Diplomarbeit Holomorphic Maps Between Rings of Power Series
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Sisältö Part I: Topological Vector Spaces 4 1. General Topological
Sisalt¨ o¨ Part I: Topological vector spaces 4 1. General topological vector spaces 4 1.1. Vector space topologies 4 1.2. Neighbourhoods and filters 4 1.3. Finite dimensional topological vector spaces 9 2. Locally convex spaces 10 2.1. Seminorms and semiballs 10 2.2. Continuous linear mappings in locally convex spaces 13 3. Generalizations of theorems known from normed spaces 15 3.1. Separation theorems 15 Hahn and Banach theorem 17 Important consequences 18 Hahn-Banach separation theorem 19 4. Metrizability and completeness (Fr`echet spaces) 19 4.1. Baire's category theorem 19 4.2. Complete topological vector spaces 21 4.3. Metrizable locally convex spaces 22 4.4. Fr´echet spaces 23 4.5. Corollaries of Baire 24 5. Constructions of spaces from each other 25 5.1. Introduction 25 5.2. Subspaces 25 5.3. Factor spaces 26 5.4. Product spaces 27 5.5. Direct sums 27 5.6. The completion 27 5.7. Projektive limits 28 5.8. Inductive locally convex limits 28 5.9. Direct inductive limits 29 6. Bounded sets 29 6.1. Bounded sets 29 6.2. Bounded linear mappings 31 7. Duals, dual pairs and dual topologies 31 7.1. Duals 31 7.2. Dual pairs 32 7.3. Weak topologies in dualities 33 7.4. Polars 36 7.5. Compatible topologies 39 7.6. Polar topologies 40 PART II Distributions 42 1. The idea of distributions 42 1.1. Schwartz test functions and distributions 42 2. Schwartz's test function space 43 1 2.1. The spaces C (Ω) and DK 44 1 2 2.2. -
I-Sequential Topological Spaces∗
Applied Mathematics E-Notes, 14(2014), 236-241 c ISSN 1607-2510 Available free at mirror sites of http://www.math.nthu.edu.tw/ amen/ -Sequential Topological Spaces I Sudip Kumar Pal y Received 10 June 2014 Abstract In this paper a new notion of topological spaces namely, I-sequential topo- logical spaces is introduced and investigated. This new space is a strictly weaker notion than the first countable space. Also I-sequential topological space is a quotient of a metric space. 1 Introduction The idea of convergence of real sequence have been extended to statistical convergence by [2, 14, 15] as follows: If N denotes the set of natural numbers and K N then Kn denotes the set k K : k n and Kn stands for the cardinality of the set Kn. The natural densityf of the2 subset≤ Kg is definedj j by Kn d(K) = lim j j, n n !1 provided the limit exists. A sequence xn n N of points in a metric space (X, ) is said to be statistically f g 2 convergent to l if for arbitrary " > 0, the set K(") = k N : (xk, l) " has natural density zero. A lot of investigation has been donef on2 this convergence≥ andg its topological consequences after initial works by [5, 13]. It is easy to check that the family Id = A N : d(A) = 0 forms a non-trivial f g admissible ideal of N (recall that I 2N is called an ideal if (i) A, B I implies A B I and (ii) A I,B A implies B I. -
On Compact-Covering and Sequence-Covering Images of Metric Spaces
MATEMATIQKI VESNIK originalni nauqni rad 64, 2 (2012), 97–107 research paper June 2012 ON COMPACT-COVERING AND SEQUENCE-COVERING IMAGES OF METRIC SPACES Jing Zhang Abstract. In this paper we study the characterizations of compact-covering and 1-sequence- covering (resp. 2-sequence-covering) images of metric spaces and give a positive answer to the following question: How to characterize first countable spaces whose each compact subset is metrizable by certain images of metric spaces? 1. Introduction To find internal characterizations of certain images of metric spaces is one of the central problems in General Topology. In 1973, E. Michael and K. Nagami [16] obtained a characterization of compact-covering and open images of metric spaces. It is well known that the compact-covering and open images of metric spaces are the first countable spaces whose each compact subset is metrizable. However, its inverse does not hold [16]. For the first countable spaces whose each compact subset is metrizable, how to characterize them by certain images of metric spaces? The sequence-covering maps play an important role on mapping theory about metric spaces [6, 9]. In this paper, we give the characterization of a compact- covering and 1-sequence-covering (resp. 2-sequence-covering) image of a metric space, and positively answer the question posed by S. Lin in [11, Question 2.6.5]. All spaces considered here are T2 and all maps are continuous and onto. The letter N is the set of all positive natural numbers. Readers may refer to [10] for unstated definition and terminology. 2. -
Arxiv:1702.07867V1 [Math.FA]
TOPOLOGICAL PROPERTIES OF STRICT (LF )-SPACES AND STRONG DUALS OF MONTEL STRICT (LF )-SPACES SAAK GABRIYELYAN Abstract. Following [2], a Tychonoff space X is Ascoli if every compact subset of Ck(X) is equicontinuous. By the classical Ascoli theorem every k- space is Ascoli. We show that a strict (LF )-space E is Ascoli iff E is a Fr´echet ′ space or E = ϕ. We prove that the strong dual Eβ of a Montel strict (LF )- space E is an Ascoli space iff one of the following assertions holds: (i) E is a ′ Fr´echet–Montel space, so Eβ is a sequential non-Fr´echet–Urysohn space, or (ii) ′ ω D E = ϕ, so Eβ = R . Consequently, the space (Ω) of test functions and the space of distributions D′(Ω) are not Ascoli that strengthens results of Shirai [20] and Dudley [5], respectively. 1. Introduction. The class of strict (LF )-spaces was intensively studied in the classic paper of Dieudonn´eand Schwartz [3]. It turns out that many of strict (LF )-spaces, in particular a lot of linear spaces considered in Schwartz’s theory of distributions [18], are not metrizable. Even the simplest ℵ0-dimensional strict (LF )-space ϕ, n the inductive limit of the sequence {R }n∈ω, is not metrizable. Nyikos [16] showed that ϕ is a sequential non-Fr´echet–Urysohn space (all relevant definitions are given in the next section). On the other hand, Shirai [20] proved the space D(Ω) of test functions over an open subset Ω of Rn, which is one of the most famous example of strict (LF )-spaces, is not sequential. -
Analytic Spaces and Their Tukey Types by Francisco Javier Guevara Parra a Thesis Submitted in Conformity with the Requirements F
Analytic spaces and their Tukey types by Francisco Javier Guevara Parra A thesis submitted in conformity with the requirements for the degree of Doctor of Philosophy Graduate Department of Mathematics University of Toronto Copyright ⃝c 2019 by Francisco Javier Guevara Parra Abstract Analytic spaces and their Tukey types Francisco Javier Guevara Parra Doctor of Philosophy Graduate Department of Mathematics University of Toronto 2019 In this Thesis we study topologies on countable sets from the perspective of Tukey reductions of their neighbourhood filters. It turns out that is closely related to the already established theory of definable (and in particular analytic) topologies on countable sets. The connection is in fact natural as the neighbourhood filters of points in such spaces are typical examples of directed sets for which Tukey theory was introduced some eighty years ago. What is interesting here is that the abstract Tukey reduction of a neighbourhood filter Fx of a point to standard directed sets like or `1 imposes that Fx must be analytic. We develop a theory that examines the Tukey types of analytic topologies and compare it by the theory of sequential convergence in arbitrary countable topological spaces either using forcing extensions or axioms such as, for example, the Open Graph Axiom. It turns out that in certain classes of countable analytic groups we can classify all possible Tukey types of the corresponding neighbourhood filters of identities. For example we show that if G is a countable analytic k-group then 1 = f0g; and F G: are the only possible Tukey types of the neighbourhood filter e This will give us also new metrization criteria for such groups. -
Hausdorff Separability of the Boundaries for Spacetimes And
Hausdorff separability of the boundaries for spacetimes and sequential spaces. J.L. Flores∗, J. Herreraz, M. S´anchezy ∗Departamento de Algebra,´ Geometr´ıay Topolog´ıa, Facultad de Ciencias, Universidad de M´alaga, Campus Teatinos, 29071 M´alaga,Spain zInstituto de Matem´atica e Estat´ıstica, Universidade de S~aoPaulo, Rua do Mat~ao,1010, Cidade Universitaria S~aoPaulo, Brazil yDepartamento de Geometr´ıay Topolog´ıa, Facultad de Ciencias, Universidad de Granada, Avenida Fuentenueva s/n, 18071 Granada, Spain January 6, 2015 There are several ideal boundaries and completions in General Relativity sharing the topological property of being sequential, i.e., determined by the convergence of its sequences and, so, by some limit operator L. As emphasized in a classical article by Geroch, Liang and Wald, some of them have the property, commonly regarded as a drawback, that there are points of the spacetime M non T1-separated from points of the boundary @M. Here we show that this problem can be solved from a general topological viewpoint. In particular, there is a canonical minimum refinement of the topology in the comple- tion M which T2-separates the spacetime M and its boundary @M |no matter the type of completion one chooses. Moreover, we analyze the case of sequential spaces and show how the refined T2-separating topology can be constructed from a modifi- cation L∗ of the original limit operator L. Finally, we particularize this procedure to the case of the causal boundary and show how the separability of M and @M can be introduced as an abstract axiom in its definition. -
Sequential Properties of Function Spaces with the Compact-Open Topology
SEQUENTIAL PROPERTIES OF FUNCTION SPACES WITH THE COMPACT-OPEN TOPOLOGY GARY GRUENHAGE, BOAZ TSABAN, AND LYUBOMYR ZDOMSKYY Abstract. Let M be the countably in¯nite metric fan. We show that Ck(M; 2) is sequential and contains a closed copy of Arens space S2. It follows that if X is metrizable but not locally compact, then Ck(X) contains a closed copy of S2, and hence does not have the property AP. We also show that, for any zero-dimensional Polish space X, Ck(X; 2) is sequential if and only if X is either locally compact or the derived set X0 is compact. In the case that X is a non-locally compact Polish space whose derived set is compact, we show that all spaces Ck(X; 2) are homeomorphic, having the topology determined by an increasing sequence of Cantor subspaces, the nth one nowhere dense in the (n + 1)st. 1. Introduction Let Ck(X) be the space of continuous real-valued functions on X with the compact-open topology. Ck(X) for metrizable X is typically not a k-space, in particular not sequential. Indeed, by a theorem of R. Pol [8], for X paracompact ¯rst countable (in particular, metrizable), Ck(X) is a k-space if and only if X is locally compact, in which case X is a topological sum of locally compact σ-compact spaces and Ck(X) is a product of completely metrizable spaces. A similar result holds for Ck(X; [0; 1]): it is a k-space if and only if X is the topological sum of a discrete space and a locally compact σ-compact space, in which case Ck(X) is the product of a compact space and a completely metrizable space. -
On Bornivorous Set
On Bornivorous Set By Fatima Kamil Majeed Al-Basri University of Al-Qadisiyah College Of Education Department of Mathematics E-mail:[email protected] Abstract :In this paper, we introduce the concept of the bornivorous set and its properties to construct bornological topological space .Also, we introduce and study the properties related to this concepts like bornological base, bornological subbase , bornological closure set, bornological interior set, bornological frontier set and bornological subspace . Key words : bornivorous set , bornological topological space,b-open set 1.Introduction- The space of entire functions over the complex field C was introduced by Patwardhan who defined a metric on this space by introducing a real-valued map on it[6]. In(1971), H.Hogbe- Nlend introduced the concepts of bornology on a set [3].Many workers such as Dierolf and Domanski, Jan Haluska and others had studied various bornological properties[2]. In this paper at the second section ,bornivorous set has been introduced with some related concepts. While in the third section a new space “Bornological topological space“ has been defined and created in the base of bornivorous set . The bornological topological space also has been explored and its properties .The study also extended to the concepts of the bornological base and bornological subbase of bornological topological space .In the last section a new concepts like bornological closure set, bornological drived set, bornological dense set, bornological interior set, bornological exterior set, bornological frontier set and bornological topological subspace, have been studied with supplementary properties and results which related to them. 1 Definition1.1[3] Let A and B be two subsets of a vector space E. -
Sequential Conditions and Free Products of Topological Groups Sidney A
PROCEEDINGS of the AMERICAN MATHEMATICAL SOCIETY Volume 103, Number 2, June 1988 SEQUENTIAL CONDITIONS AND FREE PRODUCTS OF TOPOLOGICAL GROUPS SIDNEY A. MORRIS AND H. B. THOMPSON (Communicated by Dennis Burke) ABSTRACT. If A and B are nontrivial topological groups, not both discrete, such that their free product A 11 B is a sequential space, then it is sequential of order oji. 1. Introduction. In [15], Ordman and Smith-Thomas prove that if the free topological group on a nondiscrete space is sequential then it is sequential of order uji. In particular, this implies that free topological groups are not metrizable or even Fréchet spaces. Our main result is the analogue of this for free products of topological groups. More precisely we prove that if A and B are nontrivial topological groups not both discrete and their free product A II B is sequential, then it is sequential of order ui. This result is then extended to some amalgamated free products. Our theorem includes, as a special case, the result of [10]. En route we extend the Ordman and Smith-Thomas result to a number of other topologies on a free group including the Graev topology which is the finest locally invariant group topology. (See [12].) It should be mentioned, also, that O.dman and Smith- Thomas show that the condition of AII B being sequential is satisfied whenever A and B are sequential fc^-spaces. 2. Preliminaries. The following definitions and examples are based on Franklin [3, 4] and Engelking [2]. DEFINITIONS. A subset U of a topological space X is said to be sequentially open if each sequence converging to a point in U is eventually in U. -
Subspaces and Quotients of Topological and Ordered Vector Spaces
Zoran Kadelburg Stojan Radenovi´c SUBSPACES AND QUOTIENTS OF TOPOLOGICAL AND ORDERED VECTOR SPACES Novi Sad, 1997. CONTENTS INTRODUCTION::::::::::::::::::::::::::::::::::::::::::::::::::::: 1 I: TOPOLOGICAL VECTOR SPACES::::::::::::::::::::::::::::::: 3 1.1. Some properties of subsets of vector spaces ::::::::::::::::::::::: 3 1.2. Topological vector spaces::::::::::::::::::::::::::::::::::::::::: 6 1.3. Locally convex spaces :::::::::::::::::::::::::::::::::::::::::::: 12 1.4. Inductive and projective topologies ::::::::::::::::::::::::::::::: 15 1.5. Topologies of uniform convergence. The Banach-Steinhaus theorem 21 1.6. Duality theory ::::::::::::::::::::::::::::::::::::::::::::::::::: 28 II: SUBSPACES AND QUOTIENTS OF TOPOLOGICAL VECTOR SPACES ::::::::::::::::::::::::::::::::::::::::::::::::::::::::: 39 2.1. Subspaces of lcs’s belonging to the basic classes ::::::::::::::::::: 39 2.2. Subspaces of lcs’s from some other classes :::::::::::::::::::::::: 47 2.3. Subspaces of topological vector spaces :::::::::::::::::::::::::::: 56 2.4. Three-space-problem for topological vector spaces::::::::::::::::: 60 2.5. Three-space-problem in Fr´echet spaces:::::::::::::::::::::::::::: 65 III: ORDERED TOPOLOGICAL VECTOR SPACES :::::::::::::::: 72 3.1. Basics of the theory of Riesz spaces::::::::::::::::::::::::::::::: 72 3.2. Topological vector Riesz spaces ::::::::::::::::::::::::::::::::::: 79 3.3. The basic classes of locally convex Riesz spaces ::::::::::::::::::: 82 3.4. l-ideals of topological vector Riesz spaces ::::::::::::::::::::::::: -
Closed Maps and the Character of Spaces
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 90. Number 2. February 1984 CLOSED MAPS AND THE CHARACTER OF SPACES YOSHIO TANAKA Abstract. We give some necessary and sufficient conditions for the character of spaces to be preserved under closed maps. Introduction. Recall the following result due to K. Morita and S. Hanai [11] or A. H. Stone [14]: Let Y be the image of a metric space X under a closed map/. Then Y is first countable (or metrizable) if and only if every boundary df~x(y) of the point-inverse/"'^) is compact. E. Michael [8] showed that every 3/~x(y) is compact if Xis paracompact, and Fis locally compact or first countable. For the Lindelöfness of 3/"'(y) with X metric, see [15]. For a space X and x G X, let x(x, X) be the smallest cardinal number of the form | %(x) |, where ^(x) is a nbd base at x in X. The character x( X) of X is defined as the supremum of all numbers \(x, X) for x G X. Let/be a closed map from X onto Y. First, we show that the character of Y has an influence on the boundaries 3/~'(y); indeed, they become Lindelöf or a-compact by the situation of Y. Second, in terms of these boundaries, we give some necessary and sufficient conditions for the character of X to be preserved under/. We assume all spaces are regular and all maps are continuous and onto. 1. a-compactness of the boundaries. We recall some definitions. A space X is strongly collectionwise Hausdorff if, whenever D — {xa; a G A} is a discrete closed subset of X, there is a discrete collection {Ua; a G A) of open subsets with Ua D D = {xa}. -
Quasi-Barrelled Locally Convex Spaces 811
i960] quasi-barrelled locally convex spaces 811 Bibliography 1. R. E. Lane, Absolute convergence of continued fractions, Proc. Amer. Math. Soc. vol. 3 (1952) pp. 904-913. 2. R. E. Lane and H. S. Wall, Continued fractions with absolutely convergent even and odd parts, Trans. Amer. Math. Soc. vol. 67 (1949) pp. 368-380. 3. W. T. Scott and H. S. Wall, A convergence theorem for continued fractions, Trans. Amer. Math. Soc. vol. 47 (1940) pp. 155-172. 4. H. S. Wall, Analytic theory of continued fractions, New York, D. Van Nostrand Company, Inc., 1948. The University of Texas and University of Houston QUASI-BARRELLED LOCALLY CONVEX SPACES MARK MAHOWALD AND GERALD GOULD 1. Introduction and preliminary definitions. The main object of this paper is to answer some problems posed by Dieudonné in his paper Denumerability conditions in locally convex vector spaces [l]. His two main results are as follows: Proposition 1. If Eis a barrelled space on which there is a countable fundamental system of convex compact subsets, [Definition 1.2] then it is the strong dual of a Fréchet-Montel Space. Proposition 2. If E is either bornological or barrelled, and if there is a countable fundamental system of compact subsets, then E is dense in the strong dual of a Fréchet-Montel Space. Two questions raised by Dieudonné in connection with these results are: (a) If E is either bornological or barrelled then it is certainly quasi- barrelled [l, Chapter 3, §2, Example 12]. Can one substitute this weaker condition on E in Proposition 2? (b) Is there is an example of a quasi-barrelled space which is neither barrelled nor bornological? We shall show that the answer to (a) is "Yes," and that the answer to (b) is also "Yes," so that the generalization is in fact a real one.