Johnson County Wastewater's Minimum Plan Requirements for Gravity Main Projects

Total Page:16

File Type:pdf, Size:1020Kb

Johnson County Wastewater's Minimum Plan Requirements for Gravity Main Projects JOHNSON COUNTY WASTEWATER MINIMUM PLAN REQUIREMENTS FOR GRAVITY SEWER MAIN PROJECTS 2017 JOHNSON COUNTY WASTEWATER MINIMUM PLAN REQUIREMENTS FOR GRAVITY SEWER MAIN PROJECTS TABLE OF CONTENTS PAGE SCOPE…………………………………………………………………………………………………1 I. SUBMITTAL REQUIREMENTS A. INITIAL SUBMITTAL EQUIREMENTS …………………………………………………1 1. Plan Sets 2. JCW Information Sheet 3. KDHE Application 4. Plat and Written Easements 5. District Enlargement B. SECOND SUBMITTAL REQUIREMENTS………………………………………………3 1. Written Easements 2. Project Administration Fee (PAF) 3. Gas/Railroad Agreement C. PROJECT REVIEW COMMENTS……………………………………………………….4 D. FINAL SUBMITTAL REQUIREMENTS………………………………………………….4 1. Plan Sets 2. General Layouts 3. Plat 3. Written Easements II. COVER SHEET REQUIREMENTS A. PROJECT TITLE .................................................................................................... 5 1. Project Name 2. Sewer District 3. Sewer Location B. SIGNATURE AND DATE LINES ............................................................................ 5 C. ENGINEER AND DEVELOPER INFORMATION ................................................... 6 D. GENERAL LOCATION MAP .................................................................................. 6 E. GENERAL NOTES ................................................................................................. 6 1. Reference to Specifications 2. Utility Warning 3. Compaction 4. Boring, Open Cut of Streets 5. Site Disturbance 6. Acceptance Testing 7. Hours of Operation 8. Separation from Water Lines 9. Maintenance of Flow 10. Maintenance Bond 11. Platting, Replatting or other Parcel Modification F. REFERENCE TO BENCHMARK ............................................................................ 9 i January 2017 G. UTILITY INFORMATION ........................................................................................ 9 H. SUMMARY OF QUANTITIES ................................................................................. 9 III. GENERAL LAYOUT REQUIREMENTS A. GENERAL ELEMENTS .......................................................................................... 9 B. NORTH ARROW AND SCALE ............................................................................... 9 C. SANITARY SEWER MAIN AND MANHOLE DESIGNATIONS .............................. 9 1. Existing Sanitary Sewer Main Designations 2. Existing Sanitary Sewer Manholes 3. Proposed Mains and Manholes D. PLAT, PARCEL AND PHASE BOUNDARY LINES…………………………………..10 E. ON-SITE BUILDINGS ............................................................................................. 10 F. SURROUNDING PARCELS ................................................................................... 10 G. STREETS AND PAVED AREAS ............................................................................ 11 H. STORM SEWERS, WATER COURSES, STORM BMPs ...................................... 11 I. SECTION LINE OR CORNER REFERENCE ......................................................... 11 J. REFERENCE TO BENCHMARK………………………………………………………..11 IV. SITE GRADING PLAN A. GENERAL ELEMENTS .......................................................................................... 12 B. NORTH ARROW AND SCALE ............................................................................... 12 C. SANITARY SEWER MAINS AND MANHOLES ...................................................... 12 D. SITE FEATURES ................................................................................................... 12 1. Existing Features 2. Proposed Site Alterations E. CONSTRUCTION EROSION CONTROL …………………………………………..…13 V. PLAN AND PROFILE REQUIREMENTS A. GENERAL ELEMENTS .......................................................................................... 13 B. STREETS ............................................................................................................... 14 C. EXISTING AND PROPOSED GRADE ................................................................... 14 D. NORTH ARROW AND SCALE ............................................................................... 14 E. LOT LINES, LOT AND BLOCK NUMBERS AND BUILDING DESIGNATIONS ..... 14 F. PLAT OR PARCEL MODIFICATIONS………………………………………………….15 G. EXISTING AND PROPOSED UTILITIES, STORM SEWERS, WATER COURSES AND BMPS ............................................................................................................. 15 1. Utilities 2. Storm Sewers 3. Watercourses 4. Storm Best Management Practices (BMPs) VI. SERVICE LINE REQUIREMENTS A. SERVICE STUBS ................................................................................................... 20 B. CONNECTION INFORMATION ............................................................................. 22 C. END OF STUB REFERENCES .............................................................................. 23 D. STUB ELEVATION TOLERANCE AND MINIMUM SERVICABLE FLOOR ii January 2017 ELEVATION ........................................................................................................... .23 E. BUILDING DEMOLITION…………………………………………………………………24 VII. MANHOLE REQUIREMENTS A. MANHOLE DESIGNATIONS AND STATIONING .................................................. 25 B. MANHOLE DIAMETER .......................................................................................... 25 C. MANHOLE LOCATION .......................................................................................... 26 D. MANHOLE TOP ELEVATIONS .............................................................................. 26 E. INTERIOR ANGLES AT MANHOLES…………………………………………………..27 F. MANHOLE INVERT ELEVATIONS……………………………………………………..27 VIII. PIPE REQUIREMENTS A. MAIN DESIGNATIONS .......................................................................................... 27 1. Plan View 2. Profile View B. MAXIMUM DISTANCE BETWEEN MANHOLES ................................................... 28 C. PIPE SIZE .............................................................................................................. 28 D. PIPE MATERIAL .................................................................................................... 28 E. PIPE SLOPE .......................................................................................................... 28 F. PIPE PROTECTION ............................................................................................... 29 G. BORING ................................................................................................................. 29 H. OPEN CUT OF EXISITNG STREETS………………………………………………….30 IX. DESIGN REQUIREMENTS A. DESIGN CAPACITY ............................................................................................... 30 B. MINIMUM PIPE SLOPES ....................................................................................... 31 C. MAXIMUM SEWER DEPTH ................................................................................... 31 D. STRUCTURE SEPARATION ................................................................................. 31 E. TRIBUTARY AREA SERVICE ................................................................................ 31 F. RELOCATIONS ...................................................................................................... 32 G. REQUIREMENTS FOR ADDITIONAL FILL AREAS .............................................. 34 H. ALIGNMENT ........................................................................................................... 34 I. REVISIONS DURING CONSTRUCTION………………………………………………35 X. DETAIL SHEET REQUIREMENTS XI. EASEMENT REQUIREMENTS A. SUBMITTAL REQUIREMENTS…………………………………………………………35 B. EASEMENT WIDTH REQUIREMENTS ................................................................. 36 C. SHOWING EASEMENTS AND ROW ON THE PLANS………………………………36 D. PLATTED EASEMENTS ........................................................................................ 37 1. Easement Dedication 2. Showing S/Es on the Plat E. WRITTEN SANITARY SEWER EASEMENTS ....................................................... 37 1. Grantor 2. Grantor Address iii January 2017 3. Grantor State of Residence 4. Easement Disbursement 5. Disbursement Numerical Notation 6. Easement Legal Description 7. Grantor Signature Lines 8. Exhibit 9. Acknowledgement F. OFF-SITE EASEMENTS ........................................................................................ 39 G. ACCESS EASEMENTS…………………………………………………………………..41 H. GAS MAIN CROSSING AGREEMENTS ................................................................ 41 I. POWER TRANSMISSION LINE AUTHORIZATIONS ............................................ 41 J. RAILROAD CROSSING AGREEMENTS ............................................................... 41 K. KDOT ROW PERMITS…………………………………………………………………...42 L. EASEMENT VACATION ........................................................................................ 42 XII. DRAFTING STANDARDS A. GENERAL INFORMATION………………………………………………………………42 B. GENERAL DRAFTING REQUIREMENTS…………………………………………..…43 XIII. AS-BUILT RECORDS .................................................................................................... 43 A. SUBMITTAL REQUIREMENTS .............................................................................. 44 1. First Submittal 2. Final Submittal 3. Record Drawings B. PLAT, PARCEL AND ORIGINAL AS-BUILT RECORD REVISIONS……………….45 1. Submittal Requirements ATTACHMENTS ATTACHMENT A – COMMENT FORMAT ............................................................................. 47 ATTACHMENT B – JCW INFORMATION
Recommended publications
  • Infiltration/Inflow Task Force Report
    INFILTRATION/INFLOW TASK FORCE REPORT A GUIDANCE DOCUMENT FOR MWRA MEMBER SEWER COMMUNITIES AND REGIONAL STAKEHOLDERS MARCH 2001 INFILTRATION/INFLOW TASK FORCE REPORT A GUIDANCE DOCUMENT FOR MWRA MEMBER SEWER COMMUNITIES AND REGIONAL STAKEHOLDERS MARCH 2001 Executive Summary This report is the product of the Infiltration/Inflow (I/I) Task Force. It has been developed through the cooperative efforts of the 43 Massachusetts Water Resources Authority (MWRA) member sewer communities, MWRA Advisory Board, The Wastewater Advisory Committee (WAC) to the MWRA, Charles River Watershed Association (CRWA), Fore River Watershed Association (FRWA), Mystic River Watershed Association (MRWA), Neponset River Watershed Association (NRWA), South Shore Chamber of Commerce (SSCC), Massachusetts Department of Environmental Protection (DEP), United States Environmental Protection Agency (EPA), and MWRA. The I/I Task Force recommends implementation of the regional I/I reduction goals and implementation strategies detailed in this report. The report outlines a regional I/I reduction plan with appropriate burdens and benefits for stakeholders. The report is intended to be a guidance document for use by local sewer communities, as well as other regional stakeholders, who may tailor appropriate aspects of the report recommendations to their unique situations. Severe storms in October 1996 and June 1998 led to the unusual circumstance of numerous sanitary sewer overflows (SSOs) from local and MWRA collection systems. In the aftermath of these events, EPA and DEP began an aggressive effort to make MWRA regulate flows from community sewer systems. MWRA recommended cooperative efforts by local collection system operators, as well as regulators and environmental advocates, would be more effective than a prescriptive, enforcement based approach.
    [Show full text]
  • Inflow and Infiltration Reduction in Sanitary Sewers
    Appendix E-4 – Inflow and Infiltration Reduction in Sanitary Sewers INFLOW AND INFILTRATION REDUCTION IN SANITARY SEWERS D.1 Introduction to RDII in Sanitary Sewers A properly designed, operated and maintained sanitary sewer system is meant to collect and convey all of the sewage that flows into it to a wastewater treatment plant. Rainfall dependent infiltration and inflow (RDII) into sanitary sewer systems has long been recognized as a major source of operating problems that cause poor performance of many sewer systems including system overflows. The extent of infiltration also correlates with the condition of aging sewers. The three major components of wet-weather wastewater flow into a sanitary system – base wastewater flow (BWWF), groundwater infiltration (GWI), and RDII are illustrated in Figure D-1 and are discussed below. Figure D-1: Three components of wet-weather wastewater flow BWWF, often called base sanitary flow, is the residential, commercial, institutional, and industrial flow discharged to a sanitary sewer system for collection and treatment. BWWF normally varies with water use patterns within a service area throughout a 24-hour period with higher flows during the morning period and lower during the night. In most cases, the average daily BWWF is more or less constant during a given day, but varies monthly and seasonally. BWWF often represents a significant portion of the flows treated at wastewater treatment facilities. GWI represents the infiltration of groundwater that enters the collection system through leaking pipes, pipe joints, and manhole walls. GWI varies throughout the year, often trending higher in late winter and spring as groundwater levels and soil moisture levels rise, and subsiding in late summer or after an extended dry period.
    [Show full text]
  • Section 9 Sewer Collection Systems
    SECTION 9 SEWER COLLECTION SYSTEMS TABLE OF CONTENTS 9.1 PURPOSE AND DEFINITIONS .......................................................................................... 1 9.1.1 Purpose ........................................................................................................................ 1 9.1.2 DOU Sewer System ...................................................................................................... 1 9.1.3 Definitions ..................................................................................................................... 2 9.2 GENERAL REQUIREMENTS ........................................................................................... 11 9.2.1 Authority and Responsibility ....................................................................................... 11 9.2.2 Disclaimer ................................................................................................................... 11 9.2.3 Acceptance ................................................................................................................. 12 9.2.4 Variances .................................................................................................................... 12 9.2.5 Gravity vs. Pumped Systems ...................................................................................... 12 9.2.6 New Sewer Systems ................................................................................................... 13 9.2.7 Diversion of Flows .....................................................................................................
    [Show full text]
  • A Case Study of a Small Diameter Gravity Sewerage System in Zolkiewka Commune, Poland
    water Article A Case Study of a Small Diameter Gravity Sewerage System in Zolkiewka Commune, Poland Tadeusz Nawrot *, Radosław Matz, Ryszard Błazejewski˙ and Marcin Spychała Department of Hydraulic and Sanitary Engineering, Poznan University of Life Sciences, Pi ˛atkowskaSt. 94A, 60-649 Pozna´n,Poland; [email protected] (R.M.); [email protected] (R.B.); [email protected] (M.S.) * Correspondence: [email protected]; Tel.: +48-61-848-77-29 Received: 31 July 2018; Accepted: 27 September 2018; Published: 29 September 2018 Abstract: This article presents a small diameter gravity sewerage system in a rural area. In this system, domestic wastewater was preliminarily treated in septic tanks equipped with outlet filters, so the effluent features were similar to those of clear water. Additionally, some outlets were equipped with floating-ball check valves to avoid backflow. One of the pressure mains was used as a gravity collector conveying septic tank effluent in the direction of the pumping station during pump idle time. The operation of the system was simulated using SWMM computer code. The simulation results were validated for data obtained from part of a sewerage system in Kolonia Zolkiew and Rozki village consisting of two pumping stations and 86 serviced households using polyethylene pipes of outer diameter 50–63 mm. The results of the measurement of the outflows from one pumping station are presented. The simulation results showed good agreement with the empirical data, especially after several simulation days. The greatest discrepancy during the start-up period was the consequence of the initial conditions describing the empty pipework.
    [Show full text]
  • PART VI - SANITARY SEWER SYSTEM DESIGN CRITERIA (Public & Private)
    PART VI - SANITARY SEWER SYSTEM DESIGN CRITERIA (Public & Private) A. Definitions a Main - is that portion of the sewer system between manholes, or between manhole and the end of the main line provided with a lamphole. b Lateral - is that portion of the sewer system which is connected to the main and which serves one parcel or building. B. Size Criteria 1. The gravity sewer main lines shall be a minimum of eight inch (8") in diameter except that dead end lines of less than 300 feet can be 6 inches in diameter. Laterals shall be a minimum of 4" in diameter for single family residences and 6" for commercial, duplex and multi-family lots. 2. Laterals shall be placed at least 3' below top of curb grade elevation with 2% minimum slope and with a cleanout located per City Standard Detail S-1. 3. Minimum slopes for various pipe diameters shall be as shown in the following table. Pipe slopes less than those listed shall not be used without the approval from the City. Pipe Diameter (in) Slope (%) Slope ft/ft 6 0.50 0.0050 8 0.35 0.0035 10 0.25 0.0025 12 0.20 0.0020 15 0.15 0.0015 18 0.12 0.0012 4. The sewer mains shall be designed with the sewer flowing 3/4 full at peak flow condition or d/D = 0.75 where d is the depth of flow and D is the diameter of sewer pipe. 5. For gravity flow, use the Manning formula. The minimum design velocity shall be 2 fps for the design flow, and the design "n" factor shall be 0.013.
    [Show full text]
  • Low Pressure Sewer a Proven Technology
    Low Pressure Sewer Solutions to Wet Weather Problems Michigan Water Environment Association WWAdCon 2014 Keith J McHale, P.E. Environment One Corporation Principles of Low Pressure Sewer ◦ What is a Low Pressure Sewer System ◦ Advantages of Low Pressure Sewer LPS Solutions to Wet Weather Problems ◦ Infiltration and Inflow (I&I) ◦ Basement flooding solution Agenda Wastewater collection systems that use individual residential pumps to convey the flow to a central treatment system, lift station, gravity sewer, or force main System consists of: ◦ Grinder pumps ◦ Small diameter pressure pipe Sewer main follows the natural contour of the land What is a LPS System First used in the early 1970’s Provides daily service to millions of users worldwide Demonstrated performance, high reliability, and low operating and maintenance costs Low Pressure Sewer A Proven Technology Gained popularity due to the ability to provide central sewer service to areas with gravity sewer could not be installed or the cost to do so was cost prohibitive ◦ High ground water ◦ Lake communities ◦ Rural areas ◦ Flat terrain ◦ Undulating terrain ◦ Rocky ground conditions Early Development Experience and demonstrated advantages have expanded the use of low pressure sewer Competitive alternative to convention gravity sewer ◦ Flexibility ◦ Lower capital cost ◦ Construction phasing ◦ Increased construction schedule ◦ Lower environment impact and social costs Wider Acceptance The System • Grinder pump unit is located in the yard or basement of each home The System •
    [Show full text]
  • Sanitary Sewer Overflow Report Side a Category 1: Discharge of Untreated Or Partially Treated Wastewater of Any Volume Resulting
    Sanitary Sewer Overflow Report Side A Category 1: Discharge of untreated or partially treated wastewater of any volume resulting from a sanitary sewer system failure of flow condition that either (1) reaches surface water and/or drainage channel tributary to a surface water; OR (2) Reached a Municipal Separate Storm Sewer System (MS$) and was not fully captured and returned to the sanitary sewer system or otherwise captured and disposed of properly. Category 2: Discharge of untreated or partially treated wastewater greater than or equal to 1,000 gallons resulting from a sanitary sewer system failure or flow condition that either (1) Does not reach surface water, a drainage channel, or an MS4, OR (2) The entire SSO discharged to the storm drain system was fully recovered and disposed of properly. Category 3: All other discharges of untreated or partially treated wastewater resulting from a sanitary sewer system failure or flow condition. Spill from Private Lateral Describe in detail the basis for choosing the spill category: IMMEDIATE NOTIFICATION: If this is a Category 1 spill greater than or equal to 1,000 gallons, contact CalEMA within 2 hours at (800) 852-7550. A. SPILL LOCATION Spill Location Name: Latitude Coordinates*: Longitude Coordinates: Street Name and Number: Nearest Cross Street: City: Rancho Palos Verdes Zip: 90275 County: Los Angeles Spill Location Description: B. SPILL DESCRIPTION Spill Appearance Point (check one or more): Building/Structure Force Main Gravity Sewer Pump Station Other Structure (i.e. cleanout) Manhole-Structure ID# Other (specify): Did the spill reach a drainage channel and/or surface water: Yes (Category 1) No If the spill reached a storm sewer, was it fully captured and returned to the Sanitary Sewer? Yes No (Cat.
    [Show full text]
  • 2-1 INTRODUCTION SECTION 2 SANITARY SEWER DESIGN and CONSTRUCTION REQUIREMENTS the City of Battle Ground's Engineering Departmen
    SECTION 2 SANITARY SEWER DESIGN AND CONSTRUCTION REQUIREMENTS 2-1 INTRODUCTION The City of Battle Ground's Engineering Department provides technical management, comprehensive planning, and sound engineering to expand and maintain sewer collection and conveyance systems for service to residential, commercial, and industrial customers in a safe, environmentally protective manner. As of December 2006, the City has nearly 53 miles of piping dedicated to the collection of wastewater within the City's sewer area. Sanitary sewers are designed to collect the domestic sewage and industrial wastewater from residential and commercial sewer customers. They also deliver the collected wastewater to the Salmon Creek Wastewater Treatment Plant. These systems are not designed to handle flows from street or roof drainage. Materials and construction methods shall be in conformance with the most current version of the Standard Specifications for Road, Bridge & Municipal Construction as prepared by Washington State Department of Transportation. City-approved Engineering plans, stamped by a qualified engineer licensed in the State of Washington, will be reguired for sewer improvements: If a public sewer main extension is required, or If the City of Battle Ground Engineering Department determines public sewer service requires special approval and inspection. Developing properties must extend utility lines to the site, across the frontage and through the property, to allow connection and provide for future extensions for the development of adjacent parcels consistent with the General Sewer Plan. Proposed sewer main sizes, elevations, alignments and capacities must be designed in accordance with the latest General Sewer Plan or other appropriate master plans as determined by the City staff for overall system development.
    [Show full text]
  • Sewer Design Guide (Revised May, 2015)
    Sewer Design Guide (Revised May, 2015) City of San Diego Public Utilities Department 9192 Topaz Way • San Diego, CA 92123 Tel (858) 292-6300 Fax (858) 292-6310 Sewer Design Guide PREFACE The Sewer Design Guide is a guide for the engineer when planning and designing wastewater facilities and should be used for both public facilities and private facilities which serve multiple lots. This guide summarizes and outlines relevant City policies, applicable codes, and engineering and operational practices and procedures that have been developed in an effort to establish a cost-effective, reliable, and safe wastewater collection system. Also to be considered and used in conjunction with this design guide are all applicable current standard drawings, specifications, codes, laws and industry requirements for the planning and design of wastewater infrastructures. This guide is not intended to be an instructional text and is not a substitute for professional experience, nor is it meant to relieve the design engineer from his/her responsibility to use good engineering judgment. The design engineer shall be responsible for providing a design that, within industry standards, can be safely repaired and maintained, will provide good service and life, and will not create a public nuisance or hazard. Under most conditions, this guide should serve as a minimum standard. However, it is not meant to preclude alternative designs when the standards cannot be met, or when special or emergency conditions warrant, as long as proper authorization is obtained. The Public Utilities Department encourages “partnering”, the creation of an open working relationship between staff in each section/department and our customers, to promote achievement of mutual and beneficial goals.
    [Show full text]
  • SANITARY SEWER EVALUATION of INFLOW/INFILTRATION REDUCTION TECHNIQUES by Geoffrey Trent Vanallen a Thesis Submitted to the Facul
    SANITARY SEWER EVALUATION OF INFLOW/INFILTRATION REDUCTION TECHNIQUES by Geoffrey Trent VanAllen A Thesis Submitted to the Faculty of The College of Engineering and Computer Science in Partial Fulfillment of the Requirements for the Degree of Master of Science Florida Atlantic University Boca Raton, Florida May 2015 Copyright by Geoffrey VanAllen 2015 ii ACKOWLEDGEMENTS I am using this opportunity to express my gratitude to everyone who supported me throughout the course of this project. I am thankful for their aspiring guidance, invaluably constructive criticism and friendly advice during the project work. I am sincerely grateful to them for sharing their truthful and illuminating views on a number of issues related to the project. iv ABSTRACT Author: Trent VanAllen Title: Sanitary Sewer Evaluation of Inflow/Infiltration Reduction Techniques Institution: Florida Atlantic University Thesis Advisor: Dr. Frederick Bloetscher Degree: Masters of Science Year: 2015 Substantial savings in operations can be achieved by reducing the amount of wastewater that must be pumped and treated. Utilities have long dealt with the infiltration and inflow (I and I) issues in their system by televising their pipes and identifying leak points, but this primarily addresses only the infiltration part of “I and I.” Inflow, which creates hydraulic issues during rain events, leads to sanitary sewer overflows and can subject the utility to fines from regulatory agencies. As a result, dealing with the inflow portion of I and I is needed. The goal of this thesis is to differentiate inflow and infiltration from baseflow and to determine the effectiveness of different methods used to reduce inflow and infiltration in sanitary sewer lines.
    [Show full text]
  • Federal Facility Technical Standards
    FEDERAL FACILITY TECHNICAL STANDARDS TABLE OF CONTENTS Table of Contents .......................................................................................................................... 1 List of Figures 4 List of Tables 4 SECTION 1 INTRODUCTION AND PURPOSE ............................................................... 1-1 1.1 INTRODUCTION ......................................................................................................... 1-1 1.2 PURPOSE ..................................................................................................................... 1-1 1.3 SUMMARY OF THE FEDERAL FACILITY TECHNICAL STANDARDS ............ 1-1 1.4 TECHNICAL STANDARDS REQUIREMENTS, SUBMITTALS & SCHEDULES 1-3 SECTION 2 DEFINITION OF TERMS .............................................................................. 2-1 SECTION 3 PRE-REHAB FLOW, PRESSURE, RAINFALL (FPR) MONITORING AND DATA COLLECTION .................................................................................................... 3-1 3.1 REVIEW OF EXISTING INFORMATION ................................................................. 3-1 3.1.1 Sanitary Sewer Overflow Characterization ........................................................... 3-1 3.1.2 Prior Studies/Planned Construction ....................................................................... 3-2 3.1.3 Engineering and Operations ................................................................................... 3-3 3.1.4 Other Performance Documentation ......................................................................
    [Show full text]
  • Modelling Concrete Deterioration in Sewers Using Theory and Field
    Cement and Concrete Research 77 (2015) 82–96 Contents lists available at ScienceDirect Cement and Concrete Research journal homepage: http://ees.elsevier.com/CEMCON/default.asp Modelling concrete deterioration in sewers using theory and field observations T. Wells ⁎,R.E.Melchers Centre for Infrastructure Performance and Reliability, School of Engineering, The University of Newcastle, Callaghan, New South Wales 2308, Australia article info abstract Article history: Samples of new and 70 year old pre-corroded OPC concrete were exposed for up to 48 months in 6 sewers Received 24 February 2015 throughout Australia. Corrosion losses at each site followed the bi-linear trend originally proposed by Wells Accepted 13 July 2015 and Melchers [1]. During an initial phase (lasting b2 years) negligible loss of material occurs however once the Available online 31 July 2015 surface pH = 6 losses commence and accumulate linearly at a rate that is likely to remain constant over time. Cor- rosion rates were found to be sensitive to humidity but insensitive to concrete alkalinity. A first pass model which Keywords: Reaction (A) predicts the rate of concrete sewer pipe corrosion from a knowledge of local average sewer gas temperature, hu- Corrosion (C) midity and H2S concentrations was also developed. The equation predictions were in good agreement with rates Concrete (E) determined from field observation and historical data. Modelling (E) © 2015 Published by Elsevier Ltd. 1. Introduction part of the sewer submerged in wastewater. The sulphate reducing bac- teria (SRB) present in the biofilms convert the sulphates in the waste- Long-term deterioration is a major challenge for the continued reli- water to H2S.
    [Show full text]