MCB 421 Exam #1 (A) Fall 2006

Total Page:16

File Type:pdf, Size:1020Kb

Load more

MCB 421 Exam #1 (A) Fall 2006 There are 9 questions and 1 supplement on last page. Answer all 9 questions. Be sure your name is on each page 1). (8 points) A Luria-Delbruck fluctuation test was done to determine the rate of mutation to Dehydroproline resistance (a toxic proline analog) in E. coli. Twenty tubes of rich medium were each inoculated with a few wild-type cells and the cultures grown to 5 x 109 cells / ml. A 0.1 ml sample of each culture was then plated on minimal medium to detect DHPR mutants. The results are shown in the following table. Culture # # DHPR mutants Culture # # DHPR mutants 1 32 11 69 2 0 12 3 3 8 13 0 4 14 14 0 5 465 15 14 6 73 16 41 7 0 17 62 8 22 18 3 9 0 19 12 10 0 20 1 A). (2 points). From the data shown in the table is the resistance to dehydroproline due to induced or spontaneous mutation? B). (3 points). Why? [Spontaneous mutation. Even a superficial (non-statistical) analysis of the data shows that there is probably a high variance indicating that the appearance of mutations was random and the number is dependent upon when the mutations occurred during the life of the culture before exposure to the dehydroproline. If induced mutations were occurring, one would expect a similar number of colonies on all the plates.] C). (3 points). If you picked a colony from the plate supplemented with dehydroproline and grew it in LB broth for several generations, would the cells be resistant or sensitive to dehydroproline? [The cells would all (or almost all) be resistant to dehydroproline because the mutation is inherited by all the progeny.] 2). (12 points). Consider the following experiment. Your ultimate goal is to isolate tryptophan auxotrophs but you did not review my lecture notes carefully and did the following experiment. You mutagenize 50 cultures of wild type E. coli with a EMS, chemical mutagen. The cells are then grown for several generations in LB broth at 37o C to recover from the treatment with mutagen. Next the cells are centrifuged and resuspended in minimal medium supplemented with penicillin and grown several for several generations at 37o C. Next, the cells from each of the 20 cultures are resuspended in LB broth, grown for a few generations and the minimal medium-penicillin step is repeated. At the end of the second penicillin step, 100 cells from each of the 20 cultures are plated on LB plates and incubated overnight at 37o C until colonies are formed. The colonies are then replica plated to minimal plates and grown at 37o C. Approximately 95% of the colonies that grew on the master LB plates also grow on the Minimal plates while about 5% do not grow on minimal plates. A). (2 points). Why do most colonies grow on the minimal plate? [They come from cells that are still prototrophs that escaped killing by the penicillin.] B). (2 points). Why don’t some of the colonies grow on the minimal plate? [They are auxotrophs that require supplements included in LB broth. This would also include tryptophan auxotrophs.] C). (1 point). Would any of the colonies be tryptophan auxotrophs? [Probably because there are 50 x 5 = 250 auxotrophs represented in the experiment and several independent cultures.] D). (2 points). How could you identify tryptophan auxotrophs? [Replica plate or streak the auxotrophs from the LB plate onto min + trp plates. Trp auxotrophs will grow while other auxotrophs will not grow.] E). (2 points). How could you have modified the protocol to get only Trp auxotrophs? [Grow cells in Min + Trp at the steps where LB was used.] F). (1 point). Is the experiment a selection, enrichment or a screen? [Enrichment] G). Why were 50 tubes rather than 1 tube used for mutagenesis? [Prevent isolation of siblings.] 3). (9 points). A). (3 points). Would you expect an amber nonsense suppressor mutation to be dominant or recessive to the wild-type tRNA gene? Explain your answer with regard to the molecular mechanism involved. [The suppressor would be dominant (expressed) because it is expressed independently of the wild type tRNA. Thus both sense and amber codon can be decoded.] B). (3 points). Would you expect a bypass suppressor to be dominant or recessive to the wild-type gene? Explain your answer with regard to the molecular mechanism involved. [Dominant because it is expressed independently of the wild type gene.] C). (3 points). What does allele-specific mean? What does it tell you if a suppressor is allele-specific? [ANSWER: An allele-specific suppressor is a second-site mutation that repairs the mutant phenotype but only in strains with certain, specific mutations at the first- site. (Interaction suppressors are usually allele specific).] 4). (10 points). Complementation analysis was done on six mutants that lack theonine synthetase activity. The order of the mutational sites is not known. The results are shown below: thr-1 thr-2 thr-3 thr-4 thr-5 thr-6 thr-1 - + + - - - thr-2 - - + + - thr-3 - + + - thr-4 - - - thr-5 - - thr-6 - A). (2 points). How many complementation groups are represented? [At least two complementation groups: Group 1 = thr-1, thr-4, thr-5; Group 2 = thr-2, thr-3; Ungrouped = thr-6.] B). (6 points). Suggest two explanations for the results for thr-6. [ thr-6 fails to complement all of the other mutants. This could be either due to a trans-dominant negative phenotype of this mutant (e.g. due to a missense mutation that poisons threonine synthetase) or a cis-dominant negative phenotype caused by the mutation (e.g. due to an amber mutation that prevents expression of downstream genes). In either case, it is impossible to determine whether the thr-6 mutation is within one of the two complementation groups described by the other mutations or whether it is in a different complementation group.] C). (2 points). How could you distinguish between your explanations? [ Do a complementation analysis with the WT and thr-6. If the thr-6 mutation is cis-dominant, the phenotype would be wild type. If thr-6 is trans- domionant, the phenotype would be Thr-.] 5). (12 points). NADP is an essential cofactor for many cellular processes. Because it is not transported, exogenous NADP cannot supplement mutants unable to synthesize intracellular NADP. Five independent mutations were obtained that affect the synthesis of NADP. The properties of the mutations are described in the table below (where + indicates growth on rich medium, - indicates that no growth on rich medium, and -/+ indicates weak growth on rich medium). Row Mutation Growth temperature # 30°C 42°C 30 → 42°C 42 → 30°C 1 nad 2 nad-601 3 nad-602 4 nad-603 5 nad-604 6 nad-606 7 nad-607 8 nad-601 nad-602 9 nad-601 nad-603 10 nad-601 nad-604 11 nad-601 nad-607 12 nad-604 nad-607 A). (7 points). Note the properties of nad-601, nad-602, nad-603, nad-604, nad-606, and nad-607 in the above Table. Indicate both whether the mutant has a conditional phenotype (temperature sensitive, cold sensitive, or non- conditional) and whether the allele is likely to be due to a missense, nonsense, frameshift, deletion, or insertion mutation? Briefly explain your answers. ANSWER: nad-601 Ts, missense (Probably AA substitution that destabilized protein) nad-602 Ts, missense nad-603 Ts, missense nad-604 Cs, missense nad-606 Leaky, nonconditional (probably a missense mutation because gene product retains some activity) nad-607 Cs, missense All of these mutations are probably missense because Ts and Cs mutations usually arise due to single amino acid substitutions, and the leaky mutation retains some activity so it is clearly not due to a complete gene disruption. B). (5 points). Interpret the results for each pair of double mutants in rows # 8-12. If you are not able to determine the order of the reactions catalyzed by some of the gene products from the data given, suggest a likely reason for this result. ANSWER: 8:Cannot interpret gene order because both mutations are Ts 9:Cannot interpret gene order because both mutations are Ts 10:Mutation nad-604 (Cs) must act before nad-601 (Ts) 11:Mutation nad-601 (Ts) must act before nad-607 (Cs) 12:Cannot interpret gene order because both 6). (16 points). Phage T4 forms wild-type plaques on both E. coli K-12 (λ+) and E. coli B. Phage geneticists isolated mutants they designated “rII” for rapid lysis. rII mutants form large plaques (larger than wild-type plaques) on E. coli B but cannot grow on E. coli K-12 (λ+) so no plaques are formed. These facts are shown in the Table below. Phage genotype E. coli K12(λ+) E. coli B Wild type normal plaques normal plaques rII no plaques r-type plaques You decide to isolate an rII mutant using proflavin as a mutagen. Proflavin induces frameshift mutations when phage are grown in cells treated with proflavin. A). (2 points). Which E. coli strain would you use for the mutagenesis? Why? [E. coli B because rII mutants can grow in E. coli B but cannot grow in E. coli K-12 (λ+) and would be lost.] B). (3 points). How would you identify rII mutants? Is this a selection or screen? Why? [By plating mutagenized phage on a B strain and identifying plaques with rII morphology. This is a screen because all types may grow and the desired mutant can be identified by screening many plaques.] Assume you were successful in isolating an rII mutant.
Recommended publications
  • The Screening of the Second-Site Suppressor Mutations of The

    The Screening of the Second-Site Suppressor Mutations of The

    Int. J. Cancer: 121, 559–566 (2007) ' 2007 Wiley-Liss, Inc. The screening of the second-site suppressor mutations of the common p53 mutants Kazunori Otsuka, Shunsuke Kato, Yuichi Kakudo, Satsuki Mashiko, Hiroyuki Shibata and Chikashi Ishioka* Department of Clinical Oncology, Institute of Development, Aging and Cancer, and Tohoku University Hospital, Tohoku University, Sendai, Japan Second-site suppressor (SSS) mutations in p53 found by random mutation library covers more than 95% of tumor-derived missense mutagenesis have shown to restore the inactivated function of mutations as well as previously unreported missense mutations. some tumor-derived p53. To screen novel SSS mutations against We have shown the interrelation among the p53 structure, the common mutant p53s, intragenic second-site (SS) mutations were function and tumor-derived mutations. We have also observed that introduced into mutant p53 cDNA in a comprehensive manner by the missense mutation library was useful to isolate a number of using a p53 missense mutation library. The resulting mutant p53s 16,17 with background and SS mutations were assayed for their ability temperature sensitive p53 mutants and super apoptotic p53s. to restore the p53 transactivation function in both yeast and Previous studies have shown that there are second-site (SS) mis- human cell systems. We identified 12 novel SSS mutations includ- sense mutations that recover the inactivated function of tumor- ing H178Y against a common mutation G245S. Surprisingly, the derived mutations, so-called intragenic second-site suppressor G245S phenotype is rescued when coexpressed with p53 bearing (SSS) mutations.18–23 Analysis of the molecular background of the H178Y mutation.
  • Antibiotic Resistance by High-Level Intrinsic Suppression of a Frameshift Mutation in an Essential Gene

    Antibiotic Resistance by High-Level Intrinsic Suppression of a Frameshift Mutation in an Essential Gene

    Antibiotic resistance by high-level intrinsic suppression of a frameshift mutation in an essential gene Douglas L. Husebya, Gerrit Brandisa, Lisa Praski Alzrigata, and Diarmaid Hughesa,1 aDepartment of Medical Biochemistry and Microbiology, Biomedical Center, Uppsala University, Uppsala SE-751 23, Sweden Edited by Sankar Adhya, National Institutes of Health, National Cancer Institute, Bethesda, MD, and approved January 4, 2020 (received for review November 5, 2019) A fundamental feature of life is that ribosomes read the genetic (unlikely if the DNA sequence analysis was done properly), that the code in messenger RNA (mRNA) as triplets of nucleotides in a mutants carry frameshift suppressor mutations (15–17), or that the single reading frame. Mutations that shift the reading frame gen- mRNA contains sequence elements that promote a high level of ri- erally cause gene inactivation and in essential genes cause loss of bosomal shifting into the correct reading frame to support cell viability viability. Here we report and characterize a +1-nt frameshift mutation, (10). Interest in understanding these mutations goes beyond Mtb and centrally located in rpoB, an essential gene encoding the beta-subunit concerns more generally the potential for rescue of mutants that ac- of RNA polymerase. Mutant Escherichia coli carrying this mutation are quire a frameshift mutation in any essential gene. We addressed this viable and highly resistant to rifampicin. Genetic and proteomic exper- by isolating a mutant of Escherichia coli carrying a frameshift mutation iments reveal a very high rate (5%) of spontaneous frameshift suppres- in rpoB and experimentally dissecting its genotype and phenotypes. sion occurring on a heptanucleotide sequence downstream of the mutation.
  • Genetic Dissection of Developmental Pathways*§ †

    Genetic Dissection of Developmental Pathways*§ †

    Genetic dissection of developmental pathways*§ † Linda S. Huang , Department of Biology, University of Massachusetts-Boston, Boston, MA 02125 USA Paul W. Sternberg, Howard Hughes Medical Institute and Division of Biology, California Institute of Technology, Pasadena, CA 91125 USA Table of Contents 1. Introduction ............................................................................................................................1 2. Epistasis analysis ..................................................................................................................... 2 3. Epistasis analysis of switch regulation pathways ............................................................................ 3 3.1. Double mutant construction ............................................................................................. 3 3.2. Interpretation of epistasis ................................................................................................ 5 3.3. The importance of using null alleles .................................................................................. 6 3.4. Use of dominant mutations .............................................................................................. 7 3.5. Complex pathways ........................................................................................................ 7 3.6. Genetic redundancy ....................................................................................................... 9 3.7. Limits of epistasis ......................................................................................................
  • Genetic Suppression* §

    Genetic Suppression* §

    Genetic suppression* § Jonathan Hodgkin , Genetics Unit, Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK Table of Contents 1. Introduction ............................................................................................................................2 2. Intragenic suppression by same site replacement ............................................................................ 2 3. Intragenic suppression by compensatory second site mutation .......................................................... 2 4. Intragenic suppression by altered splicing ..................................................................................... 2 5. Intragenic suppression of dominant mutations by loss-of-function in cis. ............................................2 6. Extragenic suppression — overview ............................................................................................ 3 7. Informational suppression — overview ........................................................................................ 4 8. Nonsense suppression ............................................................................................................... 4 9. Extragenic suppression by modified splicing ................................................................................. 5 10. Suppression by loss of NMD (Nonsense Mediated Decay) ............................................................. 6 11. Extragenic suppression by non-specific physiological effects .........................................................
  • Suppressor Screening Reveals Common Kleisin–Hinge Interaction in Condensin and Cohesin, but Different Modes of Regulation

    Suppressor Screening Reveals Common Kleisin–Hinge Interaction in Condensin and Cohesin, but Different Modes of Regulation

    Suppressor screening reveals common kleisin hinge interaction in condensin and cohesin, but different modes of regulation Author Xingya Xu, Mitsuhiro Yanagida journal or Proceedings of the National Academy of publication title Sciences volume 116 number 22 page range 10889-10898 year 2019-05-09 Publisher National Academy of Sciences Rights (C) 2019 the Author(s). Author's flag publisher URL http://id.nii.ac.jp/1394/00000948/ doi: info:doi/10.1073/pnas.1902699116 Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (https://creativecommons.org/licenses/by-nc-nd/4.0/) Suppressor screening reveals common kleisin–hinge interaction in condensin and cohesin, but different modes of regulation Xingya Xua and Mitsuhiro Yanagidaa,1 aG0 Cell Unit, Okinawa Institute of Science and Technology Graduate University, Onna-son, 904-0495 Okinawa, Japan Contributed by Mitsuhiro Yanagida, April 1, 2019 (sent for review February 15, 2019; reviewed by Kerry Bloom, David M. Glover, and Robert V. Skibbens) Cohesin and condensin play fundamental roles in sister chromatid establishment/dissolution cycle have been demonstrated (7). This cohesion and chromosome segregation, respectively. Both consist kind of approach, if employed systematically using numerous of heterodimeric structural maintenance of chromosomes (SMC) mutations, can be developed on a much more comprehensive subunits, which possess a head (containing ATPase) and a hinge, scale, and will give us a systematic view of how complex molec- intervened by long coiled coils. Non-SMC subunits (Cnd1, Cnd2, ular assemblies are organized (8). and Cnd3 for condensin; Rad21, Psc3, and Mis4 for cohesin) bind to Condensin and cohesin are two fundamental protein com- the SMC heads.
  • The Molecular Basis of Suppression in an Ochre Suppressor Strain Possessing Altered Ribosomes* by T

    The Molecular Basis of Suppression in an Ochre Suppressor Strain Possessing Altered Ribosomes* by T

    THE MOLECULAR BASIS OF SUPPRESSION IN AN OCHRE SUPPRESSOR STRAIN POSSESSING ALTERED RIBOSOMES* BY T. KENT GARTNER, EDUARDO ORIAS, JAMES E. LANNAN, JAMES BEESON, AND PARLANE J. REID DEPARTMENT OF BIOLOGICAL SCIENCES, UNIVERSITY OF CALIFORNIA (SANTA BARBARA) Communicated by Charles Yanofsky, January 30, 1969 Abstract.-Escherichia coli K12 2320(X)-15B has a mutation that results in ochre suppressor activity.1 This mutation concomitantly causes a decreased growth rate in rich medium, an increased sensitivity to streptomycin,l and the production of some altered 30S ribosomes which are differentially sensitive to RNase.2 The results presented below demonstrate that the molecules which cause suppression are tRNA. These observations justify the conclusions that the suppressor mutation did not occur in a structural gene for a ribosomal component, and that the decreased growth rate in rich medium, the increased sensitivity to streptomycin, and the production of altered 30S ribosomes are probably all secondary consequences of the suppressor mutation. Introduction.-Strain 15B is an ochre suppressor mutant which was isolated as a phenotypically lac+ revertant of strain 2320(X).1 Strain 15B is an atypical ochre suppressor mutant because the mutation that causes the suppression also causes the synthesis of some altered 30S ribosomes,2 a decreased growth rate in rich medium, and an increased sensitivity to streptomycin.1 Since the mu- tation that causes ochre suppressor activity in strain 15B also causes the syn- thesis of some altered 30S ribosomes, the ribosomes of strain 15B were tested for suppressor activity. The results of this investigation which are presented below demonstrate, however, that most if not all of the suppressor activity of strain 15B resides in tRNA.
  • Fall 1996 ANSWER KEY Exam 1 Q1. a Frameshift Mutation in the Arc Gene Results in Premature Termination of the Encoded Protein at an Amber Codon

    Fall 1996 ANSWER KEY Exam 1 Q1. a Frameshift Mutation in the Arc Gene Results in Premature Termination of the Encoded Protein at an Amber Codon

    Mcbio 316 - Fall 1996 ANSWER KEY Exam 1 Q1. A frameshift mutation in the arc gene results in premature termination of the encoded protein at an amber codon. However, the mutant is not suppressed by an amber suppressor. (5) Explain why. Downstream of the frameshift mutation translation occurs in the wrong reading frame. Thus even if premature termination is prevented by suppression of the "out- of-frame" nonsense codon, translation in the wrong reading frame will produce multiple amino acid changes, resulting in an inactive protein. Note - this question specifically asked about the effect of an amber suppressor on a frameshift mutation, not how amber suppressors work or how frameshift suppressors work. Q2. It is not possible to obtain true revertants of a deletion mutation in a haploid organism. However, it is sometimes possible to obtain second site revertants of a deletion mutation. (5) a. What type of second site reversion event is most likely? [Explain.] The most likely type of reversion event is a bypass suppressor because it completely avoids the need for the gene product. Note - failure to obtain true revertants indicates that the deletion mutation described is not a simple frameshift mutation. Thus, your answer should explain how a large deletion can revert. It is true that in some very rare cases an insertion mutation could compensate for the deletion, but this is less likely than a bypass suppressor. Furthermore, if you suggested that an insertion mutation could compensate, you would need to describe (i) how it would compensate, and (ii) where the insertion of DNA might come from.
  • Science Journals

    Science Journals

    RESEARCH ◥ us to formulate and quantify the general RESEARCH ARTICLE SUMMARY mechanisms of genetic suppression, which has the potential to guide the identification of modifier genes affecting the penetrance of YEAST GENETICS genetic traits, including human disease.▪ Exploring genetic suppression Genetic suppression Wild type interactions on a global scale Jolanda van Leeuwen, Carles Pons, Joseph C. Mellor, Takafumi N. Yamaguchi, Helena Friesen, John Koschwanez, Mojca Mattiazzi Ušaj, Maria Pechlaner, Mehmet Takar, Matej Ušaj,BenjaminVanderSluis,KerryAndrusiak,Pritpal Bansal, Anastasia Baryshnikova, Claire E. Boone, Jessica Cao, Atina Cote, Marinella Gebbia, Gene Horecka, Ira Horecka, Elena Kuzmin, Nicole Legro, Wendy Liang, Natascha van Lieshout, Margaret McNee, Normal fitness Reduced fitness Restored fitness (sick) (healthy) Bryan-Joseph San Luis, Fatemeh Shaeri, Ermira Shuteriqi, Song Sun, Lu Yang, Ji-Young Youn, Michael Yuen, Michael Costanzo, Anne-Claude Gingras, Patrick Aloy, Chris Oostenbrink, Andrew Murray, Todd R. Graham, Chad L. Myers,* Brenda J. Andrews,* Mapping a global suppression network Frederick P. Roth,* Charles Boone* • 1842 Literature curated suppression interactions • 195 Systematically derived INTRODUCTION: Genetic suppression oc- ping and whole-genome sequencing, we also suppression interactions curs when the phenotypic defects caused by isolated an unbiased, experimental set of ~200 - Genetic mapping a mutated gene are rescued by a mutation in spontaneous suppressor mutations that cor- - Whole genome sequencing another gene. rect the fitness defects of deletion or hypomor- on January 22, 2017 These genetic interactions can connect phic mutant alleles. Integrating these results genes that work within the same pathway yielded a global suppression network. Enrichment of suppression gene pairs or biological process, providing new ◥ The majority of suppression in- ON OUR WEBSITE colocal- GO coan- coex- same same 0164 mechanistic insights into cellular teractions identified novel gene-gene ization notation pression pathway complex fold enrich.
  • Suppression Mechanisms Reviews Suppression Mechanisms Themes from Variations

    Suppression Mechanisms Reviews Suppression Mechanisms Themes from Variations

    Suppression mechanisms Reviews Suppression mechanisms themes from variations Suppressor analysis is a commonly used strategy to identify functional relationships between genes that might not have been revealed through other genetic or biochemical means. Many mechanisms that explain the phenomenon of genetic suppression have been described, but the wide variety of possible mechanisms can present a challenge to defining the relationship between a suppressor and the original gene. This article provides a broad framework for classifying suppression mechanisms and describes a series of genetic tests that can be applied to determine the most likely mechanism of suppression. he analysis of any biological process by classical genetic basis for distinguishing the classes, allowing the investigator Tmethods ultimately requires multiple types of mutant to: (1) pursue the class that best suits their particular interests; selections to identify all the genes involved in that process. (2) identify systematically the relationship between the two One strategy commonly used to identify functionally gene products; and (3) design rationally future suppressor related genes is to begin with a strain that already contains hunts to increase the likelihood of obtaining the desired a mutation affecting the pathway of interest, selecting for classes of mutations. Some practical aspects should be mutations that modify its phenotype. Modifiers that result considered when designing suppressor hunts (Box 1). in a more severe phenotype are termed enhancers, while mutations that restore a more wild-type phenotype despite Intragenic suppression the continued presence of the original mutation are termed The simplest suppression mechanism to conceptualize is suppressors. Historically, suppressors have proven intragenic suppression, where a phenotype caused by a extremely valuable for determining the relationship primary mutation is ameliorated by a second mutation in between two gene products in vivo, even in the absence of the same gene.
  • The Red Strain "Ad2, , SU-Ad2, 1"

    The Red Strain "Ad2, , SU-Ad2, 1"

    i/i, A CYTOPLASMIC SUPPRESSOR OF SUPER-SUPPRESSOR IN YEAST B.S. COX Departmentof Genetics. University of Liverpool Received24.ii.65 1.INTRODUCTION IN1963, Hawthorne and Mortimer reported an analysis of some suppressors of auxotrophic requirements in yeast. They found that such suppressors were unspecific in the sense that the suppression effect was not dependent on the function affected by a mutation, but were specific in that not all, only a proportion of the alleles leading to any particular loss of function were suppressible. Manney (1964) has confirmed that about a third of all ultra-violet induced mutants of yeast are suppressible by such suppressors. It appears from the data that separately isolated suppressors are often inherited in- dependently of one another, and that, whenever tested, they have the same specificity. During the course of studies on spontaneous inter-allelic reversions during vegetative growth in yeast, a number of revertants were recovered whose behaviour, on analysis, showed that they were due to genetically controlled suppression of one of the alleles in the diploid. A typical segregation, that of the revertant Q,isshown in table i. The original diploid used in the cross was composed as follows: —a,ad2,, hi8,se1, me2, fr1 — adenine-requiring. ad2, —--— - = red, All markers except adenine requirement and colour segregate 2+: 2— in every tetrad. The adenine requirement, however, segregates 1+: 3— in four tetrads and 0+: 4— in two tetrads. It is possible to distinguish ad2, 1 from ad2, by a complementation test (Woods, 1963). When this is done it is seen that ad2, and ad2, segregate regularly each to two spores in every tetrad.
  • Missense Mutations Allow a Sequence-Blind Mutant of Spoiiie to Successfully Translocate Chromosomes During Sporulation

    Missense Mutations Allow a Sequence-Blind Mutant of Spoiiie to Successfully Translocate Chromosomes During Sporulation

    Missense Mutations Allow a Sequence-Blind Mutant of SpoIIIE to Successfully Translocate Chromosomes during Sporulation The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Bose, Baundauna, Sydney E. Reed, Marina Besprozvannaya, and Briana M. Burton. 2016. “Missense Mutations Allow a Sequence-Blind Mutant of SpoIIIE to Successfully Translocate Chromosomes during Sporulation.” PLoS ONE 11 (2): e0148365. doi:10.1371/journal.pone.0148365. http://dx.doi.org/10.1371/ journal.pone.0148365. Published Version doi:10.1371/journal.pone.0148365 Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:25658517 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA RESEARCH ARTICLE Missense Mutations Allow a Sequence-Blind Mutant of SpoIIIE to Successfully Translocate Chromosomes during Sporulation Baundauna Bose¤a, Sydney E. Reed, Marina Besprozvannaya¤b, Briana M. Burton¤c* Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts, United States of America ¤a Current address: Evelo Biosciences, Cambridge, Massachusetts, United States of America ¤b Current address: Department of Molecular and Cellular Biology, University of California, Davis, Davis, California, United States of America ¤c Current address: Department of Bacteriology, University of Wisconsin, Madison, Wisconsin, United States of America * [email protected] OPEN ACCESS Abstract Citation: Bose B, Reed SE, Besprozvannaya M, Burton BM (2016) Missense Mutations Allow a SpoIIIE directionally pumps DNA across membranes during Bacillus subtilis sporulation Sequence-Blind Mutant of SpoIIIE to Successfully and vegetative growth.
  • ASSEMBLY of the MITOCHONDRIAL MEMBRANE SYSTEM: NUCLEAR SUPPRESSION of a CYTOCHROME B MUTATION in YEAST MITOCHONDRIAL DNA

    ASSEMBLY of the MITOCHONDRIAL MEMBRANE SYSTEM: NUCLEAR SUPPRESSION of a CYTOCHROME B MUTATION in YEAST MITOCHONDRIAL DNA

    ASSEMBLY OF THE MITOCHONDRIAL MEMBRANE SYSTEM: NUCLEAR SUPPRESSION OF A CYTOCHROME b MUTATION IN YEAST MITOCHONDRIAL DNA GLORIA CORUZZI AND ALEXANDER TZAGOLOF" Department of Biological Sciences, Columbia University, New York, N. Y. 10027 Manuscript received December 3, 1979 Revised copy received May 5,1980 ABSTRACT In a previous study, a mitochondrial mutant expressing a specific enzymatic deficiency in co-enzyme QH,-cytochrome c reductase was described (TZAGO- LOFF, FOURYand AEAI 1976). Analysis of the mitochondrially translated pro- teins revealed the absence in the mutant of the mitochondrial product corres- ponding to cytochrome b and the presence of a new low molecular weight product. The premature chain-termination mutant was used to obtain sup- pressor mutants with wild-type properties. One such revertant strain was analyzed genetically and biochemically. The revertant was determined to have a second mutation in a nuclear gene that is capable of partially suppressing the original mitochondrial cytochrome b mutation. Genetic data indicate that the nuclear mutation is recessive and is probably in a gene coding far a protein involved in the mitochondrial translation machinery. YEAST mitochondrial DNA (mtDNA) is known to code for cytochrome b, a well-characterized carrier of co-enzyme QH,-cytochrome c reductase. In a previous study, a mutant of Saccharomyces oerevisiae was shown to have a genetic lesion in the cytochrome b gene (TZAGOLOFF,FOURY and AKAI1976). The mutation (M9-228) was mapped in the cob2 locus and was shown to cause the loss of a wild-type mitochondrial translation product corresponding to the cytochrome b apoprotein. The mutant was of interest because of the appearance of a new low molecular weight mitochondrial product.