Chapter 8 the Projectile Point Sequences in the Puget Sound Region
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Monitoring Riverine Thermal Regimes on Stream Networks Insights Into
Ecological Indicators 84 (2018) 11–26 Contents lists available at ScienceDirect Ecological Indicators journal homepage: www.elsevier.com/locate/ecolind Original Articles Monitoring riverine thermal regimes on stream networks: Insights into MARK spatial sampling designs from the Snoqualmie River, WA ⁎ Amy Marshaa,b, , E. Ashley Steelb, Aimee H. Fullertonc, Colin Sowderd,b a School of Environmental and Forest Sciences, University of Washington, Seattle, WA, 98195 USA b Statistics, PNW Research Station, USDA Forest Service, 400 N 34th Street, Suite 201, Seattle, WA, 98103, USA c Northwest Fisheries Science Center, NOAA Fisheries Service,2725 Montlake Blvd. East, Seattle, WA, 98112 USA d Department of Statistics, University of Washington, Seattle, WA, 98195 USA ARTICLE INFO ABSTRACT Keywords: Understanding, predicting, and managing the spatiotemporal complexity of stream thermal regimes requires Water temperature monitoring strategies designed specifically to make inference about spatiotemporal variability on the whole SSNM stream network. Moreover, monitoring can be tailored to capture particular facets of this complex thermal Streams landscape that may be important indicators for species and life stages of management concern. We applied Rivers spatial stream network models (SSNMs) to an empirical dataset of water temperature from the Snoqualmie River Spatial autocorrelation watershed, WA, and use results to provide guidance with respect to necessary sample size, location of new sites, Monitoring and selection of a modeling approach. As expected, increasing the number of monitoring stations improved both predictive precision and the ability to estimate covariates of stream temperature; however, even relatively small numbers of monitoring stations, n = 20, did an adequate job when well-distributed and when used to build models with only a few covariates. -
A Good Turn for the Tolt
A GGoodood TurnTurn forfor thethe TTolt:olt: LLeveeevee SSetback/Salmonetback/Salmon HHabitatabitat PProjectroject Frequently Asked Questions Question: Why restore salmon habitat? Answer: Salmon are an enduring symbol of the Pacifi c Northwest, providing direct and indirect benefi ts to our culture, economy, and environment. Healthy salmon populations mean that our region is a healthy place to live and work. Salmon have been integral to Native American culture for centuries, and federal treaties assure the tribes continued access to healthy salmon stocks. The federal government lists Puget Sound Chinook salmon, as well as bull trout, as threatened under the Endangered Species Act (ESA). This means they are likely to become endangered, or at a high risk of extinction, if steps to protect them are not taken soon. Science indicates that land uses affecting the salmon’s freshwater habitat are among the primary causes for the species’ decline. Although the federal government administers the ESA, everyone shares the responsibility to protect these animals, because everyone depends on healthy land and water resources. Local governments throughout Puget Sound are implementing projects to protect and restore salmon habitat. Question: Can the Tolt River really be restored? Answer: To prevent the river from fl ooding adjacent lands, levees were constructed along the lower Tolt in the 1940s. While partially successful, the levees dramatically changed the river’s behavior and fi sh habitat. In a more natural condition, the river is connected to its fl oodplain, has more room to move back and forth, and creates meander bends and split channels. A natural river also captures large pieces of wood from trees along the bank. -
1. Puget Sound Rivers and Salmon Recovery
1. Puget Sound Rivers and Salmon Recovery David R. Montgomery, Derek B. Booth, and Susan Bolton A symposium on Restoration of Puget Sound Rivers at the spring 2000 meeting of the Society for Ecological Restoration’s Northwest chapter pre- sented an opportunity to synthesize regional expertise on river and stream restoration into a single volume. Largely drawn from presentations at the conference, the chapters of this book span a wide range of backgrounds and interests, including public policy, riparian forestry, stream ecology, hydrol- ogy, geomorphology, geology, and civil engineering. Chapters of the book proceed from geological and geomorphological controls on river and stream characteristics and dynamics, to the biological aspects of river systems in the region, to chapters that address social constraints and the application of flu- vial geomorphology, civil engineering, riparian ecology, and aquatic ecol- ogy to regional river restoration projects and programs. While we recognize that the material presented herein could not be comprehensive given the broad scope of the subject, these chapters have been selected to provide a com- pilation of state-of-the-art considerations and approaches for developing river restoration programs. The recent listing of various runs and stocks of Pacific salmon under the Endangered Species Act (ESA) has focused national attention on the condi- tion of rivers and streams of the Pacific Northwest (PNW). In the Puget Sound region, recent ESA listings triggered statewide efforts to improve channel habitat involving ongoing expenditure of many millions of dollars annually and resulted in preparation of a “Statewide Strategy to Recover Salmon” by the Governor’s Salmon Recovery Office (GSRO 1999). -
OFR 2003-23, Geologic Map of Squaxin Island 7.5-Minute
WASHINGTON DIVISION OF GEOLOGY AND EARTH RESOURCES OPEN FILE REPORT 2003-23 Division of Geology and Earth Resources Ron Teissere - State Geologist Qp Qp Qp Qp Geologic Map of the Squaxin Island 7.5-minute Quadrangle, Qb Qgt Mason and Thurston Counties, Washington Qgt Qgt Qp Qgt Qp by Robert L. Logan, Michael Polenz, Timothy J. Walsh, and Henry W. Schasse Qp Qp Qp Qp 2003 Qp Qp Qp Qp Qp Qgt Qgof Qls INTRODUCTION with Possession glacial outwash deposits. Once Possession ice no deep troughs with sandy sediments characterized by northward-directed longer impounded the lake (but sea level was still significantly below paleocurrent indicators. These sediments provide evidence that The Squaxin Island quadrangle is located at the south end of Puget modern sea level), existing drainages, such as the Skokomish, drainage reorganized to flow northward through the recently formed Qgt Sound and covers a complex of inlets and passages that weave between Qp Qp Nisqually, and Puyallup Rivers, deeply and rapidly incised into their outwash plain. The thickness of these sediments (unit Qgos) varies Qgt Squaxin Island and mainland peninsulas. The quadrangle is rural former alluvial plains and became entrenched. At least initially, stage 3, substantially throughout the area, reaching more than 400 ft just south Qgt Qp Qp residential and agricultural land. Qgof Qp called the Olympia nonglacial interval locally (Armstrong and others, of the map area in a geotechnical borehole at the Port of Olympia Qp Qgt Qp Qp 1965), was characterized by downcutting and erosion. As sea level (Washington Public Power Supply System, 1974). Unit Qgos is Qgof GEOLOGIC HISTORY began to rise, most deposition was confined to these entrenched important because it is widespread throughout the populous South Late Wisconsinan–age Vashon Drift covers most of the quadrangle. -
Assessment of Summer Temperatures and Feasibility and Design of Improved Adult Chinook Salmon Thermal Refuge Habitat in the Sammamish River
Assessment of Summer Temperatures and Feasibility and Design of Improved Adult Chinook Salmon Thermal Refuge Habitat in the Sammamish River Prepared for: Muckleshoot Indian Tribe Fisheries Division Auburn WA Prepared by: R2 Resource Consultants 15250 NE 95th St 1998 Photo by Roger Tabor, USFWS Adult Chinook Holding in Pool Near Marymoor Park Redmond WA 98052 December 30, 2010 Assessment of Summer Temperatures and Feasibility and Design of Improved Adult Chinook Salmon Thermal Refuge Habitat in the Sammamish River Prepared for: Holly Coccoli, Project Manager Muckleshoot Indian Tribe Fisheries Division Auburn WA Prepared by: Paul DeVries PhD, PE Clair Yoder PE Chiming Huang PhD, PE Glen Anderson PE Karee Oliver Mike Cooksey R2 Resource Consultants Inc. 15250 NE 95th St Redmond WA 98052 December 30, 2010 Muckleshoot Indian Tribe Fisheries Division Sammamish River Thermal Refuge Habitat CONTENTS EXECUTIVE SUMMARY ........................................................................................................ XIII 1. INTRODUCTION .....................................................................................................................1 1.1 OVERVIEW OF FLOW AND TEMPERATURE CONDITIONS AFFECTING ADULT CHINOOK SALMON IN THE SAMMAMISH RIVER ...................................................................................3 1.1.1 Review of Flow and Temperature Gage Data .........................................................3 1.1.2 Synopsis of Other Relevant Water Quality Studies ..............................................14 -
Geologic Map of the Suquamish 7.5' Quadrangle and Part of the Seattle
Geologic Map of the Suquamish 7.5’ Quadrangle and Part of the Seattle North 7.5’ x 15’ Quadrangle, Kitsap County, Washington By Ralph A. Haugerud and Kathy Goetz Troost Pamphlet to accompany Scientific Investigations Map 3181 2011 U.S. Department of the Interior U.S. Geological Survey This page intentionally left blank Contents Introduction.....................................................................................................................................................1 Geologic framework .............................................................................................................................1 About this report ...................................................................................................................................2 Stratigraphy ....................................................................................................................................................3 Glacial and nonglacial deposits .........................................................................................................3 Deposits older than Olympia interglaciation of Armstrong and others (1965) ...................3 Deposits older than Vashon stade of Fraser glaciation of Armstrong and others (1965)..............................................................................................................................4 Vashon Drift ..................................................................................................................................4 Late-glacial deposits -
Q4 2018 News Magazine
w w sdukNewsalbix Magazine Issue #2 Winter Quarter 2018 In This Issue: • 20th Anniversary of Re-Recognition • Celebrating Tribal Heritage With The Snoqualmie Valley YMCA • Snoqualmie Welcomes N8tive Vote • And More! Call For Submissions Tribal Member News Here we present to you, the second issue of the new quarterly news magazine. We hope you are enjoying Northwest Native American Basketweavers Association reading the content and seeing the photos that this new, extended magazine format allows us to publish! Linda Sweet Baxter, Lois Sweet Dorman and McKenna Sweet Dorman traveled But as much as we like to write and enjoy creating content, we want this magazine to belong to all Tribal to Toppenish, WA to attend the Northwest Native American Basketweavers Members. If you have a story to tell or an item of news, art or photography you want to share please contact Association’s (NNABA) 24th annual gathering in October. us. We would be very happy to include your material in an upcoming issue of the magazine. They sat with Laura Wong-Whitebear, who was teaching coil weaving with Our e-mail address and our mailing address can be found in the blue box right below this space. You can hemp cord and waxed linen. contact us using either one. Please Welcome Rémy May! Christopher Castleberry and his wife Audrey Castleberry are honored to present their newest family member, Rémy May. Table of Contents sdukwalbixw News Magazine Staff Born on Nov. 27th she is 8lbs 6oz and 20.5 inches tall. Call For Submissions 2 Michael Brunk Here, dad and daughter are pictured at Snoqualmie Falls. -
An Overview of the Geology and Geomorphology of the Snoqualmie River Watershed
AN OVERVIEW OF THE GEOLOGY AND GEOMORPHOLOGY OF THE SNOQUALMIE RIVER WATERSHED Prepared by: John Bethel, Geologist Ecological Services Unit Prepared for: Fran Solomon, Ph.D., Senior Ecologist Watershed and Ecological Assessment Team April 2004 Department of Natural Resources and Parks Water and Land Resources Division Capital Projects and Open Space Acquisitions Section 201 South Jackson Street, Suite 600 Seattle, Washington 98104-3855 An Overview of the Geology and Geomorphology of the Snoqualmie River Watershed Prepared by John Bethel, Geologist Ecological Services Unit Prepared for King County Water and Land Resources Division Snoqualmie Watershed Team September 2004 Department of Natural Resources and Parks Water and Land Resources Division Capital Projects and Open Space Acquisitions Section 201 South Jackson Street, Suite 600 Seattle, Washington 98104-3855 King County Executive Ron Sims King County Council Carolyn Edmonds, District 1 Bob Ferguson, District 2 Kathy Lambert, District 3 Larry Phillips, District 4 Dwight Pelz, District 5 Rob McKenna, District 6 Pete von Reichbauer, District 7 Dow Constantine, District 8 Steve Hammond, District 9 Larry Gossett, District 10 Jane Hague, District 11 David Irons, District 12 Julia Patterson, District 13 Department of Natural Resources and Parks Pam Bissonnette, Director Water and Land Resources Division Daryl Grigsby, Division Director Contributing Staff John Bethel, Geologist Supporting Staff Fran Solomon, Ph.D., Senior Ecologist Terry Butler, Geologist Gino Lucchetti, Senior Ecologist Wendy Gable Collins, Graphic Designer and Cartographer Bob Gilland, Technical Information Processing Specialist AN OVERVIEW OF THE GEOLOGY AND GEOMORPHOLOGY OF THE SNOQUALMIE RIVER WATERSHED Table of Contents 1.0 Introduction..................................................................................................................1 1.1. Purpose and Scope of this Report .......................................................................1 1.2. -
DRAFT Tolt River Channel Migration Study
DRAFT Tolt River Channel Migration Study March 2017 Prepared by Department of Natural Resources and Parks Water and Land Resources Division River and Floodplain Management Section 201 South Jackson Street, Suite 600 Seattle, WA 98104 Alternate Formats Available 206-477-4800 TTY Relay: 711 DRAFT Tolt River Channel Migration Study March 2017 Submitted by: Terry Butler, Geologist King County Water and Land Resources Division Department of Natural Resources and Parks Funded by: King County Flood Control District DRAFT Tolt River Channel Migration Study Acknowledgements John Bethel, Sevin Bilir, Fred Lott and Kyle Comanor participated in fieldwork during study preparation. Jennifer Vanderhoof provided technical editing of this report. Snoqualmie River Basin Team members Chase Barton and Sally King provided review and comment on a draft of this report. Jeanne Stypula supervised the study and map preparation. Citation King County. 2017. Tolt River channel migration study. Prepared by Terry Butler and Fred Lott. King County Department of Natural Resources and Parks, Water and Land Resources Division. Seattle, Washington. King County River and Floodplain Management i March 2017 DRAFT Tolt River Channel Migration Study Table of Contents Executive Summary ........................................................................................................................................... vii 1.0 Introduction ............................................................................................................................................. -
Valuing the Puget Sound Basin
Valuing The Puget Sound Basin Revealing Our Best Investments 2010 Authors: David Batker and Maya Kocian Acknowledgements: The authors would like to thank the board of Earth Economics, Josh Reyneveld, Ingrid Rasch, David Cosman and Josh Farley. This report would not be possible without the assistance from Jennifer Harrison‐Cox, Allyson Schrier, Tedi Dickinson, Jenn McFadden, Rowan Schmidt, Jon Roberts, Colin Cornin, Kellen Hawley, Jon Stout, Patrick Miller, Caleb Tomlinson, and Zac Chrisn. The board of Earth Economics provided unwavering and selfless support to help complete these studies. We would also like to thank Jan Kocian for the cover photo. This report was made possible by the generous support of The Russell Family Foundaon and Seale Venture Kids. This page intenonally le blank. Execuve Summary .............................................................................1 Introducon ........................................................................................6 Objecves of the Study and Report Organizaon ...........................................7 Secon 1: Economic Analysis Incenves and Investment .....................8 Accounng for Natural Capital .....................................................................10 Improving Jobs Analysis for Restoraon .......................................................12 Adopng New Industrial Indicators ..............................................................13 Redefining Green Jobs ..................................................................................15 Changing -
Nisqually 7.5-Minute Quadrangle, Thurston and Pierce Counties, Washington 122°45¢ Qgof Qgt 122°37¢30² 47°07¢30² 47°07¢30² Qps Anderson by Timothy J
WASHINGTON DIVISION OF GEOLOGY AND EARTH RESOURCES OPEN FILE REPORT 2003-10 Division of Geology and Earth Resources Ron Teissere - State Geologist Geologic Map of the Nisqually 7.5-minute Quadrangle, Thurston and Pierce Counties, Washington 122°45¢ Qgof Qgt 122°37¢30² 47°07¢30² 47°07¢30² Qps Anderson by Timothy J. Walsh, Robert L. Logan, Michael Polenz, and Henry W. Schasse Island Qml FORT LEWIS 22 Qml MILITARY RESERVATION 2003 Qf Qf 23 24 Sequalitchew 39 INTRODUCTION MAPPING METHODS Qgt Vashon till—Unstratified and, in most exposures, highly compacted REFERENCES CITED Qgt PUGET SOUND Adams Woods mixture of clay, silt, sand, and gravel deposited directly by glacier The Nisqually quadrangle is located at the south end of Puget Sound, straddling For the present map, we inspected available construction site excavations, gravel Armstrong, J. E.; Crandell, D. R.; Easterbrook, D. J.; Noble, J. B., 1965, Late Bender ice; gray where fresh and light yellowish brown where oxidized; 22 the Nisqually River, which is the boundary between Thurston and Pierce pits, and roadcuts. We surveyed the shorelines by boat and took samples and Pleistocene stratigraphy and chronology in southwestern British Columbia Wo ods unsorted and, in most exposures, of very low permeability; most Counties. It includes part of Fort Lewis, which has limited access to areas used measured sections at cliff exposures. Contacts between map units are commonly and northwestern Washington: Geological Society of America Bulletin, Qgog commonly matrix-supported but may be clast-supported; matrix for artillery training, and part of the Nisqually Indian Reservation, which also not exposed and are only approximately located. -
Flood Insurance Mapping Study for the Snoqualmie River (Skykomish River Confluence to Snoqualmie Falls) and Skykomish River (Snoqualmie River Confluence to RM 8.95)
Flood Insurance Mapping Study for the Snoqualmie River (Skykomish River confluence to Snoqualmie Falls) and Skykomish River (Snoqualmie River confluence to RM 8.95) King and Snohomish Counties, WA Prepared for: Federal Emergency Management Agency Prepared by: northwest hydraulic consultants inc. 16300 Christensen Road, Suite 350 Seattle, WA 98188-3418 April 2006 TABLE OF CONTENTS 1.0 INTRODUCTION ................................................................................................................. 1 1.1 Purpose of Project ......................................................................................................... 1 1.2 Coordination .................................................................................................................. 1 2.0 AREA STUDIED .................................................................................................................. 2 2.1 Scope of Study ............................................................................................................... 2 2.2 Study Reach Description .............................................................................................. 2 2.3 Principal Flood Problems ............................................................................................. 2 2.3.1 Skykomish River ......................................................................................................... 2 2.3.2 Snoqualmie River........................................................................................................ 3 2.4