Electronic Correlation Effects in Transition Metal Systems: from Bulk Crystals to Nanostructures

Total Page:16

File Type:pdf, Size:1020Kb

Electronic Correlation Effects in Transition Metal Systems: from Bulk Crystals to Nanostructures Electronic Correlation Effects in Transition Metal Systems: From Bulk Crystals to Nanostructures Dissertation zur Erlangung des Doktorgrades des Fachbereichs Physik der Universität Hamburg vorgelegt von Michael Karolak aus Kutno Hamburg 2013 Gutachter der Dissertation Prof. Dr. Alexander Lichtenstein Dr. Frank Lechermann Gutachter der Disputation Prof. Dr. Alexander Lichtenstein Prof. Dr. Giorgio Sangiovanni Datum der Disputation 22.11.2013 Vorsitzender des Prüfungsausschusses Dr. habil. Michael Martins Vorsitzender des Promotionsausschusses Prof. Dr. Peter Hauschildt Dekan des Fachbereichs Physik Prof. Dr. Heinrich Graener iii I suppose it is tempting, if the only tool you have is a hammer, to treat everything as if it were a nail. Abraham H. Maslow [279] iv v Abstract Condensed matter systems containing transition metals, be it single molecules or crys- talline solids, exhibit many complex physical phenomena that warrant the constant in- terest of the scientific community. Their complex behavior emerges as a feature of the strongly correlated electrons occupying the partially filled d or f shells. From the tech- nological point of view such systems are of interest, because they often show a complex phase diagram and, furthermore, their properties can be controlled by external handles, like temperature, pressure etc. Such systems pose a challenge to theoretical physics, since the multitude of phases exhibited by them indicates many competing degrees of freedom at work. The present thesis is concerned with a successful general methodology that can be applied for the realistic description and in some cases even prediction of the properties of systems containing strongly correlated electrons. The framework that we refer to as DFT++ is a general scheme to combine realistic density functional theory calculations with model Hamiltonian approaches to produce a unified ab initio description. In the first part of this work we are concerned with the development of the general DFT++ methodology within the formalism of the projector augmented-wave method. We outline the general structure of the approach and show the specifics of an implementation in- volving only an Anderson impurity model and also self-consistent dynamical mean-field theory. Certain intricacies occurring at the interface between density functional and model Hamiltonian methods are also discussed in detail, with special focus on the so-called dou- ble counting of interaction terms. Subsequently, we apply the DFT++ method to different systems ranging from bulk crys- tals to single atoms adsorbed on a surface. We begin by examining the spin state transi- tions in LaCoO3, which have been under debate for over 50 years. We find corroborating evidence for one of the two major scenarios discussed in this context, namely the low-spin to high-spin transition, not involving the so-called intermediate-spin state. As a second application we study the impact of dynamical correlations on the electronic structure of different transition metal-benzene sandwich molecules trapped between the tips of copper nanowires as examples of molecular magnetic devices. We find that, de- pending on the chemical valence of the transition metal center and in particular the ge- ometry of the molecule the unusual orbital Kondo effect can be observed and, to some extend, controlled. Finally, we consider the series of isolated manganese, iron, cobalt and nickel atoms ad- sorbed on a silver surface and explain their excitation spectra. We report on valence electron photoemission experiments revealing the complex evolution of the electronic spectra through this series: we find a monotonous decrease in the splitting of higher en- ergy features and a non-monotonous variation of low energy spectral weight. By means of calculations using the DFT++ formalism we explain the photoemission results and show that both observations can be traced back to Hund’s exchange. vi vii Zusammenfassung Festkörpersysteme, die Übergangsmetalle entahlten, seien es einzelne Moleküle oder kristalline Festkörper, weisen viele komplexe physikalische Phänomene auf, die das kon- stante Interesse an Ihnen rechtfertigen. Das komplexe Verhalten dieser Systeme kann auf die stark korrelierten Elektronen in den teilweise gefüllten d oder f-Schalen zurückge- führt werden. Solche Systeme stellen eine Herausforderung für die Theorie dar, da die Vielzahl der möglichen Phasen auf viele konkurrierende Freiheitsgrade hinweist. Die vorliegende Arbeit beschäftigt sich mit einer allgemeinen Methode, die für die realistis- che Beschreibung und Vorhersage der Eigenschaften von Systemen mit stark korrelierten Elektronen angewendet werden kann. Die Methodik, die wir als DFT++ bezeichnen, stellt eine allgemeine Vorschrift zur kombination realistischer Dichtefunktional-Rechnungen mit Modellansätzen dar, um eine ab initio Beschreibung zu realisieren. Im ersten Teil dieser Arbeit sind wir mit der Entwicklung der allgemeinen DFT++ Methodik, innerhalb des Formalismus der Projektor Augmentierten Ebenen Wellen- Methode, befasst. Wir skizzieren die Struktur des Ansatzes und zeigen die Besonder- heiten einer Implementierung, die ein Störstellenmodell oder auch eine selbstkonsistente dynamische Molekularfeldtheorie beinhaltet. Bestimmte Feinheiten an der Schnittstelle zwischen der Dichtefunktionaltheorie und dem Modellansatz werden ebenfalls aus- führlich diskutiert. Anschließend wenden wir obige Methode auf verschiedene Systeme an, die sowohl kristalline Festkörper, als auch einzelne Atome auf einer Oberfläche beinhalten. Wir beginnen mit der Untersuchung der Spin-Übergänge in LaCoO3. Wir finden Hinweise für eines der beiden Szenarien, die in diesem Zusammenhang diskutiert werden, nämlich den “low-spin” zu “high-spin”- Übergang, der nicht den sogenannten “intermediate-spin”- Zustand beinhaltet. Als zweite Anwendung untersuchen wir die Auswirkungen der dynamischen Korrela- tionen auf die elektronische Struktur von verschiedenen Übergangsmetall-Benzol Sand- wich Molekülen zwischen den Spitzen eines Kupfernanodrahtes als Beispiele für eine molekulare magnetische Nanostruktur. Wir finden, dass, beeinflusst durch die chemische Valenz des Übergangsmetallzentrums und insbesondere die Geometrie des Moleküls, der ungewöhnliche orbitale Kondoeffekt beobachtet und kontrolliert werden kann. Schließlich betrachten wir isolierte Atome von Mangan, Eisen, Kobalt und Nickel auf einer Silberoberfläche und erklären ihre Anregungsspektren. Wir berichten über Photoe- missionsexperimente, die die komplexe Entwicklung der elektronischen Spektren zeigen: wir finden eine monotone Abnahme der Aufspaltung von Charakteristika bei höheren Energien und eine nicht-monotone Variation des spektralen Gewichts bei niedrigen An- regungsenergien. Durch Berechnungen mit Hilfe des DFT++ Formalismus erklären wir die Messungen und zeigen, dass das beobachtete Verhalten zum Hundschen Austausch zurückverfolgt werden kann. viii Contents Introduction 1 1 Theory and Methodology 6 1.1 Ab initio theory of condensed matter systems . 6 1.2 Density Functional Theory . 8 1.2.1 Kohn-Sham Formalism . 12 1.2.2 Exchange and Correlation. 16 1.3 Implementations of DFT . 21 1.3.1 Gaussian Basis Sets . 22 1.3.2 Plane-Wave basis set . 24 1.3.3 The Projector Augmented-Wave Method . 25 1.4 Model Hamiltonians and Dynamical mean-field theory. 30 1.4.1 Green functions and Coherent State Path Integrals . 30 1.4.2 Hubbard Model . 38 1.4.3 Anderson Impurity Model . 41 1.4.4 Dynamical Mean-Field Theory . 45 1.5 DFT++ Framework. 50 1.5.1 General idea of DFT++ . 51 1.5.2 The Coulomb interaction tensor . 53 1.5.3 DFT+U . 59 1.5.4 DFT+DMFT . 62 1.5.5 DFT+Σ for equilibrium and coherent transport. 67 1.6 Impurity Solvers . 70 1.6.1 Hirsch-Fye Quantum Monte Carlo Method . 71 1.6.2 Continuous-Time Quantum Monte Carlo . 75 1.6.3 Non-Crossing / One-Crossing Approximation . 79 1.6.4 Exact Diagonalization and Lanczos method . 83 1.7 Analytic Continuation . 87 x Contents 2 DFT++ in the PAW framework 92 2.1 Wannier Functions . 93 2.2 Implementation within PAW . 95 2.2.1 Wannier Hamiltonian and tight-binding quantities . 101 2.2.2 Comparison between projection formalism and formalism relying explicitly on the Wannier Hamiltonian . 101 2.2.3 Charge Self-consistency . 104 2.2.4 Transformations of the basis . 105 2.2.5 DFT++ for inequivalent atoms and layered systems . 107 2.2.6 DFT++ for vacuum states . 109 2.3 Benchmark: Cubic Perovskite SrVO3 ..................................110 2.3.1 Tight-binding discussion of the three band case . 111 2.3.2 Comparison of different PLO methods . 112 2.3.3 DFT+DMFT calculations . 114 2.4 Charge Self-consistency: The Volume of paramagnetic bcc Iron. .117 2.5 DFT+Σ for vacuum states: Co on Cu(111) . 120 2.6 Summary and Conclusions . 122 3 Double Counting in DFT+DMFT 124 3.1 NiO — a charge transfer insulator . 125 3.2 Methodology . 127 3.3 Double counting approaches . 129 3.4 Results . 133 3.5 Summary and Conclusions . 140 4 Spin State Transition in LaCoO3 142 4.1 Spin state Transitions in the ionic Picture . 146 4.2 DFT and Projections . 149 4.3 DFT+DMFT. .153 4.4 Summary and Conclusions . 159 5 Correlation Effects in Transition Metal Benzene Molecules 160 5.1 The Kondo effect in metals and nanoscopic devices . 161 5.2 Transition Metal Benzene Complexes . 167 5.3 Theoretical Setup . 170 5.4 General Observations . 173 5.5 Electronic structure on the DFT level. 176 5.6 Discussion of LDA Hybridization Functions . 180 5.7 DFT+Σ results. .182 5.7.1 Orbital Kondo Effect in CoBz2 and VBz2 . 182 5.7.2 ScBz2, TiBz2 and NiBz2 .......................................188 Contents xi 5.8 Spin and magnetism in DFT and DFT++ . 190 5.9 Summary and Conclusions . 193 6 Excitation spectra of transition metal atoms on the Ag (100) surface 195 6.1 Experiment . 196 6.2 Theoretical setup . ..
Recommended publications
  • Correlation.Pdf
    INTRODUCTION TO THE ELECTRONIC CORRELATION PROBLEM PAUL E.S. WORMER Institute of Theoretical Chemistry, University of Nijmegen, Toernooiveld, 6525 ED Nijmegen, The Netherlands Contents 1 Introduction 2 2 Rayleigh-SchrÄodinger perturbation theory 4 3 M¿ller-Plesset perturbation theory 7 4 Diagrammatic perturbation theory 9 5 Unlinked clusters 14 6 Convergence of MP perturbation theory 17 7 Second quantization 18 8 Coupled cluster Ansatz 21 9 Coupled cluster equations 26 9.1 Exact CC equations . 26 9.2 The CCD equations . 30 9.3 CC theory versus MP theory . 32 9.4 CCSD(T) . 33 A Hartree-Fock, Slater-Condon, Brillouin 34 B Exponential structure of the wavefunction 37 C Bibliography 40 1 1 Introduction These are notes for a six hour lecture series on the electronic correlation problem, given by the author at a Dutch national winterschool in 1999. The main purpose of this course was to give some theoretical background on the M¿ller-Plesset and coupled cluster methods. Both computational methods are available in many quantum chemical \black box" programs. The audi- ence consisted of graduate students, mostly with an undergraduate chemistry education and doing research in theoretical chemistry. A basic knowledge of quantum mechanics and quantum chemistry is pre- supposed. In particular a knowledge of Slater determinants, Slater-Condon rules and Hartree-Fock theory is a prerequisite of understanding the following notes. In Appendix A this theory is reviewed briefly. Because of time limitations hardly any proofs are given, the theory is sketchily outlined. No attempt is made to integrate out the spin, the theory is formulated in terms of spin-orbitals only.
    [Show full text]
  • Hubbard-Like Hamiltonians for Interacting Electrons in S, P and D Orbitals
    Hubbard-like Hamiltonians for interacting electrons in s, p and d orbitals M. E. A. Coury∗ Imperial College London, London SW7 2AZ, United Kingdom and CCFE, Culham Science Centre, Abingdon, Oxfordshire OX14 3DB, United Kingdom S. L. Dudarev CCFE, Culham Science Centre, Abingdon, Oxfordshire OX14 3DB, United Kingdom W. M. C. Foulkes Imperial College London, London SW7 2AZ, United Kingdom A. P. Horsfield Imperial College London, London SW7 2AZ, United Kingdom Pui-Wai Ma CCFE, Culham Science Centre, Abingdon, Oxfordshire OX14 3DB, United Kingdom J. S. Spencer Imperial College London, London SW7 2AZ, United Kingdom Hubbard-like Hamiltonians are widely used to describe on-site Coulomb interactions in magnetic and strongly-correlated solids, but there is much confusion in the literature about the form these Hamiltonians should take for shells of p and d orbitals. This paper derives the most general s, p and d orbital Hubbard-like Hamiltonians consistent with the relevant symmetries, and presents them in ways convenient for practical calculations. We use the full configuration interaction method to study p and d orbital dimers and compare results obtained using the correct Hamiltonian and the collinear and vector Stoner Hamiltonians. The Stoner Hamiltonians can fail to describe properly the nature of the ground state, the time evolution of excited states, and the electronic heat capacity. PACS numbers: 31.15.aq, 31.15.xh, 31.10.+z I. INTRODUCTION the Hamiltonians is problematic. Indeed, according to Dagotto2, \the discussions in the current literature re- garding this issue are somewhat confusing". The starting point for any electronic structure calculation The Hubbard Hamiltonian9 is both the simplest and best is the Hamiltonian that describes the dynamics of the known Hamiltonian of the form we are considering, and electrons.
    [Show full text]
  • Site-Selective Electronic Correlation in Α-Plutonium Metal
    ARTICLE Received 18 Jun 2013 | Accepted 19 Sep 2013 | Published 18 Oct 2013 DOI: 10.1038/ncomms3644 Site-selective electronic correlation in a-plutonium metal Jian-Xin Zhu1, R.C. Albers1, K. Haule2, G. Kotliar2 & J.M. Wills1 An understanding of the phase diagram of elemental plutonium (Pu) must include both, the effects of the strong directional bonding and the high density of states of the Pu 5f electrons, as well as how that bonding weakens under the influence of strong electronic correlations. Here we present electronic-structure calculations of the full 16-atom per unit cell a-phase structure within the framework of density functional theory together with dynamical mean- field theory. Our calculations demonstrate that Pu atoms sitting on different sites within the a-Pu crystal structure have a strongly varying site dependence of the localization– delocalization correlation effects of their 5f electrons and a corresponding effect on the bonding and electronic properties of this complicated metal. In short, a-Pu has the capacity to simultaneously have multiple degrees of electron localization/delocalization of Pu 5f electrons within a pure single-element material. 1 Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA. 2 Department of Physics and Astronomy, Rutgers University, Piscataway, New Jersey 08854, USA. Correspondence and requests for materials should be addressed to J.-X.Z. (email: [email protected]). NATURE COMMUNICATIONS | 4:2644 | DOI: 10.1038/ncomms3644 | www.nature.com/naturecommunications 1 & 2013 Macmillan Publishers Limited. All rights reserved. ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms3644 ure plutonium has long been considered to be one of the strongly localized.
    [Show full text]
  • The V State of Ethylene: Valence Bond Theory Takes up the Challenge Wei Wu, Huaiyu Zhang, Benoît Braïda, Sason Shaik, Philippe C
    The V state of ethylene: valence bond theory takes up the challenge Wei Wu, Huaiyu Zhang, Benoît Braïda, Sason Shaik, Philippe C. Hiberty To cite this version: Wei Wu, Huaiyu Zhang, Benoît Braïda, Sason Shaik, Philippe C. Hiberty. The V state of ethylene: valence bond theory takes up the challenge. Theoretical Chemistry Accounts: Theory, Computation, and Modeling, Springer Verlag, 2014, 133 (3), 10.1007/s00214-013-1441-x. hal-01627701 HAL Id: hal-01627701 https://hal.archives-ouvertes.fr/hal-01627701 Submitted on 21 Nov 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. The V state of ethylene: valence bond theory takes up the challenge Wei Wu • Huaiyu Zhang • Benoıˆt Braı¨da • Sason Shaik • Philippe C. Hiberty Abstract The ground state and first singlet excited state with the same compact VB wave function. Furthermore, of ethylene, so-called N and V states, respectively, are the measure of the spatial extension of the V state wave 2 studied by means of modern valence bond methods. It is function, 19.14 a0, is in the range of accepted values found that extremely compact wave functions, made of obtained by large-scale state-of-the-art molecular orbital- three VB structures for the N state and four structures for based methods.
    [Show full text]
  • Arxiv:1705.00238V3 [Physics.Chem-Ph] 19 May 2017
    Towards a formal definition of static and dynamic electronic correlations Carlos L. Benavides-Riveros,1, ∗ Nektarios N. Lathiotakis,2 and Miguel A. L. Marques1 1Institut für Physik, Martin-Luther-Universität Halle-Wittenberg, 06120 Halle (Saale), Germany 2Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, GR-11635 Athens, Greece Some of the most spectacular failures of density-functional and Hartree-Fock theories are related to an incorrect description of the so-called static electron correlation. Motivated by recent progress on the N-representability problem of the one-body density matrix for pure states, we propose a way to quantify the static contribution to the electronic correlation. By studying several molecular systems we show that our proposal correlates well with our intuition of static and dynamic electron correlation. Our results bring out the paramount importance of the occupancy of the highest occupied natural spin-orbital in such quantification. PACS numbers: 31.15.V-, 31.15.xr, 31.70.-f I. INTRODUCTION (the orthogonally twisted ethylene C2H4 and the methy- lene CH2, for example) and bond stretching in H2O, C2 The concept of correlation and more precisely the idea and N2, are well described by such a method [6,7]. of correlation energy are central in quantum chemistry. In recent years a considerable effort has been devoted Indeed, the electron-correlation problem (or how the dy- to characterize the correlation of a quantum system in namics of each electron is affected by the others) is terms of more meaningful quantities, such as the Slater perhaps the single largest source of error in quantum- rank for two-electron systems [8,9], the entanglement chemical computations [1].
    [Show full text]
  • Periodic Space Partitioners (PSP) and Their Relations to Crystal Chemistry
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by RERO DOC Digital Library 692 Z. Kristallogr. 226 (2011) 692–710 / DOI 10.1524/zkri.2011.1429 # by Oldenbourg Wissenschaftsverlag, Mu¨nchen Periodic Space Partitioners (PSP) and their relations to crystal chemistry Reinhard Nesper and Yuri Grin* In memoriam Professor Dr. Dr. h.c. mult. Hans Georg von Schnering Received June 27, 2011; accepted July 7, 2011 Abstract. We are looking back on 30 years development ture constant approaches more and more the value 1/137, of periodic space partitioners (PSP) and their relations to the denominator being 33rd prime number. To solve this their periodic relatives, i.e. minimal surfaces (PMS), zero question was the last great goal of Wolfgang Pauli who potential surfaces (P0PS), nodal surfaces (PNS), and expo- was not only a great physicist and mathematician but also nential scale surfaces. Hans-Georg von Schnering and Sten stressed the importance of intuitive solutions to physical Andersson have pioneered this field especially in terms of problems, amongst others by dreaming [2]. applications to crystal chemistry. This review relates the A mathematical treatment of minimal surfaces goes early attempts to approximate periodic minimal surfaces back to Lagrange’s work in the 18th century which re- which established a systematic classification of all PSP in sulted in the Euler-Lagrange equation [3]. In the 19th cen- terms space group symmetry and consecutive applications tury the experiments of J. Plateau contributed much to in a variety of different fields. A consistent nomenclature mathematical research on such objects and led to the for- is outlined and different methods for deriving PSP are de- mulations of Plateau’s problem which turned out to be un- scribed.
    [Show full text]
  • Fabio Caruso Caruso
    CharacterizationSelf-consistent of ironGW oxideapproach thin for films the unifiedas a support description for catalytically of ground active and excited statesnanoparticles of finite systems Wednesday, June 26, 2013 DissertationDissertation zur Erlangungzur Erlangung des Grades des Grades DoktorDoktor der Naturwissenschaften der Naturwissenschaften (Dr. rer. (Dr. nat.) rer. nat.) eingereichteingereicht im Fachbereich im Fachbereich Physik Physik der Freieder UniversitFreie Universitat¨ Berlinat¨ Berlin Vorgelegtvorgelegt in Juli in 2013 Juli von 2013 von FabioFabio Caruso Caruso Diese Arbeit wurde von Juni 2009 bis Juni 2013 am Fritz-Haber-Institut der Max-Planck- Gesellschaft in der Abteilung Theorie unter Anleitung von Prof. Dr. Matthias Scheffler angefertigt. 1. Gutachter: Prof. Dr. Matthias Scheffler 2. Gutachter: Prof. Dr. Felix von Oppen Tag der Disputation: 21. Oktober 2013 Hierdurch versichere ich, dass ich in meiner Dissertation alle Hilfsmittel und Hilfen angegeben habe und versichere gleichfalls auf dieser Grundlage die Arbeit selbststandig¨ verfasst zu haben. Die Arbeit habe ich nicht schon einmal in einem fruheren¨ Promotionsverfahren verwen- det und ist nicht als ungenugend¨ beurteilt worden. Berlin, 31. Juli 2013 per Maria Rosa, Alberto, e Silvia ABSTRACT Ab initio methods provide useful tools for the prediction and characterization of material properties, as they allow to obtain information complementary to purely experimental investigations. The GW approach to many-body perturbation theory (MBPT) has re- cently emerged as the method of choice for the evaluation of single-particle excitations in molecules and extended systems. Its application to the characterization of the electronic properties of technologically relevant materials – such as, e.g., dyes for photovoltaic applications or transparent conducting oxides – is steadily increasing over the last years.
    [Show full text]
  • Coupled Cluster Theory 27 3.1Introduction
    An Alternative Algebraic Framework for the Simplication of Coupled Cluster Type Expectation Values Inaugural-Dissertation zur Erlangung des Doktorgrades der Mathematisch-Naturwissenschaftlichen Fakultät der Universität zu Köln vorgelegt von Daniel Pape aus Bensberg Köln 2013 Berichterstatter: Prof. Dr. Michael Dolg Priv.-Doz. Dr. Michael Hanrath Tag der mündlichen Prüfung: 17. Oktober 2013 »’Drink up.’ He added, perfectly factually: ’The world’s about to end.’ [. ] ’This must be Thursday,’ said Arthur to himself, sinking low over his beer, ’I never could get the hang of Thursdays.’« Dialog between Ford Prefect and Arthur Dent, in ’The Hitchhikers Guide to the Galaxy’ by Douglas Adams. Meinen Eltern Contents 1 Introduction 11 1.1HistoricalNotes................................. 11 1.1.1 TheCoupledPairManyElectronTheory............... 11 1.2StateoftheArtinCoupledClusterTheory................. 11 1.2.1 TruncatedVersionsoftheTheory................... 12 1.2.2 Multi Reference Generalizations of the Theory . ........... 12 1.3ScopeofThisWork............................... 13 1.3.1 Motivation................................ 13 1.3.2 TheoreticalAspects........................... 15 1.3.3 ImplementationalAspects....................... 15 1.4TechnicalandNotationalRemarks...................... 15 2 Introductory Theory 17 2.1TheElectronicStructureProblem....................... 18 2.1.1 TheSchrödingerEquation....................... 18 2.1.2 TheElectronicHamiltonian...................... 18 2.1.3 ElectronCorrelation.......................... 19 2.2 Wavefunction
    [Show full text]
  • Approaching Exact Quantum Chemistry by Stochastic Wave Function Sampling and Deterministic Coupled-Cluster Computations
    APPROACHING EXACT QUANTUM CHEMISTRY BY STOCHASTIC WAVE FUNCTION SAMPLING AND DETERMINISTIC COUPLED-CLUSTER COMPUTATIONS By Jorge Emiliano Deustua Stahr A DISSERTATION Submitted to Michigan State University in partial fulfillment of the requirements for the degree of Chemistry – Doctor of Philosophy 2020 ABSTRACT APPROACHING EXACT QUANTUM CHEMISTRY BY STOCHASTIC WAVE FUNCTION SAMPLING AND DETERMINISTIC COUPLED-CLUSTER COMPUTATIONS By Jorge Emiliano Deustua Stahr One of the main goals of quantum chemistry is the accurate description of ground- and excited-state energetics of increasingly complex polyatomic systems, especially when non-equilibrium structures and systems with stronger electron correlations are exam- ined. Size extensive methods based on coupled-cluster (CC) theory and their extensions to excited electronic states via the equation-of-motion (EOM) framework have become the de facto standards for addressing this goal. In the vast majority of chemistry prob- lems, the traditional single-reference CC hierarchy, including CCSD, CCSDT, CCSDTQ, etc., and its EOM counterpart provide the fastest convergence toward the exact, full configuration interaction (FCI), limit, allowing one to capture the leading many-electron correlation effects, in a systematic manner, by employing particle-hole excitations from a single reference determinant. Unfortunately, computational costs associated with the incorporation of higher-than-two-body components of the cluster and excitation opera- tors of CC and EOMCC, which are required to achieve a fully
    [Show full text]
  • Quantum Orbital-Optimized Unitary Coupled Cluster Methods in the Strongly Correlated Regime: Can Quantum Algorithms Outperform Their Classical Equivalents? Igor O
    Quantum Orbital-Optimized Unitary Coupled Cluster Methods in the Strongly Correlated Regime: Can Quantum Algorithms Outperform their Classical Equivalents? Igor O. Sokolov,1, a) Panagiotis Kl. Barkoutsos,1 Pauline J. Ollitrault,1, 2 Donny Greenberg,3 Julia Rice,4 Marco Pistoia,3, 5 and Ivano Tavernelli1, b) 1)IBM Research GmbH, Zurich Research Laboratory, S¨aumerstrasse 4, 8803 R¨uschlikon, Switzerland 2)ETH Z¨urich,Laboratory of Physical Chemistry, Vladimir-Prelog-Weg 2, 8093 Z¨urich, Switzerland 3)IBM Thomas J. Watson Research Center, Yorktown Heights, New York 10598, USA 4)IBM Almaden Research Center, San Jose, California 95120, USA 5)JPMorgan Chase & Co, New York, New York 10172, USA (Dated: 7 October 2020) The Coupled Cluster (CC) method is used to compute the electronic correlation energy in atoms and molecules and often leads to highly accurate results. However, due to its single-reference nature, standard CC in its projected form fails to describe quantum states characterized by strong electronic correlations and multi- reference projective methods become necessary. On the other hand, quantum algorithms for the solution of many-electron problems have also emerged recently. The quantum UCC with singles and doubles (q-UCCSD) is a popular wavefunction Ansatz for the Variational Quantum Eigensolver (VQE) algorithm. The variational nature of this approach can lead to significant advantages compared to its classical equivalent in the projected form, in particular for the description of strong electronic correlation. However, due to the large number of gate operations required in q-UCCSD, approximations need to be introduced in order to make this approach implementable in a state-of-the-art quantum computer.
    [Show full text]
  • Molecular Disorder and Translation/Rotation Coupling in the Plastic Crystal Phase of Hybrid Perovskites
    Nanoscale Accepted Manuscript This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication. Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available. You can find more information about Accepted Manuscripts in the Information for Authors. Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal’s standard Terms & Conditions and the Ethical guidelines still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains. www.rsc.org/nanoscale Page 1 of 47 Nanoscale Molecular disorder and translation/rotation coupling in the plastic crystal phase of hybrid perovskites J. Even 1*, M. Carignano 2 & C. Katan 3 1 Fonctions Optiques pour les Technologies de l'Information, FOTON UMR 6082, CNRS, INSA de Rennes, 35708 Rennes, France 2 Qatar Environment and Energy Research Institute, Hamad Bin Khalifa University, Doha, Qatar 3 Institut des Sciences Chimiques de Rennes, ISCR UMR 6226, CNRS, Université de Rennes 1, 35042 Rennes, France Manuscript * Correspondence to: [email protected] Accepted Nanoscale 1 Nanoscale Page 2 of 47 Abstract: The complexity of hybrid organic perovskites calls for an innovative theoretical view that combines usually disconnected concepts in order to achieve a comprehensive picture: i) The intended applications of this class of materials are currently in the realm of conventional semiconductors, which reveal the key desired properties for the design of efficient devices.
    [Show full text]
  • Orbital-Dependent Exchange-Correlation Functionals in Density-Functional Theory Realized by the FLAPW Method
    Orbital-dependent exchange-correlation functionals in density-functional theory realized by the FLAPW method Von der Fakultät für Mathematik, Informatik und Naturwissenschaen der RWTH Aachen University zur Erlangung des akademischen Grades eines Doktors der Naturwissenschaen genehmigte Dissertation vorgelegt von Dipl.-Phys. Markus Betzinger aus Fröndenberg Berichter: Prof. Dr. rer. nat. Stefan Blügel Prof. Dr. rer. nat. Andreas Görling Prof. Dr. rer. nat. Carsten Honerkamp Tag der mündlichen Prüfung: Ô¥.Ôò.òýÔÔ Diese Dissertation ist auf den Internetseiten der Hochschulbibliothek online verfügbar. is document was typeset with LATEX. Figures were created using Gnuplot, InkScape, and VESTA. Das Unverständlichste am Universum ist im Grunde, dass wir es verstehen können. Albert Einstein Abstract In this thesis, we extended the applicability of the full-potential linearized augmented-plane- wave (FLAPW) method, one of the most precise, versatile and generally applicable elec- tronic structure methods for solids working within the framework of density-functional the- ory (DFT), to orbital-dependent functionals for the exchange-correlation (xc) energy. In con- trast to the commonly applied local-density approximation (LDA) and generalized gradient approximation (GGA) for the xc energy, orbital-dependent functionals depend directly on the Kohn-Sham (KS) orbitals and only indirectly on the density. Two dierent schemes that deal with orbital-dependent functionals, the KS and the gen- eralized Kohn-Sham (gKS) formalism, have been realized. While the KS scheme requires a local multiplicative xc potential, the gKS scheme allows for a non-local potential in the one- particle Schrödinger equations. Hybrid functionals, combining some amount of the orbital-dependent exact exchange en- ergy with local or semi-local functionals of the density, are implemented within the gKS scheme.
    [Show full text]