App. 13 – Fauna Survey Summary and Ecological Assessment Report

Total Page:16

File Type:pdf, Size:1020Kb

App. 13 – Fauna Survey Summary and Ecological Assessment Report Environmental Impact Statement - VOLUME 3 Appendix 13 Fauna Survey Summary and Ecological Assessment Report (R67966) Prepared by RPS PR100246 / R72894; Volume 3 Ecological Assessment Report Springmount Wind Farm, Arriga Prepared by: Prepared for: RPS Transfield Services 135 Abbott Street GPO Box 1126 CAIRNS QLD 4870 BRISBANE QLD 4001 T: +61 7 4031 1336 F: +61 7 4031 2942 W: rpsgroup.com.au Report No: PR100246/R67966 Version/Date: Draft /July 2010 rpsgroup.com.au Important Note Apart from fair dealing for the purposes of private study, research, criticism, or review as permitted under the Copyright Act, no part of this report, its attachments or appendices may be reproduced by any process without the written consent of RPS. All enquiries should be directed to RPS. We have prepared this report for the sole purposes of Transfield (“Client”) for the specific purpose only for which it is supplied. This report is strictly limited to the Purpose and the facts and matters stated in it and does not apply directly or indirectly and will not be used for any other application, purpose, use or matter. In preparing this report we have made certain assumptions. We have assumed that all information and documents provided to us by the Client or as a result of a specific request or enquiry were complete, accurate and up-to-date. Where we have obtained information from a government register or database, we have assumed that the information is accurate. Where an assumption has been made, we have not made any independent investigations with respect to the matters the subject of that assumption. We are not aware of any reason why any of the assumptions are incorrect. This report is presented without the assumption of a duty of care to any other person (other than the Client) (“Third Party”). The report may not contain sufficient information for the purposes of a Third Party or for other uses. Without the prior written consent of RPS: a) This report may not be relied on by a Third Party; and b) RPS will not be liable to a Third Party for any loss, damage, liability or claim arising out of or incidental to a Third Party publishing, using or relying on the facts, content, opinions or subject matter contained in this report. If a Third Party uses or relies on the facts, content, opinions or subject matter contained in this report with or without the consent of RPS, RPS disclaims all risk and the Third Party assumes all risk and releases and indemnifies and agrees to keep indemnified (RPS) from any loss, damage, claim or liability arising directly or indirectly from the use of or reliance on this report. In this note, a reference to loss and damage includes past and prospective economic loss, loss of profits, damage to property, injury to any person (including death) costs and expenses incurred in taking measures to prevent, mitigate or rectify any harm, loss of opportunity, legal costs, compensation, interest and any other direct, indirect, consequential or financial or other loss. Quality Assurance Statement Approved for Issue Revision Author Reviewer Signature Date No. Simon Gleed A David Finney Lyndall Harvey PR100246/SG/KLT/R67966 - Springmount Wind Farm, Arriga Page 2 of 42 Contents 1 INTRODUCTION 6 1.1 Scope of Work 6 1.2 Project Area Location and Description 7 2 METHODS 8 2.1 Desktop Review 8 2.2 Field Survey 9 2.2.1 Survey Timing 9 2.2.2 Survey Methodology 9 2.2.3 Fauna Survey Methods 10 2.2.4 Flora and Vegetation Survey Methods 14 2.2.5 Target Species 16 2.3 Taxonomy and Nomenclature 16 2.4 Survey Limitations 17 2.4.1 Site Access 17 2.4.2 Survey Timing 17 2.4.3 Significant Species 17 2.4.4 Fire 17 2.4.5 Data Availability and Accuracy 18 3 RESULTS OF DESKTOP REVIEW 19 3.1 Regional Ecosystem Mapping 19 3.2 Essential Habitat 21 3.3 Wildlife Online Database Search 22 3.3.1 Flora and Vegetation 22 3.3.2 Fauna 23 3.4 Protected Matters Database Search 26 3.4.1 Flora and Vegetation 26 3.4.2 Fauna 26 3.5 HERBRECS – Queensland Herbarium Records 32 3.6 Queensland Museum Biodiversity Database 33 3.7 Regional Vegetation Management Codes 33 3.8 Watercourses 33 4 RESULTS OF FIELD INVESTIGATION 34 4.1 Flora and Vegetation Assessment 34 4.1.1 Flowering and Fruiting Phenology 34 4.1.2 Effects of Fire 35 4.1.3 Vegetation Description 35 4.1.4 Description of Vegetation Survey Sites 36 4.1.5 Vegetation Survey Point 1 (Land surrounding Granite Creek) 37 4.1.6 Vegetation Survey Point 2 (Wind Turbine Site 25) 38 4.1.7 Vegetation Survey Point 3 (no wind turbine) 38 4.1.8 Vegetation Survey Point 4 (no wind turbine) 39 4.1.9 Vegetation Survey Point 5 (no wind turbine) 39 4.1.10 Vegetation Survey Point 6 (no wind turbine) 39 4.1.11 Vegetation Survey Point 7 (no wind turbine) 40 4.1.12 Vegetation Survey Point 8 (no wind turbine) 40 PR100246/SG/KLT/R67966 - Springmount Wind Farm, Arriga Page 3 of 42 4.1.13 Vegetation Survey Point 9 (no wind turbine) 40 4.1.14 Vegetation Survey Point 10 (no wind turbine) 41 4.1.15 Vegetation Survey Point 11 (no wind turbine) 41 4.1.16 Vegetation Survey Point 12 (no wind turbine) 42 4.1.17 Vegetation Survey Point 13 (no wind turbine) 42 4.1.18 Vegetation Survey Point 14 (no wind turbine) 42 4.1.19 Vegetation Survey Point 15 (Wind Turbine 56) 43 4.1.20 Vegetation Survey Point 16 (Wind Turbine 57) 43 4.1.21 Vegetation Survey Point 17 (Wind Turbine 47) 44 4.1.22 Vegetation Survey Point 18 (Wind Turbine 46) 44 4.1.23 Vegetation Survey Point 19 (Wind Turbine 45) 44 4.1.24 Vegetation Survey Point 20 (Wind Turbine 44) 45 4.1.25 Vegetation Survey Point 21 (Wind Turbine 43) 45 4.1.26 Vegetation Survey Point 22 (Wind Turbine 42) 46 4.1.27 Vegetation Survey Point 23 (no wind turbine) 46 4.1.28 Vegetation Survey Point 24 (no wind turbine) 47 4.1.29 Vegetation Survey Point 25 (Wind Turbine Site 22) 47 4.1.30 Vegetation Survey Point 26 (Wind Turbine Site 21) 48 4.2 Fauna of the Study Area 48 4.2.1 Birds 49 4.2.2 Herpetofauna 49 4.2.3 Mammals 49 4.3 Important Vegetation Types and Habitat 51 4.3.1 Summary of Habitat Types 52 4.4 Conservation Values of the Study area 53 4.4.1 Significant Flora 53 4.4.2 Significant Fauna 53 5 POTENTIAL ECOLOGICAL IMPACTS 54 5.1 General Impacts on Flora and Fauna 54 5.2 Rotor Strike 56 6 RECOMMENDATIONS AND MITIGATION FOR HABITAT MANAGEMENT 58 7 REFERENCES & BIBLIOGRAPHY 60 APPENDIX 64 APPENDIX 66 APPENDIX 68 APPENDIX 69 APPENDIX 89 APPENDIX 97 APPENDIX 99 APPENDIX 100 APPENDIX 104 APPENDIX 106 PR100246/SG/KLT/R67966 - Springmount Wind Farm, Arriga Page 4 of 42 APPENDIX 107 APPENDIX 109 APPENDIX 113 Appendices Appendix A Wind farm Location and Position of Turbines and the Road and Cabling Network Appendix B Regional Ecosystem Mapping Appendix C Regional Ecosystem Descriptions Appendix D Wildlife Online Database Search Results Appendix E EPBC Act Protected Matters Report Appendix F HERBRECS – Conservation Significant Plants Appendix G Regional Vegetation Management Code Appendix H Watercourse Mapping Appendix I Summary of Weather Conditions Appendix J Provisional Checklist of Flora Appendix K Location of Vegetation Survey Sites Appendix L Summary of Fauna Survey Effort Appendix M Provisional Checklist of Fauna Appendix N Anabat Analysis PR100246/SG/KLT/R67966 - Springmount Wind Farm, Arriga Page 5 of 42 1 Introduction RPS (Cairns) Australia East Pty Ltd (RPS) was engaged to undertake ecological studies for the proposed Springmount Wind farm to support regulatory approvals for the proposed project. This report outlines the principal environmental characteristics of a number of sites on which a wind farm comprising 74 wind turbines is proposed to be established at Arriga, west of the township of Walkamin in north Queensland. The study area in which these sites are bounded is shown in Appendix A. The report considers a range of environmental matters, primarily fauna, vegetation and flora, and species of conservation significance listed under State and Commonwealth environmental legislation. All the turbines are proposed to be located in remnant vegetation, as defined under the Vegetation Management Act 19991. 1.1 Scope of Work The following scope of work was identified and forms the purpose of the field assessment and the broad content of this report. Flora Assessment Identification of the common flora species that are representative at a range of sites within the study area; Classification of conservation significant species as identified under the Nature Conservation Act 1992 (NC Act) and the Environmental Protection and Biodiversity Act 1999 (EPBC Act); Preliminary significance assessment of the impact of the project on any endangered, vulnerable or rare flora species listed under the NC Act and EPBC Act which occur within the study area; and identification of mitigation measures; Review of regional ecosystem mapping and remnant vegetation classification for the project area, and its relevance in terms of the Vegetation Management Act 1999: and Presence and identification of any declared or environmental weeds within the study area. Fauna Assessment Identification of the actual presence of the fauna species within the study area; Identification of fauna species likely to inhabit the study area; Classification of the species identified under the NC Act and the EPBC Act; and A preliminary significance assessment of the impact to any actual or potential fauna species that may occur within the study area; and identification of mitigation measures.
Recommended publications
  • Brooklyn, Cloudland, Melsonby (Gaarraay)
    BUSH BLITZ SPECIES DISCOVERY PROGRAM Brooklyn, Cloudland, Melsonby (Gaarraay) Nature Refuges Eubenangee Swamp, Hann Tableland, Melsonby (Gaarraay) National Parks Upper Bridge Creek Queensland 29 April–27 May · 26–27 July 2010 Australian Biological Resources Study What is Contents Bush Blitz? Bush Blitz is a four-year, What is Bush Blitz? 2 multi-million dollar Abbreviations 2 partnership between the Summary 3 Australian Government, Introduction 4 BHP Billiton and Earthwatch Reserves Overview 6 Australia to document plants Methods 11 and animals in selected properties across Australia’s Results 14 National Reserve System. Discussion 17 Appendix A: Species Lists 31 Fauna 32 This innovative partnership Vertebrates 32 harnesses the expertise of many Invertebrates 50 of Australia’s top scientists from Flora 62 museums, herbaria, universities, Appendix B: Threatened Species 107 and other institutions and Fauna 108 organisations across the country. Flora 111 Appendix C: Exotic and Pest Species 113 Fauna 114 Flora 115 Glossary 119 Abbreviations ANHAT Australian Natural Heritage Assessment Tool EPBC Act Environment Protection and Biodiversity Conservation Act 1999 (Commonwealth) NCA Nature Conservation Act 1992 (Queensland) NRS National Reserve System 2 Bush Blitz survey report Summary A Bush Blitz survey was conducted in the Cape Exotic vertebrate pests were not a focus York Peninsula, Einasleigh Uplands and Wet of this Bush Blitz, however the Cane Toad Tropics bioregions of Queensland during April, (Rhinella marina) was recorded in both Cloudland May and July 2010. Results include 1,186 species Nature Refuge and Hann Tableland National added to those known across the reserves. Of Park. Only one exotic invertebrate species was these, 36 are putative species new to science, recorded, the Spiked Awlsnail (Allopeas clavulinus) including 24 species of true bug, 9 species of in Cloudland Nature Refuge.
    [Show full text]
  • Draft Animal Keepers Species List
    Revised NSW Native Animal Keepers’ Species List Draft © 2017 State of NSW and Office of Environment and Heritage With the exception of photographs, the State of NSW and Office of Environment and Heritage are pleased to allow this material to be reproduced in whole or in part for educational and non-commercial use, provided the meaning is unchanged and its source, publisher and authorship are acknowledged. Specific permission is required for the reproduction of photographs. The Office of Environment and Heritage (OEH) has compiled this report in good faith, exercising all due care and attention. No representation is made about the accuracy, completeness or suitability of the information in this publication for any particular purpose. OEH shall not be liable for any damage which may occur to any person or organisation taking action or not on the basis of this publication. Readers should seek appropriate advice when applying the information to their specific needs. All content in this publication is owned by OEH and is protected by Crown Copyright, unless credited otherwise. It is licensed under the Creative Commons Attribution 4.0 International (CC BY 4.0), subject to the exemptions contained in the licence. The legal code for the licence is available at Creative Commons. OEH asserts the right to be attributed as author of the original material in the following manner: © State of New South Wales and Office of Environment and Heritage 2017. Published by: Office of Environment and Heritage 59 Goulburn Street, Sydney NSW 2000 PO Box A290,
    [Show full text]
  • Lateral Transfers of Large DNA Fragments Spread Functional Genes Among Grasses
    Lateral transfers of large DNA fragments spread functional genes among grasses Luke T. Dunninga, Jill K. Olofssona, Christian Parisodb, Rimjhim Roy Choudhuryb, Jose J. Moreno-Villenaa,1, Yang Yangc, Jacqueline Dionorad, W. Paul Quicka,d, Minkyu Parke, Jeffrey L. Bennetzene, Guillaume Besnardf, Patrik Nosila, Colin P. Osbornea, and Pascal-Antoine Christina,2 aAnimal and Plant Sciences, University of Sheffield, Western Bank, S10 2TN Sheffield, United Kingdom; bInstitute of Plant Sciences, University of Bern, 3013 Bern, Switzerland; cKunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650204 Yunnan, China; dSystems Physiology Cluster, International Rice Research Institute, 1301 Metro Manila, Philippines; eDepartment of Genetics, University of Georgia, Athens, GA 30602; and fLaboratoire Évolution & Diversité Biologique (EDB UMR5174), CNRS, Institut de Recherche pour le Développement, F-31062 Toulouse, France Edited by Jeffrey D. Palmer, Indiana University, Bloomington, IN, and approved January 17, 2019 (received for review June 11, 2018) A fundamental tenet of multicellular eukaryotic evolution is that ticellular eukaryotes, convincing cases exist where genes of adaptive vertical inheritance is paramount, with natural selection acting on significance have been transferred (e.g., refs. 3, 16, and 17). Among genetic variants transferred from parents to offspring. This lineal plants, most known LGTs concern mitochondrial genes (18–21) process means that an organism’s adaptive potential can be restricted and/or parasitic interactions
    [Show full text]
  • Limb Length and Microhabitat Use in Lizards with Toe Pads
    RESEARCH ARTICLE There's more than one way to climb a tree: Limb length and microhabitat use in lizards with toe pads Travis J. Hagey1*, Scott Harte2, Mathew Vickers2,3, Luke J. Harmon4, Lin Schwarzkopf2 1 BEACON Center for Evolution in Action, Michigan State University, East Lansing, Michigan, United States of America, 2 School of Marine and Tropical Biology, James Cook University, Townsville, Queensland, Australia, 3 Centre for Tropical Biology and Climate Change, Commonwealth Scientific and Industrial a1111111111 Research Organization, Townsville, Queensland, Australia, 4 Department of Biological Sciences, University a1111111111 of Idaho, Moscow, Idaho, United States of America a1111111111 * [email protected] a1111111111 a1111111111 Abstract Ecomorphology links microhabitat and morphology. By comparing ecomorphological asso- OPEN ACCESS ciations across clades, we can investigate the extent to which evolution can produce similar Citation: Hagey TJ, Harte S, Vickers M, Harmon solutions in response to similar challenges. While Anolis lizards represent a well-studied LJ, Schwarzkopf L (2017) There's more than one example of repeated convergent evolution, very few studies have investigated the ecomor- way to climb a tree: Limb length and microhabitat phology of geckos. Similar to anoles, gekkonid lizards have independently evolved adhesive use in lizards with toe pads. PLoS ONE 12(9): e0184641. https://doi.org/10.1371/journal. toe pads and many species are scansorial. We quantified gecko and anole limb length and pone.0184641 microhabitat use, finding that geckos tend to have shorter limbs than anoles. Combining Editor: Sharon Swartz, Brown University, UNITED these measurements with microhabitat observations of geckos in Queensland, Australia, STATES we observed geckos using similar microhabitats as reported for anoles, but geckos with rel- Received: December 16, 2016 atively longer limbs were using narrower perches, differing from patterns observed in anoles and other lizards.
    [Show full text]
  • Diplodactylidae: Oedura) from North-East Queensland, Australia
    Zootaxa 1788: 21–36 (2008) ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ ZOOTAXA Copyright © 2008 · Magnolia Press ISSN 1175-5334 (online edition) A new species of velvet gecko (Diplodactylidae: Oedura) from north-east Queensland, Australia CONRAD J. HOSKIN 1,3 & MEGAN HIGGIE2 School of Botany and Zoology, The Australian National University, Canberra, ACT 0200, Australia. E-mail: [email protected]; 2 [email protected] 3Corresponding author Abstract We describe a new species of velvet gecko (Diplodactylidae: Oedura) from north-east Queensland, Australia. Oedura jowalbinna sp. nov. is a robust, medium-sized (SVL 60–69 mm) gecko that is readily distinguished from its congeners by its distinctive dorsal colour pattern. The dorsum is grey with faint freckling and a pale, dark-edged band across the neck and another across the base of the tail. The combination of a yellow tail and a grey body is also distinctive. Oedura jowalbinna sp. nov. also differs significantly from the most similar congener, O. coggeri, in a multivariate analysis of morphology and scalation, primarily due to its smaller body size, higher interorbital, supralabial and infralabial scale counts, and lower subdigital lamellae scale count. These traits are generally non-overlapping between O. jowalbinna sp. nov. and O. coggeri, however, more individuals of O. jowalbinna sp. nov. need to be assessed to accurately determine variation within the new species. All O. jowalbinna sp. nov. were found at night on overhangs in dissected sandstone escarpment south-west of the town of Laura. Surveys are required to determine the distribution of O. jowalbinna sp.
    [Show full text]
  • Global Relationships Between Plant Functional Traits and Environment in Grasslands
    GLOBAL RELATIONSHIPS BETWEEN PLANT FUNCTIONAL TRAITS AND ENVIRONMENT IN GRASSLANDS EMMA JARDINE A thesis submitted in partial fulfilment of the requirements for the degree of Doctor of Philosophy The University of Sheffield Department of Animal and Plant Sciences Submission Date July 2017 ACKNOWLEDGMENTS First of all I am enormously thankful to Colin Osborne and Gavin Thomas for giving me the opportunity to undertake the research presented in this thesis. I really appreciate all their invaluable support, guidance and advice. They have helped me to grow in knowledge, skills and confidence and for this I am extremely grateful. I would like to thank the students and post docs in both the Osborne and Christin lab groups for their help, presentations and cake baking. In particular Marjorie Lundgren for teaching me to use the Licor, for insightful discussions and general support. Also Kimberly Simpson for all her firey contributions and Ruth Wade for her moral support and employment. Thanks goes to Dave Simpson, Maria Varontsova and Martin Xanthos for allowing me to work in the herbarium at the Royal Botanic Gardens Kew, for letting me destructively harvest from the specimens and taking me on a worldwide tour of grasses. I would also like to thank Caroline Lehman for her map, her useful comments and advice and also Elisabeth Forrestel and Gareth Hempson for their contributions. I would like to thank Brad Ripley for all of his help and time whilst I was in South Africa. Karmi Du Plessis and her family and Lavinia Perumal for their South African friendliness, warmth and generosity and also Sean Devonport for sharing all the much needed teas and dub.
    [Show full text]
  • Native Animal Species List
    Native animal species list Native animals in South Australia are categorised into one of four groups: • Unprotected • Exempt • Basic • Specialist. To find out the category your animal is in, please check the list below. However, Specialist animals are not listed. There are thousands of them, so we don’t carry a list. A Specialist animal is simply any native animal not listed in this document. Mammals Common name Zoological name Species code Category Dunnart Fat-tailed dunnart Sminthopsis crassicaudata A01072 Basic Dingo Wild dog Canis familiaris Not applicable Unprotected Gliders Squirrel glider Petaurus norfolcensis E04226 Basic Sugar glider Petaurus breviceps E01138 Basic Possum Common brushtail possum Trichosurus vulpecula K01113 Basic Potoroo and bettongs Brush-tailed bettong (Woylie) Bettongia penicillata ogilbyi M21002 Basic Long-nosed potoroo Potorous tridactylus Z01175 Basic Rufous bettong Aepyprymnus rufescens W01187 Basic Rodents Mitchell's hopping-mouse Notomys mitchellii Y01480 Basic Plains mouse (Rat) Pseudomys australis S01469 Basic Spinifex hopping-mouse Notomys alexis K01481 Exempt Wallabies Parma wallaby Macropus parma K01245 Basic Red-necked pademelon Thylogale thetis Y01236 Basic Red-necked wallaby Macropus rufogriseus K01261 Basic Swamp wallaby Wallabia bicolor E01242 Basic Tammar wallaby Macropus eugenii eugenii C05889 Basic Tasmanian pademelon Thylogale billardierii G01235 Basic 1 Amphibians Common name Zoological name Species code Category Southern bell frog Litoria raniformis G03207 Basic Smooth frog Geocrinia laevis
    [Show full text]
  • A Phylogeny and Revised Classification of Squamata, Including 4161 Species of Lizards and Snakes
    BMC Evolutionary Biology This Provisional PDF corresponds to the article as it appeared upon acceptance. Fully formatted PDF and full text (HTML) versions will be made available soon. A phylogeny and revised classification of Squamata, including 4161 species of lizards and snakes BMC Evolutionary Biology 2013, 13:93 doi:10.1186/1471-2148-13-93 Robert Alexander Pyron ([email protected]) Frank T Burbrink ([email protected]) John J Wiens ([email protected]) ISSN 1471-2148 Article type Research article Submission date 30 January 2013 Acceptance date 19 March 2013 Publication date 29 April 2013 Article URL http://www.biomedcentral.com/1471-2148/13/93 Like all articles in BMC journals, this peer-reviewed article can be downloaded, printed and distributed freely for any purposes (see copyright notice below). Articles in BMC journals are listed in PubMed and archived at PubMed Central. For information about publishing your research in BMC journals or any BioMed Central journal, go to http://www.biomedcentral.com/info/authors/ © 2013 Pyron et al. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. A phylogeny and revised classification of Squamata, including 4161 species of lizards and snakes Robert Alexander Pyron 1* * Corresponding author Email: [email protected] Frank T Burbrink 2,3 Email: [email protected] John J Wiens 4 Email: [email protected] 1 Department of Biological Sciences, The George Washington University, 2023 G St.
    [Show full text]
  • NSW REPTILE KEEPERS' LICENCE Species Lists 1006
    NSW REPTILE KEEPERS’ LICENCE SPECIES LISTS (2006) The taxonomy in this list follows that used in Wilson, S. and Swan, G. A Complete Guide to Reptiles of Australia, Reed 2003. Common names generally follow the same text, when common names were used, or have otherwise been lifted from other publications. As well as reading this species list, you will also need to read the “NSW Reptile Keepers’ Licence Information Sheet 2006.” That document has important information about the different types of reptile keeper licenses. It also lists the criteria you need to demonstrate before applying to upgrade to a higher class of licence. THESE REPTILES CAN ONLY BE HELD UNDER A REPTILE KEEPERS’ LICENCE OF CLASS 1 OR HIGHER Code Scientific Name Common Name Code Scientific Name Common Name Turtles Monitors E2018 Chelodina canni Cann’s Snake-necked Turtle G2263 Varanus acanthurus Spiney-tailed Monitor C2017 Chelodina longicollis Snake-necked Turtle Q2268 Varanus gilleni Pygmy Mulga Monitor G2019 Chelodina oblonga Oblong Turtle G2271 Varanus gouldii Sand Monitor Y2028 Elseya dentata Northern Snapping Turtle M2282 Varanus tristis Black-Headed Monitor K2029 Elseya latisternum Saw-shelled Turtle Y2776 Elusor macrurus Mary River Turtle E2034 Emydura macquarii Murray Short-necked Turtle Skinks T2031 Emydura macquarii dharra Macleay River Turtle A2464 Acritoscincus platynotum Red-throated Skink T2039 Emydura macquarii dharuk Sydney Basin Turtle W2331 Cryptoblepharus virgatus Cream-striped Wall Skink T2002 Emydura macquarii emmotti Emmott’s Short-necked Turtle W2375
    [Show full text]
  • Additional Chromosome Numbers in Transvaal Grasses JMJ
    1958 113 Additional Chromosome Numbers in Transvaal Grasses J. M. J. de Wet Divisionof Botany,Pretoria , SouthAfrica ReceivedJune 15, 1957 The chromosome numbers of South African grasses are studied mainly to get them on record. Some of these data have a direct bearing on the relationships of certain genera . These are discussed in more detail. The genera and species are classified according to Pilger (1954) and Chippendall (1955). Material and methods The material were collected in the veld and identified by Mr . J. A. Anderson. Specimens, together with corresponding root tip slides are filed with the National Herbarium, Pretoria. Root tips were fixed in Randolph's (1953) fluid , dehydrated and embedded in the usual manner. Sections were cut 14 microns thick and stained in Stockwell's (1934) solution. Drawings were made with the aid of a camera lucida. The magnification is •~2000 . Anatomical slides were prepared ac cording to Prat (1948). Results The species studied are summarized in Table 1. The gramineae is subdivided according to Pilger (1954). Subfamily Festucoideae: This subfamily includes the tribes classified by Avdulov (1931) in his series Festuciformes together with some tribes from his miscellaneous series Phragmitiformes. Festuceae Subtribe Festucinae. Cytologically this tribe is recognized by large chromosomes in multiples of n=7. The genus Festuca as indicated by Avdulov (1931) is typical in this respect. Moffet and Hurcombe (1949) indicated that Tetrachne is Eragrostoid in respect to leaf anatomy and cytology. This is also true for the genus Fingerhuthia. In these two genera the chromosomes are small and in multiples of n=10. In respect to leaf anatomical characters the tribe Festuceae is charac terized by the Festucoid type of internal leaf anatomy (Avdulov, 1931, page 33, figure 1).
    [Show full text]
  • Plant Inventory No. 148
    Plant Inventory No. 148 UNITED STATES DEPARTMENT OF AGRICULTURE Washington, D. C. January 1951 PLANT MATERIAL INTRODUCED BY THE DIVISION OF PLANT EX- PLORATION AND INTRODUCTION, BUREAU OF PLANT INDUSTRY,1 JULY 1 TO SEPTEMBER 30, 1941 (NOS. 142030 TO 142270) CONTENTS Pasre Inventory _ 2 Index of common and scientific names 15 This inventory, No. 148, lists the plant material (Nos. 142030 to 142270) received by the Division of Plant Exploration and Introduc- tion during the period from July 1 to September 30,1941. It is a his- torical record or plant material introduced for Department and other specialists, and is not to be considered as a list of plant material for distribution. PAUL G. RUSSELL, Botanist. Plant Industry Station, Beltsvitte, md. 1 Now Bureau of Plant Industry, Soils, and Agricultural Engineering, Agricul- tural Eesearch Administration, United States Department of Agriculture. INVENTORY 142030. CENTELLA ASIATICA (L.) Urban. Apiaceae. From India. Seeds presented by the Professor of Botany, Punjab Agricultural College, Lyallpur. Received July 15, 1941. For previous introduction see 141369. 1242031 to 142037. From the Union of South Africa. Seeds presented by the McGregor Museum, Kimberley. Received July 15, 1941. 142031. CHLOBIS OAPENSIS (Houtt.) Thell. Poaceae. Grass. A Koppie grass collected at the rock garden of the McGregor Museum, some- times called woolly fingergrass. 142032. DIGITABIA sp. Poaceae. Woolly Fingergrass. From the Kimberley rock garden. 142033. EBAGBOSTIS LEHMANNIANA var. AMPLA Stapf. Poaceae. Grass. Not as hardy as the typical species. 142034. EBAGBOSTIS SUPEBBA Peyr. Bosluis grass. A tick grass from the open grasveld. 142035. POGANABTHBIA SQUABBOSA (Licht.) Pilger. Poaceae.
    [Show full text]
  • Burdekin, Queensland
    Biodiversity Summary for NRM Regions Species List What is the summary for and where does it come from? This list has been produced by the Department of Sustainability, Environment, Water, Population and Communities (SEWPC) for the Natural Resource Management Spatial Information System. The list was produced using the AustralianAustralian Natural Natural Heritage Heritage Assessment Assessment Tool Tool (ANHAT), which analyses data from a range of plant and animal surveys and collections from across Australia to automatically generate a report for each NRM region. Data sources (Appendix 2) include national and state herbaria, museums, state governments, CSIRO, Birds Australia and a range of surveys conducted by or for DEWHA. For each family of plant and animal covered by ANHAT (Appendix 1), this document gives the number of species in the country and how many of them are found in the region. It also identifies species listed as Vulnerable, Critically Endangered, Endangered or Conservation Dependent under the EPBC Act. A biodiversity summary for this region is also available. For more information please see: www.environment.gov.au/heritage/anhat/index.html Limitations • ANHAT currently contains information on the distribution of over 30,000 Australian taxa. This includes all mammals, birds, reptiles, frogs and fish, 137 families of vascular plants (over 15,000 species) and a range of invertebrate groups. Groups notnot yet yet covered covered in inANHAT ANHAT are notnot included included in in the the list. list. • The data used come from authoritative sources, but they are not perfect. All species names have been confirmed as valid species names, but it is not possible to confirm all species locations.
    [Show full text]