Principles of Digital Signal Processing

Total Page:16

File Type:pdf, Size:1020Kb

Principles of Digital Signal Processing A Course Material on PRINCIPLES OF DIGITAL SIGNAL PROCESSING By Mr. A.MUTHUKUMAR ASSISTANT PROFESSOR DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING SASURIE COLLEGE OF ENGINEERING VIJAYAMANGALAM – 638 056 QUALITY CERTIFICATE This is to certify that the e‐course material Subject Code : EC6501 Subject : PRINCIPLES OF DIGITAL SIGNAL PROCESSING Class : III Year ECE being prepared by me and it meets the knowledge requirement of the university curriculum. Signature of the Author Name: MUTHUKUMAR.A Designation: AP This is to certify that the course material being prepared by Mr.M.SHANMUGHARAJ is of adequate quality. He has referred more than five books among them minimum one is from abroad author. Signature of HD Name: Dr.K.PANDIARAJAN SEAL EC6502 DIGITAL SIGNAL PROCESSING UNIT I DISCRETE FOURIER TRANSFORM 9 DFT and its properties, Relation between DTFT and DFT, FFT computations using Decimation in time and Decimation in frequency algorithms, Overlap-add and save methods UNIT II INFINITE IMPULSE RESPONSE DIGITAL FILTERS 9 Review of design of analogue Butterworth and Chebyshev Filters, Frequency transformation in analogue domain – Design of IIR digital filters using impulse invariance technique – Design of digital filters using bilinear transform – pre warping – Realization using direct, cascade and parallel forms. UNIT III FINITE IMPULSE RESPONSE DIGITAL FILTERS 9 Symmetric and Antisymmetric FIR filters – Linear phase FIR filters – Design using Hamming, Hanning and Blackmann Windows – Frequency sampling method – Realization of FIR filters – Transversal, Linear phase and Polyphase structures. UNIT IV FINITE WORD LENGTH EFFECTS 9 Fixed point and floating point number representations – Comparison – Truncation and Rounding errors - Quantization noise – derivation for quantization noise power – coefficient quantization error – Product quantization error - Overflow error – Roundoff noise power - limit cycle oscillations due to product roundoff and overflow errors - signal scaling UNIT V MULTIRATE SIGNAL PROCESSING 9 Introduction to Multirate signal processing-Decimation-Interpolation-Polyphase implementation of FIR filters for interpolator and decimator -Multistage implementation of sampling rate conversion- Design of narrow band filters - Applications of Multirate signal processing. TOTAL= 60 PERIODS TEXT BOOKS 1. John G Proakis and Manolakis, “ Digital Signal Processing Principles, Algorithms and Applications”, Pearson, Fourth Edition, 2007. 2. S.Salivahanan, A. Vallavaraj, C. Gnanapriya, Digital Signal Processing, TMH/McGraw Hill International, 2007 REFERENCES 1. E.C.Ifeachor and B.W.Jervis,“Digital signal processing–A practical approach ” Second edition, Pearson, 2002. 2. S.K. Mitra, Digital Signal Processing, A Computer Based approach, Tata Mc GrawHill, 1998. 3. P.P.Vaidyanathan, Multirate Systems & Filter Banks, Prentice Hall, Englewood cliffs, NJ, 1993. 4. Johny R. Johnson, Introduction to Digital Signal Processing, PHI, 2006. S.No Topic Page No. UNIT I - FREQUENCY TRANSFORMATIONS 1 1.1 INTRODUCTION 1 1.2 DIFFERENCE BETWEEN FT & DFT 2 1.3 CALCULATION OF DFT & IDFT 2 1.4 DIFFERENCE BETWEEN DFT & IDFT 3 1.5 PROPERTIES OF DFT 4 1.6 APPLICATION OF DFT 10 1.7 FAST FOURIER ALGORITHM (FFT) 13 1.8 RADIX-2 FFT ALGORITHMS 14 1.9 COMPUTATIONAL COMPLEXITY FFT V/S DIRECT 18 COMPUTATION 1.10 BIT REVERSAL 19 1.11 DECIMATION IN FREQUENCY (DIFFFT) 20 1.12 GOERTZEL ALGORITHM 26 UNIT II - IIR FILTER DESIGN 29 2.1 INTRODUCTION 29 2.2 TYPES OF DIGITAL FILTER 33 2.3 STRUCTURES FOR FIR SYSTEMS 34 2.4 STRUCTURES FOR IIR SYSTEMS 36 2.5 CONVERSION OF ANALOG FILTER INTO DIGITAL FILTER 43 2.6 IIR FILTER DESIGN - BILINEAR TRANSFORMATION 44 METHOD (BZT) 2.7 LPF AND HPF ANALOG BUTTERWORTH FILTER TRANSFER 47 FUNCTION 2.8 METHOD FOR DESIGNING DIGITAL FILTERS USING BZT 47 2.9 BUTTERWORTH FILTER APPROXIMATION 48 2.10 FREQUENCY RESPONSE CHARACTERISTIC 48 2.11 FREQUENCY TRANSFORMATION 48 2.11.1 FREQUENCY TRANSFORMATION (ANALOG FILTER) 48 2.11.2 FREQUENCY TRANSFORMATION (DIGITAL FILTER) 48 UNIT III - FIR FILTER DESIGN 50 3.1 FEATURES OF FIR FILTER 50 3.2 SYMMETRIC AND ANTI-SYMMETRIC FIR FILTERS 50 3.3 GIBBS PHENOMENON 51 3.4 DESIGNING FILTER FROM POLE ZERO PLACEMENT 54 3.5 NOTCH AND COMB FILTERS 54 3.6 DIGITAL RESONATOR 55 UNIT IV – FINITE WORD LENGTH EFFECTS 80 4.1 NUMBER REPRESENTATION 80 4.1.1 FIXED-POINT QUANTIZATION ERRORS 80 4.1.2 FLOATING-POINT QUANTIZATION ERRORS 82 4.2 ROUNDOFF NOISE 83 4.3 ROUNDOFF NOISE IN FIR FILTERS 83 4.4 ROUNDOFF NOISE IN FIXED POINT FIR FILTERS 85 4.5 LIMIT CYCLE OSCILLATIONS 89 4.6 OVERFLOW OSCILLATIONS 90 4.7 COEFFICIENT QUANTIZATION ERROR 91 4.8 REALIZATION CONSIDERATIONS 93 UNIT V - APPLICATIONS OF DSP 95 5.1 SPEECH RECOGNITION 95 5.2 LINEAR PREDICTION OF SPEECH SYNTHESIS 95 5.3 SOUND PROCESSING 97 5.4 ECHO CANCELLATION 97 5.5 VIBRATION ANALYSIS 98 5.6 MULTISTAGE IMPLEMENTATION OF DIGITAL FILTERS 100 5.7 SPEECH SIGNAL PROCESSING 100 5.8 SUBBAND CODING 102 5.9 ADAPTIVE FILTER 107 5.10 AUDIO PROCESSING 110 5.10.1 MUSIC SOUND PROCESSING 110 5.10.2 SPEECH GENERATION 110 5.10.3 SPEECH RECOGNITION 111 5.11 IMAGE ENHANCEMENT 111 UNIT I FREQUENCY TRANSFORMATIONS PRE REQUISITE DISCUSSION: The Discrete Fourier transform is performed for Finite length sequence whereas DTFT is used to perform transformation on both finite and also Infinite length sequence. The DFT and the DTFT can be viewed as the logical result of applying the standard continuous Fourier transform to discrete data. From that perspective, we have the satisfying result that it's not the transform that varies. 1.1 INTRODUCTION Any signal can be decomposed in terms of sinusoidal (or complex exponential) components. Thus the analysis of signals can be done by transforming time domain signals into frequency domain and vice-versa. This transformation between time and frequency domain is performed with the help of Fourier Transform(FT) But still it is not convenient for computation by DSP processors hence Discrete Fourier Transform(DFT) is used. Time domain analysis provides some information like amplitude at sampling instant but does not convey frequency content & power, energy spectrum hence frequency domain analysis is used. For Discrete time signals x(n) , Fourier Transform is denoted as x(ω) & given by ∞ X(ω) = ∑ x (n) e –jωn FT….……(1) n=-∞ DFT is denoted by x(k) and given by (ω= 2 ∏ k/N) N-1 X(k) = ∑ x (n) e –j2 ∏ kn / N DFT…….(2) n=0 IDFT is given as N-1 1 x(n) =1/N ∑ X (k) e j2 ∏ kn / N IDFT……(3) k=0 1.2 DIFFERENCE BETWEEN FT & DFT Sr Fourier Transform (FT) Discrete Fourier Transform (DFT) No 1 FT x(ω) is the continuous DFT x(k) is calculated only at discrete values function of x(n). of ω. Thus DFT is discrete in nature. 2 The range of ω is from - ∏ to ∏ Sampling is done at N equally spaced points over or 0 to 2∏. period 0 to 2∏. Thus DFT is sampled version of FT. 3 FT is given by equation (1) DFT is given by equation (2) 4 FT equations are applicable to most DFT equations are applicable to causal, finite of infinite sequences. duration sequences 5 In DSP processors & computers In DSP processors and computers DFTs are applications of FT are limited mostly used. because x(ω) is continuous APPLICATION function of ω. a) Spectrum Analysis b) Filter Design Q) Prove that FT x(ω) is periodic with period 2∏. Q) Determine FT of x(n)= an u(n) for -1< a < 1. Q) Determine FT of x(n)= A for 0 ≤ n ≤ L-1. Q) Determine FT of x(n)= u(n) Q) Determine FT of x(n)= δ(n) Q) Determine FT of x(n)= e–at u(t) 1.3 CALCULATION OF DFT & IDFT For calculation of DFT & IDFT two different methods can be used. First method is using mathematical – equation & second method is 4 or 8 point DFT. If x(n) is the sequence of N samples then consider WN= e j2 ∏ / N (twiddle factor) Four POINT DFT ( 4-DFT) –j ∏/2 Sr No WN=W4=e Angle Real Imaginary Total 0 1 W4 0 10 1 1 2 W4 - ∏/2 0-j -j 2 3 W4 - ∏ -1 0 -1 3 4 W4 - 3 ∏ /2 0 J J n=0 n=1 n=2 n=3 0 0 0 0 k=0 W4 W4 W4 W4 0 1 2 3 [WN] = k=1 W4 W4 W4 W4 k=2 2 0 2 4 6 W4 W4 W4 W4 0 3 6 9 k=3 W4 W4 W4 W4 Thus 4 point DFT is given as XN = [WN ] XN 1 1 1 1 [WN] = 1 –j -1 j 1 -1 1 -1 1 j -1 -j EIGHT POINT DFT ( 8-DFT) –j Sr No WN = W8= e Angle Magnitude Imaginary Total ∏/4 0 1 W8 0 1----1 1 2 W8 - ∏/4 1/√2-j 1/√21/√2 -j 1/√2 2 3 W8 - ∏/2 0-j -j 3 4 W8 - 3 ∏ /4 -1/√2-j 1/√2- 1/√2-j 1/√2 4 5 W8 - ∏ -1 ---- -1 5 6 W8 - 5∏ / 4 -1/√2+j 1/√2- 1/√2 + j 1/√2 6 7 W8 - 7∏ / 4 0 J J 8 W 7 - 2∏ 1/√2+j 1/√21/√2 + j 1/√2 8 0 8 16 24 32 40 Remember that W8 = W8 = W8 = W8 = W8 = W8 (Periodic Property) Magnitude and phase of x(k) can be obtained as, 2 2 |x(k)| = sqrt ( Xr(k) + XI(k) ) Angle -1 x(k) = tan (XI(k) / XR(k)) Examples: Q) Compute DFT of x(n) = {0,1,2,3} Ans: x4=[6, -2+2j, -2, -2-2j ] Q) Compute DFT of x(n) = {1,0,0,1} Ans: x4=[2, 1+j, 0, 1-j ] Q) Compute DFT of x(n) = {1,0,1,0} Ans: x4=[2, 0, 2, 0 ] Q) Compute IDFT of x(k) = {2, 1+j, 0, 1-j } Ans: x4=[1,0,0,1] 1.4 DIFFERENCE BETWEEN DFT & IDFT Sr DFT (Analysis transform) IDFT (Synthesis transform) No 1 DFT is finite duration discrete IDFT is inverse DFT which is used to calculate time frequency sequence that is obtained domain representation (Discrete time by sampling one period of FT.
Recommended publications
  • Dsp Notes Prepared
    DSP NOTES PREPARED BY Ch.Ganapathy Reddy Professor & HOD, ECE Shaikpet, Hyderabad-08 Ch Ganapathy Reddy, Prof and HOD, ECE, GNITS id:[email protected],9052344333 1 DIGITAL SIGNAL PROCESSING A signal is defined as any physical quantity that varies with time, space or another independent variable. A system is defined as a physical device that performs an operation on a signal. System is characterized by the type of operation that performs on the signal. Such operations are referred to as signal processing. Advantages of DSP 1. A digital programmable system allows flexibility in reconfiguring the digital signal processing operations by changing the program. In analog redesign of hardware is required. 2. In digital accuracy depends on word length, floating Vs fixed point arithmetic etc. In analog depends on components. 3. Can be stored on disk. 4. It is very difficult to perform precise mathematical operations on signals in analog form but these operations can be routinely implemented on a digital computer using software. 5. Cheaper to implement. 6. Small size. 7. Several filters need several boards in analog, whereas in digital same DSP processor is used for many filters. Disadvantages of DSP 1. When analog signal is changing very fast, it is difficult to convert digital form .(beyond 100KHz range) 2. w=1/2 Sampling rate. 3. Finite word length problems. 4. When the signal is weak, within a few tenths of millivolts, we cannot amplify the signal after it is digitized. 5. DSP hardware is more expensive than general purpose microprocessors & micro controllers. Ch Ganapathy Reddy, Prof and HOD, ECE, GNITS id:[email protected],9052344333 2 6.
    [Show full text]
  • Virtual Analog (VA) Filter Implementation and Comparisons Copyright © 2013 Will Pirkle
    App Note 4"Virtual Analog (VA) Filter Implementation and Comparisons "Copyright © 2013 Will Pirkle Virtual Analog (VA) Filter Implementation and Comparisons Will Pirkle I have had several requests from readers to do a Virtual Analog (VA) Filter Implementation plug-in. The source of these designs is a book electronically published in June 2012 named The Art of VA Filter Design by Vadim Zavalishin. This awesome piece of work is free and available from many sources including my own site www.willpirkle.com. This short book is an excellent introduction to basic analog filtering theory as well as digital transformations. It is so concise in this respect that I am considering using it as part of the text materials for an Advanced Analog Circuits class I teach. I highly recommend this excellent book - you will need to understand its content to use this App Note; for the most part I use the same variable names as the book so you will want to use it as a reference. Zavalishinʼs derivations and descriptions are so well thought out and so well written that it makes no sense for me to repeat them here and I donʼt think it can be simplified any more that it already is in his book. Another reason that I enjoyed this book is that the author followed a similar derivation to reach the bilinear transform as my DSP professor (Claude Lindquist) did when I was in graduate school; in fact I use part of that same derivation in my classes and book. Also similar was the use of an integrator as a prototype filter to generate the discrete time transforms.
    [Show full text]
  • Noise Will Be Noise: Or Phase Optimized Recursive Filters for Interference Suppression, Signal Differentiation and State Estimation (Extended Version) Hugh L
    Available online at https://arxiv.org/ 1 Noise will be noise: Or phase optimized recursive filters for interference suppression, signal differentiation and state estimation (extended version) Hugh L. Kennedy Abstract— The increased temporal and spectral resolution of oversampled systems allows many sensor-signal analysis tasks to be performed (e.g. detection, classification and tracking) using a filterbank of low-pass digital differentiators. Such filters are readily designed via flatness constraints on the derivatives of the complex frequency response at dc, pi and at the centre frequencies of narrowband interferers, i.e. using maximally-flat (MaxFlat) designs. Infinite-impulse-response (IIR) filters are ideal in embedded online systems with high data-rates because computational complexity is independent of their (fading) ‘memory’. A novel procedure for the design of MaxFlat IIR filterbanks with improved passband phase linearity is presented in this paper, as a possible alternative to Kalman and Wiener filters in a class of derivative-state estimation problems with uncertain signal models. Butterworth poles are used for configurable bandwidth and guaranteed stability. Flatness constraints of arbitrary order are derived for temporal derivatives of arbitrary order and a prescribed group delay. As longer lags (in samples) are readily accommodated in oversampled systems, an expression for the optimal group delay that minimizes the white-noise gain (i.e. the error variance of the derivative estimate at steady state) is derived. Filter zeros are optimally placed for the required passband phase response and the cancellation of narrowband interferers in the stopband, by solving a linear system of equations. Low complexity filterbank realizations are discussed then their behaviour is analysed in a Teager-Kaiser operator to detect pulsed signals and in a state observer to track manoeuvring targets in simulated scenarios.
    [Show full text]
  • Overview Textbook Prerequisite Course Outline
    ESE 337 Digital Signal Processing: Theory Fall 2018 Instructor: Yue Zhao Time and Location: Tuesday, Thursday 7:00pm - 8:20pm, Javits Lecture Center 101 Contact: Email: [email protected], Office: 261 Light Engineering Office Hours: Tuesday, Thursday 1:30pm - 3:00pm, or by appointment Teaching Assistants, and Office Hours: • Jiaming Li ([email protected]): THU 12:30pm - 2:00pm, or by appointment, Location: 208 Light Engineering (Changes of hours, if any, will be updated on Blackboard.) Overview Digital Signal Processing (DSP) lies at the heart of modern information technology in many fields including digital communications, audio/image/video compression, speech recognition, medical imaging, sensing for health, touch screens, space exploration, etc. This class covers the basic principles of digital signal processing and digital filtering. Skills for analyzing and synthesizing algorithms and systems that process discrete time signals will be developed. 3 credits. Textbook • A.V. Oppenheim and R.W. Schafer, Discrete Time Signal Processing, Prentice Hall, Third Edition, 2009 Prerequisite • ESE 305, Deterministic Signals and Systems Course Outline Week 1 DT signals, DT systems and properties, LTI systems Week 2 Convolution, properties of LTI systems Week 3 Examples of LTI systems, eigen functions, frequency response of DT systems, DTFT 1 ESE 337 Syllabus Week 4 Convergence and properties of DTFT Week 5 Theorems of DTFT, useful DTFT pairs, examples, Z-transform Week 6 Examples of Z-transform, properties of ROC Week 7 Inverse Z-transform,
    [Show full text]
  • ECGR4124 Digital Signal Processing Exam 2 Spring 2017 Name
    ECGR4124 Digital Signal Processing Exam 2 Spring 2017 Name: _____________________________________ LAST 4 NUMBERS of Student Number: _____ Do NOT begin until told to do so Make sure that you have all pages before starting NO TEXTBOOK, NO CALCULATOR, NO CELL PHONES/WIRELESS DEVICES Open handouts, 2 sheet front/back notes, NO problem handouts, NO exams, NO quizzes DO ALL WORK IN THE SPACE GIVEN Do NOT use the back of the pages, do NOT turn in extra sheets of work/paper Multiple-choice answers should be within 5% of correct value Show ALL work, even for multiple choice ACADEMIC INTEGRITY: Students have the responsibility to know and observe the requirements of The UNCC Code of Student Academic Integrity. This code forbids cheating, fabrication or falsification of information, multiple submission of academic work, plagiarism, abuse of academic materials, and complicity in academic dishonesty. Unless otherwise noted: F{} denotes Discrete time Fourier transform {DTFT, DFT, or Continuous, as implied in problem} F-1{} denotes inverse Fourier transform ω denotes frequency in rad/sample, Ω denotes frequency in rad/second ∗ denotes linear convolution, N denotes circular convolution x*(t) denotes the conjugate of x(t) Useful constants, etc: e ≈ 2.72 π ≈ 3.14 e2 ≈ 7.39 e4 ≈ 54.6 e-0.5 ≈ 0.607 e-0.25 ≈ 0.779 1/e ≈ 0.37 √2 ≈ 1.41 e-2 ≈ 0.135 √3 ≈ 1.73 e-4 ≈ 0.0183 √5 ≈ 2.22 √7 ≈ 2.64 √10 ≈ 3.16 ln( 2 ) ≈ 0.69 ln( 4 ) ≈ 1.38 log10( 2 ) ≈ 0.30 log10( 3 ) ≈ 0.48 log10( 10 ) ≈ 1.0 log10( 0.1 ) ≈ -1 1/π ≈ 0.318 sin(0.1) ≈ 0.1 tan(1/9) ≈ 1/9 cos(π / 4) ≈ 0.71 cos( A ) cos ( B ) = 0.5 cos(A - B) + 0.5 cos(A + B) ejθ = cos(θ) + j sin(θ) 1/10 5 Points Each, Circle the Best Answer 1.
    [Show full text]
  • Digital Signal Processing I Exam 2 Fall 1999 Session 17 Live: 21 Oct
    Digital Signal Processing I Exam 2 Fall 1999 Session 17 Live: 21 Oct. 1999 Cover Sheet Test Duration: 75 minutes. Open Book but Closed Notes. Calculators NOT allowed. This test contains four problems. All work should be done in the blue books provided. Do not return this test sheet, just return the blue books. Prob. No. Topic of Problem Points 1. Digital Upsampling 35 2. Digital Subbanding 25 3. Multi-Stage Upsampling/Interpolation 20 4. IIR Filter Design Via Bilinear Transform 20 1 Digital Signal Processing I Exam 2 Fall 1999 Session 17 Live: 21 Oct. 1999 Problem 1. [35 points] X (F) H (ω) a LP 1/4W 2 F ω W W π 3π π π 3π π 4 4 4 4 x (t) h [n] a Ideal A/D x [n] w [n] Lowpass Filter y [n] 2 π LP 3π F = 4W ω = ω = s p 4 s 4 gain =2 Figure 1. The analog signal xa(t) with CTFT Xa(F ) shown above is input to the system above, where x[n]=xa(n/Fs)withFs =4W ,and sin( π n) cos( π n) h [n]= 2 4 , −∞ <n<∞, LP π n − n2 2 1 4 | |≤ π 3π ≤| |≤ such that HLP (ω)=2for ω 4 , HLP (ω)=0for 4 ω π,andHLP (ω) has a cosine π 3π roll-off from 1 at ωp = 4 to 0 at ωs = 4 . Finally, the zero inserts may be mathematically described as ( x( n ),neven w[n]= 2 0,nodd (a) Plot the magnitude of the DTFT of the output y[n], Y (ω), over −π<ω<π.
    [Show full text]
  • Understanding Digital Signal Processing
    Understanding Digital Signal Processing Richard G. Lyons PRENTICE HALL PTR PRENTICE HALL Professional Technical Reference Upper Saddle River, New Jersey 07458 www.photr,com Contents Preface xi 1 DISCRETE SEQUENCES AND SYSTEMS 1 1.1 Discrete Sequences and Their Notation 2 1.2 Signal Amplitude, Magnitude, Power 8 1.3 Signal Processing Operational Symbols 9 1.4 Introduction to Discrete Linear Time-Invariant Systems 12 1.5 Discrete Linear Systems 12 1.6 Time-Invariant Systems 17 1.7 The Commutative Property of Linear Time-Invariant Systems 18 1.8 Analyzing Linear Time-Invariant Systems 19 2 PERIODIC SAMPLING 21 2.1 Aliasing: Signal Ambiquity in the Frequency Domain 21 2.2 Sampling Low-Pass Signals 26 2.3 Sampling Bandpass Signals 30 2.4 Spectral Inversion in Bandpass Sampling 39 3 THE DISCRETE FOURIER TRANSFORM 45 3.1 Understanding the DFT Equation 46 3.2 DFT Symmetry 58 v vi Contents 3.3 DFT Linearity 60 3.4 DFT Magnitudes 61 3.5 DFT Frequency Axis 62 3.6 DFT Shifting Theorem 63 3.7 Inverse DFT 65 3.8 DFT Leakage 66 3.9 Windows 74 3.10 DFT Scalloping Loss 82 3.11 DFT Resolution, Zero Padding, and Frequency-Domain Sampling 83 3.12 DFT Processing Gain 88 3.13 The DFT of Rectangular Functions 91 3.14 The DFT Frequency Response to a Complex Input 112 3.15 The DFT Frequency Response to a Real Cosine Input 116 3.16 The DFT Single-Bin Frequency Response to a Real Cosine Input 117 3.17 Interpreting the DFT 120 4 THE FAST FOURIER TRANSFORM 125 4.1 Relationship of the FFT to the DFT 126 4.2 Hints an Using FFTs in Practice 127 4.3 FFT Software Programs
    [Show full text]
  • ESE 531: Digital Signal Processing Today IIR Filter Design Impulse
    Today ESE 531: Digital Signal Processing ! IIR Filter Design " Impulse Invariance " Bilinear Transformation Lec 18: March 30, 2017 ! Transformation of DT Filters IIR Filters and Adaptive Filters ! Adaptive Filters ! LMS Algorithm Penn ESE 531 Spring 2017 – Khanna Penn ESE 531 Spring 2017 - Khanna 2 IIR Filter Design Impulse Invariance ! Transform continuous-time filter into a discrete- ! Want to implement continuous-time system in time filter meeting specs discrete-time " Pick suitable transformation from s (Laplace variable) to z (or t to n) " Pick suitable analog Hc(s) allowing specs to be met, transform to H(z) ! We’ve seen this before… impulse invariance Penn ESE 531 Spring 2017 - Khanna 3 Penn ESE 531 Spring 2017 - Khanna 4 Impulse Invariance Impulse Invariance ! With Hc(jΩ) bandlimited, choose ! With Hc(jΩ) bandlimited, choose j ω j ω H(e ω ) = H ( j ), ω < π H(e ω ) = H ( j ), ω < π c T c T ! With the further requirement that T be chosen such ! With the further requirement that T be chosen such that that Hc ( jΩ) = 0, Ω ≥ π / T Hc ( jΩ) = 0, Ω ≥ π / T h[n] = Thc (nT ) Penn ESE 531 Spring 2017 - Khanna 5 Penn ESE 531 Spring 2017 - Khanna 6 1 IIR by Impulse Invariance Example jω ! If Hc(jω)≈0 for |ωd| > π/T, no aliasing and H(e ) = H(jω/T), ω<π jω ! To get a particular H(e ), find corresponding Hc and Td for which above is true (within specs) ! Note: Td is not for aliasing control, used for frequency scaling. Penn ESE 531 Spring 2017 - Khanna 7 Penn ESE 531 Spring 2017 - Khanna 8 Example Example 1 eat ←⎯L→ s − a Penn ESE 531 Spring
    [Show full text]
  • Chap 4 Sampling of Continuous-Time Signals Introduction
    Chap 4 Sampling of Continuous-Time Signals Introduction 4.1 Periodic Sampling 4.2 Frequency-Domain Representation of Sampling 4.3 Reconstruction of a Bandlimited Signal from its Samples 4.4 Discrete-Time Processing of Continuous-Time Signals 4.5 Continuous-Time Processing of Discrete-Time Signals 4.6 Changing the Sampling Rate Using Discrete-Time Processing 4.7 Multirate Signal Processing 4.8 Digital Processing of Analog Signals 4.9 Oversampling and Noise Shaping in A/D and D/A Conversion 2018/9/18 DSP 2 Periodic Sampling Sequence of samples x[n] is obtained from a continuous-time signal xc(t) : x[n] = xc(nT), - infinity < n < infinity T : sampling period fs = 1/T : sampling frequency, samples/second C/D Continuous-to-discrete-time Xc(t) converter X[n] = Xc(nT) T In a practical setting, the operation of sampling is often implemented by an analog-to-digital (A/D) converter which can be approximated to the ideal C/D converter. The sampling operation is generally not invertible. The inherent ambiguity in sampling is of primary concern in signal processing. 2018/9/18 DSP 3 Sampling with a Periodic Impulse Train s(t) C/D Converter Conversion from impulse train x[n] = x (nT) x (t) X C C xS(t)to discrete-time sequence xC(t) xC(t) xS(t) 2 Sampling Rates xS(t) -4T 0 2T -4T 0 2T x[n] 2 Output Sequences x[n] -4 0 2 -4 0 2 2018/9/18 DSP 4 Frequency-domain representation of sampling The conversion of xc(t) to xs(t) through modulating signal s(t) which is a periodic impulse train s(t) (t nT ) n xs (t) xc (t)s(t) xc (t) (t nT ) n by shifting property of the impulse xs (t) xc (nT)(t nT) n The Fourier transform of a periodic impulse train is a periodic impulse train.
    [Show full text]
  • Digital Signal Processing Lecture 8
    Lecture 8 Recap Introduction CT->DT Digital Signal Processing Impulse Invariance Lecture 8 - Filter Design - IIR Bilinear Trans. Example Electrical Engineering and Computer Science University of Tennessee, Knoxville Overview Lecture 8 1 Recap Recap Introduction CT->DT 2 Introduction Impulse Invariance 3 Bilinear Trans. CT->DT Example 4 Impulse Invariance 5 Bilinear Trans. 6 Example Roadmap Lecture 8 Introduction Discrete-time signals and systems - LTI systems Unit sample response h[n]: uniquely characterizes an Recap LTI system Introduction Linear constant-coefficient difference equation CT->DT Frequency response: H(ej!) Impulse Invariance Complex exponential being eigenfunction of an LTI j! j! Bilinear Trans. system: y[n] = H(e )x[n] and H(e ) as eigenvalue. Example z transform P1 −n The z-transform, X(z) = n=−∞ x[n]z Region of convergence - the z-plane System function, H(z) Properties of the z-transform The significance of zeros 1 H n−1 The inverse z-transform, x[n] = 2πj C X(z)z dz: inspection, power series, partial fraction expansion Sampling and Reconstruction Transform domain analysis - nwz Review - Design structures Lecture 8 Different representations of causal LTI systems LCDE with initial rest condition H(z) with jzj > R+ and starts at n = 0 Recap Block diagram vs. Signal flow graph and how to determine Introduction system function (or unit sample response) from the graphs CT->DT Design structures Impulse Invariance Direct form I (zeros first) Bilinear Trans. Direct form II (poles first) - Canonic structure Example Transposed form (zeros first) IIR: cascade form, parallel form, feedback in IIR (computable vs. noncomputable) FIR: direct form, cascade form, parallel form, linear phase Metric: computational resource and precision Sources of errors: coefficient quantization error, input quantization error, product quantization error, limit cycles Pole sensitivity of 2nd-order structures: coupled form Coefficient quantization examples: direct form vs.
    [Show full text]
  • IIR Filters (II)
    Lecture 8 - IIR Filters (II) James Barnes ([email protected]) Spring 2009 Colorado State University Dept of Electrical and Computer Engineering ECE423 – 1 / 27 Lecture 8 Outline ● Introduction ● Digital Filter Design by Analog → Digital Conversion ● (Probably next lecture) ”All Digital” Design Algorithms ● (Next lecture) Conversion of Filter Types by Frequency Transformation Colorado State University Dept of Electrical and Computer Engineering ECE423 – 2 / 27 ❖ Lecture 8 Outline Introduction ❖ IIR Filter Design Overview Method: Impulse Invariance for IIR FIlters Approximation of Derivatives Bilinear Transform Matched Z-Transform Introduction Colorado State University Dept of Electrical and Computer Engineering ECE423 – 3 / 27 IIR Filter Design Overview ● Methods which start from analog design ✦ Impulse Invariance ✦ Approximation of Derivatives ✦ Bilinear Transform ✦ Matched Z-transform All are different methods of mapping the s-plane onto the z-plane ● Methods which are ”all digital” ✦ Least-squares ✦ McClellan-Parks Colorado State University Dept of Electrical and Computer Engineering ECE423 – 4 / 27 ❖ Lecture 8 Outline Introduction Method: Impulse Invariance for IIR FIlters ❖ Impulse Invariance ❖ Impulse Invariance (2) ❖ Impulse Invariance (3) ❖ Impulse Invariance (5) ❖ Impulse Invariance Procedure ❖ Impulse Invariance Example Method: Impulse Invariance for IIR FIlters ❖ Impulse Invariance Example (2) Approximation of Derivatives Bilinear Transform Matched Z-Transform Colorado State University Dept of Electrical and Computer Engineering ECE423 – 5 / 27 Impulse Invariance We start by sampling the impulse response of the analog filter: ha(t) h[n]= ha(nt0) t0 Sampling Theorem gives relation between Fourier Transform of sampled and continuous ”signals”: ∞ 1 ω 2πk H(z)|z=ejω = Ha(j − j ), (1) t0 t0 t0 k=X−∞ where ω =Ωt0 = 2πf/fs and f is the analog frequency in Hz.
    [Show full text]
  • Signal Approximation Using the Bilinear Transform
    SIGNAL APPROXIMATION USING THE BILINEAR TRANSFORM Archana Venkataraman, Alan V. Oppenheim MIT Digital Signal Processing Group 77 Massachusetts Avenue, Cambridge, MA 02139 [email protected], [email protected] ABSTRACT The analysis presented in this paper has application in contexts This paper explores the approximation properties of a unique basis where only a fixed number of DT values can be used to represent a expansion, which realizes a bilinear frequency warping between a CT signal. For example, in a binary detection problem, one might continuous-time signal and its discrete-time representation. We in- want to limit the number of digital multiplies used to compute the vestigate the role that certain parameters and signal characteristics inner product of two CT signals. Numerical simulations of this sce- have on these approximations, and we extend the analysis to a win- nario suggest that the bilinear expansion achieves a better detection dowed representation, which increases the overall time resolution. performance than Nyquist sampling for certain signal classes. Approximations derived from the bilinear representation and from Nyquist sampling are compared in the context of a binary detection 2. THE BILINEAR REPRESENTATION problem. Simulation results indicate that, for many types of signals, the bilinear approximations achieve a better detection performance. As derived in [1], the network shown in Fig. 1 realizes a one-to-one Index Terms— Signal Representations, Approximation Meth- frequency warping between the Laplace and Z-transform domains ods, Bilinear Transformations, Signal Detection according to the bilinear transform. Specifically, the Laplace trans- form F (s) of the signal f(t) and the Z-transform F (z) of the se- f[n] 1.
    [Show full text]