An Unusual Case Report: Acute Lymphoblastic Leukemia in a Patient with Previously Treated Multiple Myeloma
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Childhood Leukemia
Onconurse.com Fact Sheet Childhood Leukemia The word leukemia literally means “white blood.” fungi. WBCs are produced and stored in the bone mar- Leukemia is the term used to describe cancer of the row and are released when needed by the body. If an blood-forming tissues known as bone marrow. This infection is present, the body produces extra WBCs. spongy material fills the long bones in the body and There are two main types of WBCs: produces blood cells. In leukemia, the bone marrow • Lymphocytes. There are two types that interact to factory creates an overabundance of diseased white prevent infection, fight viruses and fungi, and pro- cells that cannot perform their normal function of fight- vide immunity to disease: ing infection. As the bone marrow becomes packed with diseased white cells, production of red cells (which ° T cells attack infected cells, foreign tissue, carry oxygen and nutrients to body tissues) and and cancer cells. platelets (which help form clots to stop bleeding) slows B cells produce antibodies which destroy and stops. This results in a low red blood cell count ° foreign substances. (anemia) and a low platelet count (thrombocytopenia). • Granulocytes. There are four types that are the first Leukemia is a disease of the blood defense against infection: Blood is a vital liquid which supplies oxygen, food, hor- ° Monocytes are cells that contain enzymes that mones, and other necessary chemicals to all of the kill foreign bacteria. body’s cells. It also removes toxins and other waste products from the cells. Blood helps the lymph system ° Neutrophils are the most numerous WBCs to fight infection and carries the cells necessary for and are important in responding to foreign repairing injuries. -
The Lymphoma and Multiple Myeloma Center
The Lymphoma and Multiple Myeloma Center What Sets Us Apart We provide multidisciplinary • Experienced, nationally and internationally recognized physicians dedicated exclusively to treating patients with lymphoid treatment for optimal survival or plasma cell malignancies and quality of life for patients • Cellular therapies such as Chimeric Antigen T-Cell (CAR T) therapy for relapsed/refractory disease with all types and stages of • Specialized diagnostic laboratories—flow cytometry, cytogenetics, and molecular diagnostic facilities—focusing on the latest testing lymphoma, chronic lymphocytic that identifies patients with high-risk lymphoid malignancies or plasma cell dyscrasias, which require more aggresive treatment leukemia, multiple myeloma and • Novel targeted therapies or intensified regimens based on the other plasma cell disorders. cancer’s genetic and molecular profile • Transplant & Cellular Therapy program ranked among the top 10% nationally in patient outcomes for allogeneic transplant • Clinical trials that offer tomorrow’s treatments today www.roswellpark.org/partners-in-practice Partners In Practice medical information for physicians by physicians We want to give every patient their very best chance for cure, and that means choosing Roswell Park Pathology—Taking the best and Diagnosis to a New Level “ optimal front-line Lymphoma and myeloma are a diverse and heterogeneous group of treatment.” malignancies. Lymphoid malignancy classification currently includes nearly 60 different variants, each with distinct pathophysiology, clinical behavior, response to treatment and prognosis. Our diagnostic approach in hematopathology includes the comprehensive examination of lymph node, bone marrow, blood and other extranodal and extramedullary tissue samples, and integrates clinical and diagnostic information, using a complex array of diagnostics from the following support laboratories: • Bone marrow laboratory — Francisco J. -
Therapeutic Effect and Mechanism of Ibrutinib Combined with Dexametha- Sone on Multiple Myeloma
ORIGINAL ARTICLES Hematology Department of The Second Hospital1, Cheeloo College of Medicine, Shandong University; Department of Hematology of Jining No. 1 People’s Hospital2; Institute of Biotherapy for Hematological Malignancies of Shandong University3; Shandong University-Karolinska Institute Collaborative Laboratory for Stem Cell Research4; Hematology Department of Linyi Central Hospital5; Hematology Department of Binzhou Medical University Hospital6; Institute of Medical Sciences, The Second Hospital, Cheeloo College of Medicine, Shandong University7, Jinan, Shandong, China Therapeutic effect and mechanism of ibrutinib combined with dexametha- sone on multiple myeloma SHENGLI LI1,2, LIKUN SUN1,3,4, QIAN ZHOU1,5, SHUO LI1,6, XIAOLI LIU1,3,4, JUAN XIAO1,3,4, YAQI XU1,3,4, FANG WANG7, YANG JIANG1,3,4,*, CHENGYUN ZHENG1,3,4 Received November 14, 2020, accepted December 2020 *Correspondence author: Yang Jiang, Hematology Department, the Second Hospital of Shandong University, 247th of Beiyuan Rd., Jinan, Shandong, China [email protected] Pharmazie 76: 92-96 (2021) doi: 10.1691/ph.2021.0917 Ibrutinib is an irreversible inhibitor of Bruton’s tyrosine kinase and has proven to be an effective agent for B-cell-mediated hematological malignancies, including multiple myeloma (MM). Several clinical trials of ibrutinib treatment combined with dexamethasone (DXMS) for relapsed MM have demonstrated high response rates, however, the mechanism still remains unclear. In this study, we explored the therapeutic effect and mechanism of ibrutinib combined with DXMS on MM in vitro and vivo. The apoptosis of MM cell lines and mononuclear cells from MM patients’ bone marrow induced by ibrutinib combined with DXMS was detected by flow cytometry and the expression of apoptosis-related proteins were detected by Western blot. -
A Novel Cytogenetic Aberration Found in Stem Cell Leukemia/Lymphoma Syndrome
Letters to the Editor 644 normal PB buffy coat DNA (see example in Figure 1b). These marrow (used for MRD evaluation), the actual Quantitative data show that NSA can be variable, dependent on the type of Range for TCRG targets will often be underestimated. sample (bone marrow or peripheral blood) and the time point We conclude that the ESG-MRD-ALL guidelines for inter- during or after therapy. pretation of RQ-PCR data appropriately take into account the We next evaluated to what extent this variation in NSA variation in NSA. The guidelines for prevention of false-positive affected the RQ-PCR data interpretation, applying the guidelines MRD data perform well, with less than 2% false-positive results. for prevention of false-positive MRD results as well as the However, our data also clearly indicate that positive results guidelines for preventing false-negative MRD results. In Figures outside the Quantitative Range should always be judged with 2a-c, the data interpreted according to the guidelines for the caution, particularly for samples taken after cessation of therapy prevention of false-negative MRD results are shown. IGH targets and analyzed with Ig gene targets. Preferably, one should aim with NSA in normal PB buffy coat DNA resulted in false-positive for RQ-PCR assays without any NSA, since this will improve the MRD data in about 10% of samples obtained during therapy reliability of the data interpretation. (Figure 2a). However, in samples obtained after cessation of therapy (after week 104) false-positivity could be observed in up VHJ van der Velden, JM Wijkhuijs and JJM van Dongen Department of Immunology, Erasmus MC, University Medical to 65% of samples. -
What Is Multiple Myeloma?
cancer.org | 1.800.227.2345 About Multiple Myeloma Overview If you have been diagnosed with multiple myeloma or are worried about it, you likely have a lot of questions. Learning some basics is a good place to start. ● What Is Multiple Myeloma? Research and Statistics See the latest estimates for new cases of multiple myeloma and deaths in the US and what research is currently being done. ● Key Statistics About Multiple Myeloma ● What’s New in Multiple Myeloma Research? What Is Multiple Myeloma? Cancer starts when cells begin to grow out of control. Cells in nearly any part of the body can become cancer, and can spread to other areas. To learn more about how cancers start and spread, see What Is Cancer?1 Multiple myeloma is a cancer of plasma cells. Normal plasma cells are found in the bone marrow and are an important part of the immune system. The immune system is made up of several types of cells that work together to fight infections and other 1 ____________________________________________________________________________________American Cancer Society cancer.org | 1.800.227.2345 diseases. Lymphocytes (lymph cells) are one of the main types of white blood cells in the immune system and include T cells and B cells. Lymphocytes are in many areas of the body, such as lymph nodes, the bone marrow, the intestines, and the bloodstream. When B cells respond to an infection, they mature and change into plasma cells. Plasma cells make the antibodies (also called immunoglobulins) that help the body attack and kill germs. Plasma cells, are found mainly in the bone marrow. -
Cell Surface Markers in Acute Lymphoblastic Leukemia* F
ANNALS OF CLINICAL AND LABORATORY SCIENCE, Vol. 10, No. 3 Copyright © 1980, Institute for Clinical Science, Inc. Cell Surface Markers in Acute Lymphoblastic Leukemia* f G. BENNETT HUMPHREY, M.D., REBECCA BLACKSTOCK, Ph .D., AND JANICE FILLER, M.S. University of Oklahoma, Health Sciences Center, Oklahoma City, OK 73126 ABSTRACT During the last nine years, two important methodologies have been used to characterize the cell surfaces of normal lymphocytes and malignant lym phoblasts. Normal mature T-cells have a receptor for sheep erythrocytes (E+) while mature B-cells bear membrane-bound immunoglobulin molecules (slg+). These two findings can be used to divide acute lymphoblastic leukemia of childhood into three major groups; B-cell leukemia (slg+ E -), which is rare (approximately 2 percent) and has the poorest prognosis, T-cell leukemia (slg~, E +) which is more common (10 percent) but also has a poor prognosis and null cell leukemia (slg~, E~) which is the most common (85 percent) and has the best prognosis. By the use of additional immunological methods, subgroups within T-cell leukemia and null cell leukemia have also been proposed. One of the most valuable of these additional methods is the detection of surface antigens. Three of the more commonly detected antigens currently being evaluated are (1) common leukemia antigen (cALL), (2) a normal B Lymphocyte antigen the la antigen (la) which is not generally expressed on most T lympho cytes and (3) a normal T lymphocyte antigen (T) not expressed on B lympho cytes. Within null cell leukemia, the most commonly identified and proba bly the largest subgroup is Ia+, cALL+, T”, E _, slg-. -
Lymphoproliferative Disorders
Lymphoproliferative disorders Objectives: • To understand the general features of lymphoproliferative disorders (LPD) • To understand some benign causes of LPD such as infectious mononucleosis • To understand the general classification of malignant LPD Important. • To understand the clinicopathological features of chronic lymphoid leukemia Extra. • To understand the general features of the most common Notes (LPD) (Burkitt lymphoma, Follicular • lymphoma, multiple myeloma and Hodgkin lymphoma). Success is the result of perfection, hard work, learning Powellfrom failure, loyalty, and persistence. Colin References: Editing file 435 teamwork slides 6 girls & boys slides Do you have any suggestions? Please contact us! @haematology436 E-mail: [email protected] or simply use this form Definitions Lymphoma (20min) Lymphoproliferative disorders: Several clinical conditions in which lymphocytes are produced in excessive quantities (Lymphocytosis) increase in lymphocytes that are not normal Lymphoma: Malignant lymphoid mass involving the lymphoid tissues. (± other tissues e.g: skin, GIT, CNS ..) The main deference between Lymphoma & Leukemia is that the Lymphoma proliferate primarily in Lymphoid Tissue and cause Mass , While Leukemia proliferate mainly in BM& Peripheral blood Lymphoid leukemia: Malignant proliferation of lymphoid cells in Bone marrow and peripheral blood. (± other tissues e.g: lymph nodes, spleen, skin, GIT, CNS ..) BCL is an anti-apoptotic (prevent apoptosis) Lymphocytosis (causes) 1- Viral infection: 2- Some* bacterial -
Allogeneic Stem Cell Transplantation for Multiple Myeloma and Myelofibrosis Version Date: 29JAN2019 Principal Investigator: Catherine J
Protocol name: Allogeneic Stem Cell Transplantation for Multiple Myeloma and Myelofibrosis Version Date: 29JAN2019 Principal Investigator: Catherine J. Lee, MD Allogeneic Stem Cell Transplantation for Multiple Myeloma and Myelofibrosis Lead Org. ID: HCI98381/IRB# 98381 CTO#HCI-17-HEME-07 ClinicalTrials.gov ID – NCT03303950 Principal Investigator Catherine J. Lee, MD Blood & Marrow Transplant Program University of Utah 2000 Circle of Hope, Rm 2152 Salt Lake City, UT 84132 Phone: (801) 587-0231 Email: [email protected] Sub-investigator(s) Douglas Sborov, MD Clinical Instructor, Department of Medicine Phone: (801) 581-8394 Email: [email protected] Vedran Radojcic, MD Assistant Professor, Department of Medicine Phone: (801) 213-6109 Email: [email protected] Daniel R. Couriel, MD, MS Director, Blood & Marrow Transplant Program Professor, Department of Medicine Phone: (801) 587-4056 Email: [email protected] Jo-Anna Reems, PhD (Laboratory) Scientific Director, Cell Therapy & Regenerative Medicine Research Professor, Department of Medicine Phone: (801) 585-6262 Email: [email protected] Protocol name: Allogeneic Stem Cell Transplantation for Multiple Myeloma and Myelofibrosis Version Date: 29JAN2019 Principal Investigator: Catherine J. Lee, MD Michael Boyer, MD Associate Professor, Department of Medicine Phone: (801) 585-3229 Email: [email protected] Josef Prchal, MD Professor, Department of Medicine Phone: (801) 585-3229 Email: [email protected] Tibor Kovacsovics, MD Associate Professor, -
Research Article Segmentation of White Blood Cell from Acute Lymphoblastic Leukemia Images Using Dual-Threshold Method
Hindawi Publishing Corporation Computational and Mathematical Methods in Medicine Volume 2016, Article ID 9514707, 12 pages http://dx.doi.org/10.1155/2016/9514707 Research Article Segmentation of White Blood Cell from Acute Lymphoblastic Leukemia Images Using Dual-Threshold Method Yan Li,1,2 Rui Zhu,1 Lei Mi,1 Yihui Cao,1,2 and Di Yao3 1 State Key Laboratory of Transient Optics and Photonics, Xi’an Institute of Optics and Precision Mechanics of Chinese Academy of Sciences, Xi’an 710119, China 2University of Chinese Academy of Sciences, 52 Sanlihe Road, Beijing 100864, China 3Shenzhen Vivolight Medical Device and Technology Co., Ltd., Shenzhen 518000, China Correspondence should be addressed to Yan Li; [email protected] Received 30 December 2015; Revised 7 April 2016; Accepted 21 April 2016 Academic Editor: Jayaram K. Udupa Copyright © 2016 Yan Li et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. We propose a dual-threshold method based on a strategic combination of RGB and HSV color space for white blood cell (WBC) segmentation. The proposed method consists of three main parts: preprocessing, threshold segmentation, and postprocessing. In the preprocessing part, we get two images for further processing: one contrast-stretched gray image and one H component image from transformed HSV color space. In the threshold segmentationpart,adual-thresholdmethodisproposedforimprovingthe conventional single-threshold approaches and a golden section search method is used for determining the optimal thresholds. For the postprocessing part, mathematical morphology and median filtering are utilized to denoise and remove incomplete WBCs. -
Xgeva (Denosumab) Injection, for Subcutaneous Use Calcium and Vitamin D
HIGHLIGHTS OF PRESCRIBING INFORMATION • Hypocalcemia: Xgeva can cause severe symptomatic hypocalcemia, and These highlights do not include all the information needed to use fatal cases have been reported. Correct hypocalcemia prior to initiating XGEVA® safely and effectively. See full prescribing information for Xgeva. Monitor calcium levels during therapy, especially in the first XGEVA. weeks of initiating therapy, and adequately supplement all patients with Xgeva (denosumab) injection, for subcutaneous use calcium and vitamin D. (5.3) Initial U.S. Approval: 2010 • Osteonecrosis of the jaw (ONJ) has been reported in patients receiving Xgeva. Perform an oral examination prior to starting Xgeva. Monitor for symptoms. Avoid invasive dental procedures during treatment with ------------------------------RECENT MAJOR CHANGES----------------------- Xgeva. (5.4) Indications and Usage, Multiple Myeloma and Bone Metastasis from Solid • Atypical femoral fracture: Evaluate patients with thigh or groin pain to Tumors (1.1) 01/2018 rule out a femoral fracture. (5.5) Warnings and Precautions, Multiple Vertebral Fractures (MVF) Following • Hypercalcemia Following Treatment Discontinuation in Patients with Treatment Discontinuation (5.7) 01/2018 Growing Skeletons: Monitor patients for signs and symptoms of Warnings and Precautions, Embryo-Fetal Toxicity (5.8) 01/2018 hypercalcemia and treat appropriately. (5.6) • Multiple Vertebral Fractures (MVF) Following Treatment ---------------------------INDICATIONS AND USAGE---------------------------- Discontinuation: When Xgeva treatment is discontinued, evaluate the Xgeva is a RANK ligand (RANKL) inhibitor indicated for: individual patient’s risk for vertebral fractures. (5.7) • Prevention of skeletal-related events in patients with multiple myeloma • Embryo-Fetal Toxicity: Can cause fetal harm. Advise females of and in patients with bone metastases from solid tumors. (1.1) reproductive potential of potential risk to the fetus and to use effective • Treatment of adults and skeletally mature adolescents with giant cell contraception. -
A Hybrid Deep Learning Architecture for Leukemic B-Lymphoblast Classification
A Hybrid Deep Learning Architecture for Leukemic B-lymphoblast Classification Sara Hosseinzadeh Kassani Peyman Hosseinzadeh Kassani Michal J. Wesolowski Department of Computer Science Department of Biomedical Engineering Department of Medical Imaging University of Saskatchewan University of Tulane University of Saskatchewan Saskatoon, Canada New Orleans, USA Saskatoon, Canada [email protected] [email protected] [email protected] Kevin A. Schneider Ralph Deters Department of Computer Science Department of Computer Science University of Saskatchewan University of Saskatchewan Saskatoon, Canada Saskatoon, Canada [email protected] [email protected] Abstract—Automatic detection of leukemic B-lymphoblast can- diagnosed and about 1500 patients are expected to die of ALL, cer in microscopic images is very challenging due to the com- including both children and adults, in the United States. The plicated nature of histopathological structures. To tackle this risk of getting ALL is slightly higher in males than females, issue, an automatic and robust diagnostic system is required for early detection and treatment. In this paper, an automated and higher in whites than African-Americans. However, if deep learning-based method is proposed to distinguish between leukemia is diagnosed in its early stages, it is highly curable immature leukemic blasts and normal cells. The proposed deep and increases the survival rate of the patients. Considering learning based hybrid method, which is enriched by different data the large-scale of histopathology images, assessment of the augmentation techniques, is able to extract high-level features images in a conventional way can be laborious, error-prone from input images. Results demonstrate that the proposed model yields better prediction than individual models for Leukemic B- and hugely time-consuming since some images are highly vari- lymphoblast classification with 96.17% overall accuracy, 95.17% able in morphology which is difficult to analyze. -
Cytotoxic T-Lymphocyte Response to Autologous Human Squamous Cell Cancer of the Lung: Epitope Reconstitution with Peptides Extracted from HLA-Aw68'
[CANCER RESEARCH 54, 2731—2737,May 15, 1994) Cytotoxic T-Lymphocyte Response to Autologous Human Squamous Cell Cancer of the Lung: Epitope Reconstitution with Peptides Extracted from HLA-Aw68' Craig L Slingluff, Jr.,2 Andrea L Cox, John M. Stover, Jr., Marcia M. Moore, Donald F. Hunt, and Victor H. Engeihard Departments ofSurgery (C. L S., J. M. S., M. M. MI, Chemistrj [A. L. C., D. F. H.J, and Mkrobiology [V. H. E.J, University of Virginia, Charlottesville, Virginia 22908 ABSTRACT associated peptides, MHC-unrestricted tumor-specific CTLs have also been described (ii, 12): the peptide backbone of a mucin Cytotoxic T-lymphocytes (Cfls) specific for autologous human squa molecule appears to be the target for some CTLs specific for mom cell cancer of the lung were generated by stimulation of peripheral blood lymphocytes with autologous tumor cells in vitro. The Cl@Lline was carcinomas of the pancreas and of the breast. It is believed that >97% @1J3+,CD8@,CD16andproducedtumornecrosisfactor-a,y-in identification of the peptide epitopes for tumor-specific CTLs will terferon, and granulocyte-macrophage colony-stimulating factor after impact our understanding of the host:tumor relationship and may stimulation with autologous tumor. The CTLs lysed autologous tumor but permit the rational development of novel immunotherapeutic strat failed to recognize autologous or histocompatability leukocyte antigen egies to treat patients with cancer. Although there is evidence of an matched lymphoid cells, K562, or allogeneic tumor cells of several histo immune response to lung cancer, little is known about the target logical types. Antibody-blocking studies suggested that the CTLs re antigens for lung cancer-specific CTLs.