The Benefits of Mutualism: a Conceptual Framework
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Interactive Robots in Experimental Biology 3 4 5 6 Jens Krause1,2, Alan F.T
1 2 Interactive Robots in Experimental Biology 3 4 5 6 Jens Krause1,2, Alan F.T. Winfield3 & Jean-Louis Deneubourg4 7 8 9 10 11 12 1Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Department of Biology and 13 Ecology of Fishes, 12587 Berlin, Germany; 14 2Humboldt-University of Berlin, Department for Crop and Animal Sciences, Philippstrasse 15 13, 10115 Berlin, Germany; 16 3Bristol Robotics Laboratory, University of the West of England, Coldharbour Lane, Bristol 17 BS16 1QY, UK; 18 4Unit of Social Ecology, Campus Plaine - CP 231, Université libre de Bruxelles, Bd du 19 Triomphe, B-1050 Brussels - Belgium 20 21 22 23 24 25 26 27 28 Corresponding author: Krause, J. ([email protected]), Leibniz Institute of Freshwater 29 Ecology and Inland Fisheries, Department of the Biology and Ecology of Fishes, 30 Müggelseedamm 310, 12587 Berlin, Germany. 31 32 33 1 33 Interactive robots have the potential to revolutionise the study of social behaviour because 34 they provide a number of methodological advances. In interactions with live animals the 35 behaviour of robots can be standardised, morphology and behaviour can be decoupled (so that 36 different morphologies and behavioural strategies can be combined), behaviour can be 37 manipulated in complex interaction sequences and models of behaviour can be embodied by 38 the robot and thereby be tested. Furthermore, robots can be used as demonstrators in 39 experiments on social learning. The opportunities that robots create for new experimental 40 approaches have far-reaching consequences for research in fields such as mate choice, 41 cooperation, social learning, personality studies and collective behaviour. -
Malte Andersson 30.10.2019
Social evolution, and levels of selection Malte Andersson 30.10.2019 1 Social evolution, Malte Andersson, 30.10. 2019 Fitness: an individual’s expected genetic contribution to the next generation Direct fitness: numbers of surviving own offspring A behaviour leading to higher fitness is favored by selection and will spread over the generations 2 1 Mobbing a raptor is risky for a crow 3 A honey bee dies after stinging an enemy 4 2 Costly helping: how can it evolve and persist? Does it benefit the donor of help via: 1) direct fitness (individual selection) ? 2) delayed direct fitness, by reciprocity ? 3) donor’s relatives: kin selection ? 4) a larger community: group selection ? These questions are debated. They were first asked by Darwin (1859), about sterile workers in eusocial insects. Some individuals can not reproduce, but offer their lives for the colony (for instance honey bee workers). Can natural selection lead to such behaviour? 5 Altruism (meaning in ecology): Helpful behavior that raises the recipient’s but lowers the donor’s direct fitness 6 3 Alarm signals - selfish or altruistic? Black-throated Shrike-Tanager, Springbok stotting, Kalahari Belize Stotting tells a predator it is detected Warning flock members, also using by a gazelle in good condition. Better the signal for own feeding advantage to hunt another prey (Caro 1986) 7 Is sentinel behavior in meerkats altruistic? Probably not. Sentinels are safer and have a direct benefit from their behavior. (Clutton-Brock et al. 1999) 8 4 0.5 0.4 0.3 Females 0.2 Males 0.1 0 Without close With With offspring genetic relatives nondescendant relatives Black-tailed prairie dogs Individuals give alarm calls mainly with relatives (offspring and others). -
Adaptations for Survival: Symbioses, Camouflage
Adaptations for Survival: Symbioses, Camouflage & Mimicry OCN 201 Biology Lecture 11 http://www.oceanfootage.com/stockfootage/Cleaning_Station_Fish/ http://www.berkeley.edu/news/media/releases/2005/03/24_octopus.shtml Symbiosis • Parasitism - negative effect on host • Commensalism - no effect on host • Mutualism - both parties benefit Often involves food but benefits may also include protection from predators, dispersal, or habitat Parasites Leeches (Segmented Worms) Tongue Louse (Crustacean) Nematodes (Roundworms) Whale Barnacles & Lice Commensalism or Parasitism? Commensalism or Mutualism? http://magma.nationalgeographic.com/ http://www.scuba-equipment-usa.com/marine/APR04/ Mutualism Cleaner Shrimp http://magma.nationalgeographic.com/ Anemone Hermit Crab http://www.scuba-equipment-usa.com/marine/APR04/ Camouflage Countershading Sharks Birds Countershading coloration of the Caribbean reef shark © George Ryschkewitsch Fish JONATHAN CHESTER Mammals shiftingbaselines.org/blog/big_tuna.jpg http://www.nmfs.noaa.gov/pr/images/cetaceans/orca_spyhopping-noaa.jpg Adaptive Camouflage Camouflage http://www.cspangler.com/images/photos/aquarium/weedy-sea-dragon2.jpg Camouflage by Mimicry Mimicry • Batesian: an edible species evolves to look similar to an inedible species to avoid predation • Mullerian: two or more inedible species all evolve to look similar maximizing efficiency with which predators learn to avoid them Batesian Mimicry An edible species evolves to resemble an inedible species to avoid predators Pufferfish (poisonous) Filefish (non-poisonous) -
This Process Wherein 2 Organisms Help One Another Is Often Called Symbiosis Or Mutualism
This process wherein 2 organisms help one another is often called symbiosis or mutualism. The terms are often used interchangeably. Technically, mutualism is an ecological interaction between at least two species (=partners) where both partners benefit from the relationship. Symbiosis on the other hand is defined as an ecological interaction between at least two species (=partners) where there is persistent contact between the partners. Coral is an extremely important habitat. Coral is an animal which has a dinoflagellate living in it called Zooxanthellae You can see where the Zooxanthellae live in the coral and these provide oxygen to the coral which provides protection to the Zooxanthellae If the coral is stressed, the Zooxanthellae leave the coral and the coral becomes “bleached” and may die if the Zooxanthellae do not return. Fish have evolved so that the coral provides them with a kind of “background” against which they become harder for predators to see them WORMS Several different phyla Nematodes, Platyhelminthes, annelids etc) . Some people do eat worms but several kinds are parasitic and there are dangers in doing this. Many marine animals will eat worms. ECHINODERMS Some examples: Star fish, sea cucumbers, crinoids Possible to eat, but not much meat! More likely eaten by other animals. Interesting regenerative powers. ARTHROPODS (joint legged animals) Some examples: Crabs, lobsters and so on. Some are edible. Insects are arthropods and many people in the world eat them. Horseshoe crabs, are here too but are more closely related to the spiders than to the crabs proper. Lobster crab Barnacles Horseshoe crab MOLLUSKS Examples: Clams, mussels , snails Clams and other mollusks are regularly eaten around the world. -
Animating Predator and Prey Fish Interactions
Georgia State University ScholarWorks @ Georgia State University Computer Science Dissertations Department of Computer Science 5-6-2019 Animating Predator and Prey Fish Interactions Sahithi Podila Follow this and additional works at: https://scholarworks.gsu.edu/cs_diss Recommended Citation Podila, Sahithi, "Animating Predator and Prey Fish Interactions." Dissertation, Georgia State University, 2019. https://scholarworks.gsu.edu/cs_diss/149 This Dissertation is brought to you for free and open access by the Department of Computer Science at ScholarWorks @ Georgia State University. It has been accepted for inclusion in Computer Science Dissertations by an authorized administrator of ScholarWorks @ Georgia State University. For more information, please contact [email protected]. ANIMATING PREDATOR AND PREY FISH INTERACTIONS by SAHITHI PODILA Under the Direction of Ying Zhu, PhD ABSTRACT Schooling behavior is one of the most salient social and group activities among fish. They form schools for social reasons like foraging, mating and escaping from predators. Animating a school of fish is difficult because they are large in number, often swim in distinctive patterns that is they take the shape of long thin lines, squares, ovals or amoeboid and exhibit complex coordinated patterns especially when they are attacked by a predator. Previous work in computer graphics has not provided satisfactory models to simulate the many distinctive interactions between a school of prey fish and their predator, how does a predator pick its target? and how does a school of fish react to such attacks? This dissertation presents a method to simulate interactions between prey fish and predator fish in the 3D world based on the biological research findings. -
Expert Assessment of Stigmergy: a Report for the Department of National Defence
Expert Assessment of Stigmergy: A Report for the Department of National Defence Contract No. W7714-040899/003/SV File No. 011 sv.W7714-040899 Client Reference No.: W7714-4-0899 Requisition No. W7714-040899 Contact Info. Tony White Associate Professor School of Computer Science Room 5302 Herzberg Building Carleton University 1125 Colonel By Drive Ottawa, Ontario K1S 5B6 (Office) 613-520-2600 x2208 (Cell) 613-612-2708 [email protected] http://www.scs.carleton.ca/~arpwhite Expert Assessment of Stigmergy Abstract This report describes the current state of research in the area known as Swarm Intelligence. Swarm Intelligence relies upon stigmergic principles in order to solve complex problems using only simple agents. Swarm Intelligence has been receiving increasing attention over the last 10 years as a result of the acknowledgement of the success of social insect systems in solving complex problems without the need for central control or global information. In swarm- based problem solving, a solution emerges as a result of the collective action of the members of the swarm, often using principles of communication known as stigmergy. The individual behaviours of swarm members do not indicate the nature of the emergent collective behaviour and the solution process is generally very robust to the loss of individual swarm members. This report describes the general principles for swarm-based problem solving, the way in which stigmergy is employed, and presents a number of high level algorithms that have proven utility in solving hard optimization and control problems. Useful tools for the modelling and investigation of swarm-based systems are then briefly described. -
The Ecology of Mutualism
Annual Reviews www.annualreviews.org/aronline AngRev. Ecol. Syst. 1982.13:315--47 Copyright©1982 by Annual Reviews lnc. All rightsreserved THE ECOLOGY OF MUTUALISM Douglas 1t. Boucher Departementdes sciences biologiques, Universit~ du Quebec~ Montreal, C. P. 8888, Suet. A, Montreal, Quebec, CanadaH3C 3P8 Sam James Departmentof Ecologyand Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, USA48109 Kathleen H. Keeler School of Life Sciences, University of Nebraska,Lincoln, Nebraska,USA 68588 INTRODUCTION Elementaryecology texts tell us that organismsinteract in three fundamen- tal ways, generally given the namescompetition, predation, and mutualism. The third memberhas gotten short shrift (264), and even its nameis not generally agreed on. Terms that may be considered synonyms,in whole or part, are symbiosis, commensalism,cooperation, protocooperation, mutual aid, facilitation, reciprocal altruism, and entraide. Weuse the term mutual- by University of Kanas-Lawrence & Edwards on 09/26/05. For personal use only. ism, defined as "an interaction betweenspecies that is beneficial to both," Annu. Rev. Ecol. Syst. 1982.13:315-347. Downloaded from arjournals.annualreviews.org since it has both historical priority (311) and general currency. Symbiosis is "the living together of two organismsin close association," and modifiers are used to specify dependenceon the interaction (facultative or obligate) and the range of species that can take part (oligophilic or polyphilic). We make the normal apologies concerning forcing continuous variation and diverse interactions into simple dichotomousclassifications, for these and all subsequentdefinitions. Thus mutualism can be defined, in brief, as a -b/q- interaction, while competition, predation, and eommensalismare respectively -/-, -/q-, and -t-/0. There remains, however,the question of howto define "benefit to the 315 0066-4162/82/1120-0315 $02.00 Annual Reviews www.annualreviews.org/aronline 316 BOUCHER, JAMES & KEELER species" without evoking group selection. -
Basic Hunting Booklet
Basic Hunting Passing on a time-honored tradition Kentucky Department of Fish and Wildlife Resources From the Commissioner. The North American Model of Wildlife Management depends on hunters. This model incorporates principles of conservation from the past 100 years and was formally adopted in 2002. Over the years the number of hunters has decreased. Fish and Wildlife agencies from across the nation view this as a major problem. Many factors contrib- ute to this decline, including habitat loss, a growing urban population, and increased competition for leisure time. We do have one key ele- ment upon which we can rely: the people who enjoy the opportunity to step outside and enjoy shooting and hunting. Kentucky’s Department of Fish and Wildlife Resources has worked for several decades to give the shooter and hunter every pos- sible opportunity. We have developed shooting ranges, assisted land- owners in improving habitat, and enhanced the quality of the hunt for numerous species. In addition, we strive to provide Wildlife Manage- ment Areas for public use. In fact, the amount of land the department manages has more than doubled in the last 10 years. You and your family and friends are essential to the future of hunting. Each new hunter must have consistent support to continue to grow and expand his or her interest. I think you will find this expe- rience extremely rewarding for everyone involved. In a tribute to his father, Alan Jackson stated in a song about boating that it was “…a piece of my childhood that will never be forgotten.” I feel your involve- ment in hunting with your friends and family will fall in that “special memory” category. -
Reticulate Evolution Everywhere
Reticulate Evolution Everywhere Nathalie Gontier Abstract Reticulation is a recurring evolutionary pattern found in phylogenetic reconstructions of life. The pattern results from how species interact and evolve by mechanisms and processes including symbiosis; symbiogenesis; lateral gene transfer (that occurs via bacterial conjugation, transformation, transduction, Gene Transfer Agents, or the movements of transposons, retrotransposons, and other mobile genetic elements); hybridization or divergence with gene flow; and infec- tious heredity (induced either directly by bacteria, bacteriophages, viruses, pri- ons, protozoa and fungi, or via vectors that transmit these pathogens). Research on reticulate evolution today takes on inter- and transdisciplinary proportions and is able to unite distinct research fields ranging from microbiology and molecular genetics to evolutionary biology and the biomedical sciences. This chapter sum- marizes the main principles of the diverse reticulate evolutionary mechanisms and situates them into the chapters that make up this volume. Keywords Reticulate evolution · Symbiosis · Symbiogenesis · Lateral Gene Transfer · Infectious agents · Microbiome · Viriome · Virolution · Hybridization · Divergence with gene flow · Evolutionary patterns · Extended Synthesis 1 Reticulate Evolution: Patterns, Processes, Mechanisms According to the Online Etymology Dictionary (http://www.etymonline.com), the word reticulate is an adjective that stems from the Latin words “re¯ticulātus” (having a net-like pattern) and re¯ticulum (little net). When scholars identify the evolution of life as being “reticulated,” they first and foremost refer to a recurring evolutionary pattern. N. Gontier (*) AppEEL—Applied Evolutionary Epistemology Lab, University of Lisbon, Lisbon, Portugal e-mail: [email protected] © Springer International Publishing Switzerland 2015 1 N. Gontier (ed.), Reticulate Evolution, Interdisciplinary Evolution Research 3, DOI 10.1007/978-3-319-16345-1_1 2 N. -
Interaction Ruling Animal Collective Behavior Depends on Topological Rather Than Metric Distance: Evidence from a Field Study
Interaction ruling animal collective behavior depends on topological rather than metric distance: Evidence from a field study M. Ballerini*†, N. Cabibbo‡§, R. Candelier‡¶, A. Cavagna*ʈ**, E. Cisbani†, I. Giardina*ʈ, V. Lecomte††‡‡, A. Orlandi*, G. Parisi*‡§**, A. Procaccini*‡, and M. Viale‡§§, and V. Zdravkovic* *Centre for Statistical Mechanics and Complexity (SMC), Consiglio Nazionale delle Ricerche-Istituto Nazionale per la Fisica della Materia, ‡Dipartimento di Fisica, and §Sezione Instituto Nazionale di Fisica Nucleare, Universita’ di Roma ‘‘La Sapienza,’’ Piazzale Aldo Moro 2, 00185 Roma, Italy; †Istituto Superiore di Sanita’, viale Regina Elena 299, 00161 Roma, Italy; ʈIstituto dei Sistemi Complessi (ISC), Consiglio Nazionale delle Ricerche, via dei Taurini 19, 00185 Roma, Italy; and ††Laboratoire Matie`re et Syste`mes Complexes, (Centre National de la Recherche Scientifique Unite Mixte de Recherche 7057), Universite´Paris VII, 10 rue Alice Domon et Le´onie Duquet, 75205 Paris Cedex 13, France Contributed by G. Parisi, December 4, 2007 (sent for review September 25, 2007) Numerical models indicate that collective animal behavior may no bird remains isolated, and soon the flock reforms as whole. emerge from simple local rules of interaction among the individ- The question we want to answer is ‘‘what kind of interaction uals. However, very little is known about the nature of such maintains cohesion in such a robust way?’’ interaction, so that models and theories mostly rely on aprioristic To grant cohesion, models make the sound assumption that assumptions. By reconstructing the three-dimensional positions of individuals align and attract each other, and that such interaction individual birds in airborne flocks of a few thousand members, we decays with increasing distance between individuals. -
Stigmergy As a Universal Coordination Mechanism: Components, Varieties and Applications
to appear in T. Lewis & L. Marsh (Eds.), Human Stigmergy: Theoretical Developments and New Applications. Springer. Stigmergy as a Universal Coordination Mechanism: components, varieties and applications Francis Heylighen Evolution, Complexity and Cognition group Vrije Universiteit Brussel Abstract: The concept of stigmergy has been used to analyze self-organizing activities in an ever-widening range of domains, including social insects, robotics, web communities, and human society. Yet, it is still poorly understood, and as such its full power remains underappreciated. The present paper clarifies the issue by defining stigmergy as a mechanism of indirect coordination in which the trace left by an action in a medium stimulates a subsequent action. It then analyses the fundamental concepts used in the definition: action, agent, medium, trace and coordination. Stigmergy enables complex, coordinated activity without any need for planning, control, communication, simultaneous presence, or even mutual awareness. This makes the concept applicable to a very broad variety of cases, from chemical reactions to individual cognition and Internet-supported collaboration in Wikipedia. The paper classifies different varieties of stigmergy according to general aspects (number of agents, scope, persistence, sematectonic vs. marker-based, and quantitative vs. qualitative), while emphasizing the fundamental continuity between these cases. This continuity can be understood from a non-linear dynamics that lets more complex forms of coordination evolve out of simpler ones. The paper concludes with two specifically human applications, cognition and cooperation, suggesting that without stigmergy these phenomena may never have evolved in the first place. Past, present and future of the “stigmergy” concept The concept of stigmergy was introduced by the French entomologist Pierre-Paul Grassé (Grassé, 1959) to describe a mechanism of coordination used by insects. -
2015 Undergraduate Research Symposium
1 2 9:15am Opening Remarks UW1-210 James Anderson, ASUWB President 9:30am – 12:00pm Oral Session 1 UW1-210 10:00am – 12:00pm Poster Session UW1-2nd floor Vista UW1-3rd Floor Vista and Hallway 12:00pm – 1:30pm Panel Discussion UW1-361 Ask a Student Researcher 1:00pm – 3:00pm Oral Session 2 Digital Future Lab Discovery Hall 150 1:00pm – 3:00pm Poster Session, Demo and Playtesting Digital Future Lab Discovery Hall 150 1:30pm – 4:00pm Poster Session UW1-2nd floor Vista UW1-3rd Floor Vista and Hallway 2:45pm – 4:00pm Oral Session 3 UW1-202 4:00pm – 5:00pm Reception and Gallery Opening 4:00pm – 4:15pm Remarks & Student Success Center Art Gallery Opening Congresswoman Suzan DelBene 4:15pm – 4:30pm Presentation of Faculty Mentor Award Chancellor Wolf Yeigh 3 Oral Presentations Oral Session 1: 9:30am – 12:00pm UW1-210 Oral Session 2: 1:00pm – 3:00pm Digital Future Lab - Discovery Hall 150 Oral Session 3: 2:45pm – 4:00pm UW1-202 4 Oral Session 1: UW1-210 9:30am – 12pm 9:30am-9:45am Gaze and its Relation to Effective Communication in Software Engineering Collaboration Environments Author(s): Hasit Mistry, Fida Al-Sughayer, Minaashi Kalyanaraman Mentor: David Socha Abstract: Research to establish links between perceived gaze and attention, thoughts or facial display of emotions has been conducted in the past in controlled environments or laboratories, but very little is known about the relation between gaze and effective communication. The dataset at our disposal is unique in nature. This dataset consists of video and audio files of software developers working in their natural environment.