Charles University: Josef Ďurech, Vojtěch Sidorin Hygiea is the fourth-largest asteroid (largest is Ceres ~ 945kms) in the Solar System by volume and mass, and it is located in the asteroid belt about 400 million kms away.
    [Show full text]
  • The Minor Planet Bulletin
    THE MINOR PLANET BULLETIN OF THE MINOR PLANETS SECTION OF THE BULLETIN ASSOCIATION OF LUNAR AND PLANETARY OBSERVERS VOLUME 36, NUMBER 3, A.D. 2009 JULY-SEPTEMBER 77. PHOTOMETRIC MEASUREMENTS OF 343 OSTARA Our data can be obtained from http://www.uwec.edu/physics/ AND OTHER ASTEROIDS AT HOBBS OBSERVATORY asteroid/. Lyle Ford, George Stecher, Kayla Lorenzen, and Cole Cook Acknowledgements Department of Physics and Astronomy University of Wisconsin-Eau Claire We thank the Theodore Dunham Fund for Astrophysics, the Eau Claire, WI 54702-4004 National Science Foundation (award number 0519006), the [email protected] University of Wisconsin-Eau Claire Office of Research and Sponsored Programs, and the University of Wisconsin-Eau Claire (Received: 2009 Feb 11) Blugold Fellow and McNair programs for financial support. References We observed 343 Ostara on 2008 October 4 and obtained R and V standard magnitudes. The period was Binzel, R.P. (1987). “A Photoelectric Survey of 130 Asteroids”, found to be significantly greater than the previously Icarus 72, 135-208. reported value of 6.42 hours. Measurements of 2660 Wasserman and (17010) 1999 CQ72 made on 2008 Stecher, G.J., Ford, L.A., and Elbert, J.D. (1999). “Equipping a March 25 are also reported. 0.6 Meter Alt-Azimuth Telescope for Photometry”, IAPPP Comm, 76, 68-74. We made R band and V band photometric measurements of 343 Warner, B.D. (2006). A Practical Guide to Lightcurve Photometry Ostara on 2008 October 4 using the 0.6 m “Air Force” Telescope and Analysis. Springer, New York, NY. located at Hobbs Observatory (MPC code 750) near Fall Creek, Wisconsin.
    [Show full text]
  • PACS Sky Fields and Double Sources for Photometer Spatial Calibration
    Document: PACS-ME-TN-035 PACS Date: 27th July 2009 Herschel Version: 2.7 Fields and Double Sources for Spatial Calibration Page 1 PACS Sky Fields and Double Sources for Photometer Spatial Calibration M. Nielbock1, D. Lutz2, B. Ali3, T. M¨uller2, U. Klaas1 1Max{Planck{Institut f¨urAstronomie, K¨onigstuhl17, D-69117 Heidelberg, Germany 2Max{Planck{Institut f¨urExtraterrestrische Physik, Giessenbachstraße, D-85748 Garching, Germany 3NHSC, IPAC, California Institute of Technology, Pasadena, CA 91125, USA Document: PACS-ME-TN-035 PACS Date: 27th July 2009 Herschel Version: 2.7 Fields and Double Sources for Spatial Calibration Page 2 Contents 1 Scope and Assumptions 4 2 Applicable and Reference Documents 4 3 Stars 4 3.1 Optical Star Clusters . .4 3.2 Bright Binaries (V -band search) . .5 3.3 Bright Binaries (K-band search) . .5 3.4 Retrieval from PACS Pointing Calibration Target List . .5 3.5 Other stellar sources . 13 3.5.1 Herbig Ae/Be stars observed with ISOPHOT . 13 4 Galactic ISOCAM fields 13 5 Galaxies 13 5.1 Quasars and AGN from the Veron catalogue . 13 5.2 Galaxy pairs . 14 5.2.1 Galaxy pairs from the IRAS Bright Galaxy Sample with VLA radio observations 14 6 Solar system objects 18 6.1 Asteroid conjunctions . 18 6.2 Conjunctions of asteroids with pointing stars . 22 6.3 Planetary satellites . 24 Appendices 26 A 2MASS images of fields with suitable double stars from the K-band 26 B HIRES/2MASS overlays for double stars from the K-band search 32 C FIR/NIR overlays for double galaxies 38 C.1 HIRES/2MASS overlays for double galaxies .
    [Show full text]
  • The Minor Planet Bulletin and How the Situation Has Gone from One Mt Tarana Observatory of Trying to Fill Pages to One of Fitting Everything In
    THE MINOR PLANET BULLETIN OF THE MINOR PLANETS SECTION OF THE BULLETIN ASSOCIATION OF LUNAR AND PLANETARY OBSERVERS VOLUME 33, NUMBER 2, A.D. 2006 APRIL-JUNE 29. PHOTOMETRY OF ASTEROIDS 133 CYRENE, adjusted up or down to line up with the V-band data). The near- 454 MATHESIS, 477 ITALIA, AND 2264 SABRINA perfect overlay of V- and R-band data show no evidence of color change as the asteroid rotates. This result replicates the lightcurve Robert K. Buchheim period reported by Harris et al. (1984), and matches the period and Altimira Observatory lightcurve shape reported by Behrend (2005) at his website. 18 Altimira, Coto de Caza, CA 92679 USA [email protected] (Received: 4 November Revised: 21 November) Photometric studies of asteroids 133 Cyrene, 454 Mathesis, 477 Italia and 2264 Sabrina are reported. The lightcurve period for Cyrene of 12.707±0.015 h (with amplitude 0.22 mag) confirms prior studies. The lightcurve period of 8.37784±0.00003 h (amplitude 0.32 mag) for Mathesis differs from previous studies. For Italia, color indices (B-V)=0.87±0.07, (V-R)=0.48±0.05, and phase curve parameters H=10.4, G=0.15 have been determined. For Sabrina, this study provides the first reported lightcurve period 43.41±0.02 h, with 0.30 mag amplitude. Altimira Observatory, located in southern California, is equipped with a 0.28-m Schmidt-Cassegrain telescope (Celestron NexStar- 454 Mathesis. DiMartino et al. (1994) reported a rotation period of 11 operating at F/6.3), and CCD imager (ST-8XE NABG, with 7.075 h with amplitude 0.28 mag for this asteroid, based on two Johnson-Cousins filters).
    [Show full text]
  • Occultation Newsletter Volume 8, Number 4
    Volume 12, Number 1 January 2005 $5.00 North Am./$6.25 Other International Occultation Timing Association, Inc. (IOTA) In this Issue Article Page The Largest Members Of Our Solar System – 2005 . 4 Resources Page What to Send to Whom . 3 Membership and Subscription Information . 3 IOTA Publications. 3 The Offices and Officers of IOTA . .11 IOTA European Section (IOTA/ES) . .11 IOTA on the World Wide Web. Back Cover ON THE COVER: Steve Preston posted a prediction for the occultation of a 10.8-magnitude star in Orion, about 3° from Betelgeuse, by the asteroid (238) Hypatia, which had an expected diameter of 148 km. The predicted path passed over the San Francisco Bay area, and that turned out to be quite accurate, with only a small shift towards the north, enough to leave Richard Nolthenius, observing visually from the coast northwest of Santa Cruz, to have a miss. But farther north, three other observers video recorded the occultation from their homes, and they were fortuitously located to define three well- spaced chords across the asteroid to accurately measure its shape and location relative to the star, as shown in the figure. The dashed lines show the axes of the fitted ellipse, produced by Dave Herald’s WinOccult program. This demonstrates the good results that can be obtained by a few dedicated observers with a relatively faint star; a bright star and/or many observers are not always necessary to obtain solid useful observations. – David Dunham Publication Date for this issue: July 2005 Please note: The date shown on the cover is for subscription purposes only and does not reflect the actual publication date.
    [Show full text]
  • Asteroid Cratering Families: Recognition and Collisional Interpretation
    Astronomy & Astrophysics manuscript no. cratering_paper_AA_rev2 c ESO 2018 December 19, 2018 Asteroid cratering families: recognition and collisional interpretation A. Milani1⋆, Z. Kneževic´2, F. Spoto3, and P. Paolicchi4 1 Dept.Mathematics, University of Pisa, Largo Pontecorvo 5, I-56127 Pisa, Italy e-mail: [email protected] 2 Serbian Academy Sci. Arts, Kneza Mihaila 35, 11000 Belgrade, Serbia e-mail: [email protected] 3 IMCCE, Observatoire de Paris, PSL Research University, CNRS, Sorbonne Universités, UPMC Univ. Paris 06, Univ. Lille 77 av. Denfert-Rochereau, 75014, Paris, France e-mail: [email protected] 4 Dept.Physics, University of Pisa, Largo Pontecorvo 3, I-56127 Pisa, Italy e-mail: [email protected] 19 November 2018 ABSTRACT Aims. We continue our investigation of the bulk properties of asteroid dynamical families iden- tified using only asteroid proper elements (Milani et al. 2014) to provide plausible collisional interpretations. We focus on cratering families consisting of a substantial parent body and many small fragments. Methods. We propose a quantitative definition of cratering families based on the fraction in vol- ume of the fragments with respect to the parent body; fragmentation families are above this empirical boundary. We assess the compositional homogeneity of the families and their shape in proper element space by computing the differences of the proper elements of the fragments with respect to the ones of the major body, looking for anomalous asymmetries produced either by post-formation dynamical evolution, or by multiple collisional/cratering events, or by a failure of arXiv:1812.07535v1 [astro-ph.EP] 18 Dec 2018 the Hierarchical Clustering Method (HCM) for family identification.
    [Show full text]
  • ~XECKDING PAGE BLANK WT FIL,,Q
    1,. ,-- ,-- ~XECKDING PAGE BLANK WT FIL,,q DYNAMICAL EVIDENCE REGARDING THE RELATIONSHIP BETWEEN ASTEROIDS AND METEORITES GEORGE W. WETHERILL Department of Temcltricrl kgnetism ~amregie~mtittition of Washington Washington, D. C. 20025 Meteorites are fragments of small solar system bodies (comets, asteroids and Apollo objects). Therefore they may be expected to provide valuable information regarding these bodies. How- ever, the identification of particular classes of meteorites with particular small bodies or classes of small bodies is at present uncertain. It is very unlikely that any significant quantity of meteoritic material is obtained from typical ac- tive comets. Relatively we1 1-studied dynamical mechanisms exist for transferring material into the vicinity of the Earth from the inner edge of the asteroid belt on an 210~-~year time scale. It seems likely that most iron meteorites are obtained in this way, and a significant yield of complementary differec- tiated meteoritic silicate material may be expected to accom- pany these differentiated iron meteorites. Insofar as data exist, photometric measurements support an association between Apollo objects and chondri tic meteorites. Because Apol lo ob- jects are in orbits which come close to the Earth, and also must be fragmented as they traverse the asteroid belt near aphel ion, there also must be a component of the meteorite flux derived from Apollo objects. Dynamical arguments favor the hypothesis that most Apollo objects are devolatilized comet resiaues. However, plausible dynamical , petrographic, and cosmogonical reasons are known which argue against the simple conclusion of this syllogism, uiz., that chondri tes are of cometary origin. Suggestions are given for future theoretical , observational, experimental investigations directed toward improving our understanding of this puzzling situation.
    [Show full text]
  • Chaotic Diffusion of the Vesta Family Induced by Close Encounters with Massive Asteroids
    A&A 540, A118 (2012) Astronomy DOI: 10.1051/0004-6361/201118339 & c ESO 2012 Astrophysics Chaotic diffusion of the Vesta family induced by close encounters with massive asteroids J.-B. Delisle and J. Laskar ASD, IMCCE-CNRS UMR8028, Observatoire de Paris, UPMC, 77 Av. Denfert-Rochereau, 75014 Paris, France e-mail: [email protected] Received 26 October 2011 / Accepted 1 March 2012 ABSTRACT We numerically estimate the semi-major axis chaotic diffusion of the Vesta family asteroids induced by close encounters with 11 mas- sive main-belt asteroids: (1) Ceres, (2) Pallas, (3) Juno, (4) Vesta, (7) Iris, (10) Hygiea, (15) Eunomia, (19) Fortuna, (324) Bamberga, (532) Herculina, (704) Interamnia. We find that most of the diffusion is caused by Ceres and Vesta. By extrapolating our results, we are able to constrain the global effect of close encounters with all main-belt asteroids. A comparison of this drift estimate with the one expected for the Yarkovsky effect shows that for asteroids whose diameter is larger than about 40 km, close encounters dominate the Yarkovsky effect. Overall, our findings confirm the standard scenario for the history of the Vesta family. Key words. celestial mechanics – minor planets, asteroids: general – chaos – methods: numerical 1. Introduction (in terms of the number of asteroids taken into account) con- cerned the Gefion and Adeona families and was conducted by It is now common consent that most of the V-type near-Earth as- Carruba et al. (2003). The authors considered all 682 asteroids teroids (NEAs) and howardite, eucrite, and diogenite (HED) me- of radius larger than 50 km for encounters with members of teorites are fragments of a collision between Vesta and another the families.
    [Show full text]
  • Ccd Lightcurve Analysis of 176 Iduna
    53 CCD LIGHTCURVE ANALYSIS OF 176 IDUNA Kevin B. Alton UnderOak Observatory 70 Summit Ave Cedar Knolls, NJ 07927 (Received: 28 October) Clear filter CCD images for 176 Iduna were obtained over ten nights in September 2007. A composite lightcurve was produced and a synodic period of 11.2880 ± 0.0001 h was deduced. 176 Iduna (121 km) is a main-belt asteroid first discovered by C.H.F. Peters in 1887. Infrequently reported, only two other lightcurves from this minor planet are described in the literature. (Riccioli 2001; Hansen and Arentoft 1997). Equipment included a focal reduced (f/6.3) 0.2-m NexStar 8 GPS UT Date Phase Obs L B SCT with a thermoelectrically cooled (5 °C) SBIG ST 402ME (2007) Angle PAB PAB CCD camera mounted at the Cassegrain focus. Clear filter Sept 02 57 8.3 339.5 19.5 imaging (unbinned for 20 sec) was carried out on a total of ten Sept 04 69 8.3 339.5 19.3 Sept 07 98 8.3 339.5 19.1 nights with exposures automatically taken at least every 60 Sept 08 250 8.4 339.5 19.0 seconds. Image acquisition (raw lights, darks and flats) was Sept 13 136 9.0 339.5 18.5 performed by CCDSOFT 5 (SBIG) while calibration and Sept 14 145 9.1 339.6 18.4 registration were accomplished with AIP4WIN (Berry and Burnell Sept 17 154 9.6 339.6 18.1 2005). Further image reduction with MPO Canopus (Warner Sept 26 157 11.7 339.8 17.2 2006) used at least four non-varying comparison stars to generate Sept 29 46 12.4 339.9 16.8 lightcurves by differential aperture photometry.
    [Show full text]
  • Downloaded at %20Package.Zip
    Data analysis of 2005 Regulus occultation and simulation of the 2014 occultation Costantino Sigismondi, ICRANet, UFRJ and Observatorio Nacional, Rio de Janeiro [email protected] Tony George, IOTA North America [email protected] Thomas Flatrès, IOTA European Section [email protected] Abstract On March 20, 2014 at 6:06 UT (2:06 New York time) Regulus, the 1.3 magnitude brighter star of Leo constellation, is going to be occulted by the asteroid 163 Erigone. The unusual event, visible to the naked eye over NYC, can allow to measure the shape of the asteroid, with reaching a space resolution below the diffraction limit of the eye, and of all instruments not based on interferometry. Ultimately the aperture of the instrument is related to the amount of scintillation affecting the light curve of the occultation, limitating the accuracy of video recorded data. The asteroid profile scans the surface of the star at a velocity of 6 mas/s; the diameter of the star is about 1.3 mas and the detection of the stellar limb darkening signature is discussed, taking into consideration also the Fresnel fringes. New data reduction with R-OTE software of the 2005 Regulus occultation and simulations of the 2014 occultation with Fren_difl software are presented. The occultation of Regulus of March 20, 2014 above New York City The total solar eclipse of 1925 above New York area [5] and the occultation of delta Ophiuchi above France and Germany in 2010 [4] have been two occultation events followed by a relatively high number of observers. Potentially the occultation of 1.3 mas [8] first magnitude star Regulus over New York City can be the first asteroidal occultation observed by million people and broadcasted on the internet [23].
    [Show full text]
  • Aqueous Alteration on Main Belt Primitive Asteroids: Results from Visible Spectroscopy1
    Aqueous alteration on main belt primitive asteroids: results from visible spectroscopy1 S. Fornasier1,2, C. Lantz1,2, M.A. Barucci1, M. Lazzarin3 1 LESIA, Observatoire de Paris, CNRS, UPMC Univ Paris 06, Univ. Paris Diderot, 5 Place J. Janssen, 92195 Meudon Pricipal Cedex, France 2 Univ. Paris Diderot, Sorbonne Paris Cit´e, 4 rue Elsa Morante, 75205 Paris Cedex 13 3 Department of Physics and Astronomy of the University of Padova, Via Marzolo 8 35131 Padova, Italy Submitted to Icarus: November 2013, accepted on 28 January 2014 e-mail: [email protected]; fax: +33145077144; phone: +33145077746 Manuscript pages: 38; Figures: 13 ; Tables: 5 Running head: Aqueous alteration on primitive asteroids Send correspondence to: Sonia Fornasier LESIA-Observatoire de Paris arXiv:1402.0175v1 [astro-ph.EP] 2 Feb 2014 Batiment 17 5, Place Jules Janssen 92195 Meudon Cedex France e-mail: [email protected] 1Based on observations carried out at the European Southern Observatory (ESO), La Silla, Chile, ESO proposals 062.S-0173 and 064.S-0205 (PI M. Lazzarin) Preprint submitted to Elsevier September 27, 2018 fax: +33145077144 phone: +33145077746 2 Aqueous alteration on main belt primitive asteroids: results from visible spectroscopy1 S. Fornasier1,2, C. Lantz1,2, M.A. Barucci1, M. Lazzarin3 Abstract This work focuses on the study of the aqueous alteration process which acted in the main belt and produced hydrated minerals on the altered asteroids. Hydrated minerals have been found mainly on Mars surface, on main belt primitive asteroids and possibly also on few TNOs. These materials have been produced by hydration of pristine anhydrous silicates during the aqueous alteration process, that, to be active, needed the presence of liquid water under low temperature conditions (below 320 K) to chemically alter the minerals.
    [Show full text]