Science, 369, 1113

Total Page:16

File Type:pdf, Size:1020Kb

Science, 369, 1113 RESEARCH ORGANIC CHEMISTRY Photoredox catalysis has emerged as an enabling platform for regioselective C–Hfunc- Static to inducibly dynamic stereocontrol: tionalization through the generation and har- nessing of reactive carbon-centered radical The convergent use of racemic intermediates toward a variety of syntheti- cally useful bond-forming reactions (15–17). b-substituted ketones The power of photoredox catalysis is high- lighted by its activation of conventionally Jacob S. DeHovitz*, Yong Yao Loh*, Jacob A. Kautzky, Kazunori Nagao, Andrew J. Meichan, inert, remote C–H bonds, enabling the func- Motoshi Yamauchi, David W. C. MacMillan†, Todd K. Hyster† tionalization of C–Hbondsatb-carbonyl (18), b-amino (19), and other unactivated aliphatic The synthesis of stereochemically complex molecules in the pharmaceutical and agrochemical industries C–Hmoieties(20) (Fig. 1B, left). On this basis, requires precise control over each distinct stereocenter, a feat that can be challenging and time we questioned whether we could leverage consuming using traditional asymmetric synthesis. Although stereoconvergent processes have the the photoredox-catalyzed generation of these potential to streamline and simplify synthetic routes, they are currently limited by a narrow scope of planar, prochiral radicals as a stereoablative inducibly dynamic stereocenters that can be readily epimerized. Here, we report the use of photoredox tool for traditionally static stereocenters. catalysis to enable the racemization of traditionally static, unreactive stereocenters through the Subsequent nonstereospecific trapping of intermediacy of prochiral radical species. This technology was applied in conjunction with biocatalysts these carbon-centered radical species by a such as ketoreductases and aminotransferases to realize stereoconvergent syntheses of stereodefined suitable hydrogen atom transfer (HAT) cat- g-substituted alcohols and amines from b-substituted ketones. alyst could then enable the racemization of Downloaded from static stereocenters via the reversible cleav- age and formation of C–H bonds, allowing he concept of static stereocenters is a a number of well-established strategies that the use of substrates with remote, unactivated, fundamental principle that underpins elegantly exploit the capacity for stereogenic static C–H stereocenters in stereoconvergent the induction, application, and teaching racemization or epimerization (Fig. 1A, right). processes. of stereochemistry. The vast majority of In particular, out-of-equilibrium processes, Specifically, we postulated that the direct T http://science.sciencemag.org/ stereocenters are considered to be inher- such as the uphill olefin isomerization shown b-functionalization of saturated cyclic ketones ently static (i.e., once formed, they are stable by Weaver and colleagues (8) and the dera- via the merger of photoredox and organocatalysis toward racemization or epimerization) (Fig. 1A, cemizations detailed by Turner and colleagues could serve as a framework for a method toward left). As a result, the configuration of a stereo- (9) and Knowles, Miller, and colleagues (10), the racemization of b-keto stereocenters through center is generally thought to be intrinsically as well as a litany of dynamic kinetic resolu- the intermediacy of a key 5p e– b-enaminyl coupled to the step in which it was forged, tions (DKRs) have successfully used dynamic radical species (Fig. 1C) (18). In contrast to the requiring each bond-forming step to also bear stereocontrol over the past two decades (11–13). well-precedented DKRs of a-substituted ketones the burden of possessing high levels of kinetic Among these strategies, DKRs rely on the rapid (11), DKRs of b-substituted ketones have re- stereocontrol. This approach to structural interconversion of substrate enantiomers, in mained underdeveloped owing to a lack of complexity has been adopted universally (1–6); combination with stereoselective bond for- general methods for the racemization of static however, alternative strategies wherein bond mation, to transform racemic substrates into b-keto stereocenters. By applying the proposed on October 13, 2020 formation and stereochemical induction are enantio- and diastereomerically pure products photoredox racemization protocol in conjunc- decoupled could prove to be both powerful and (Fig. 1A, right). Such a stereoconvergent ap- tion with a ketoreductase-catalyzed kinetic complementary. proach can substantially simplify the steps resolution, we aimed to achieve a broadly ap- Whereas most of the stereocenters in organic required for complex molecule synthesis by plicable dynamic reductive kinetic resolution chemistry are classified as static, a small cadre effectively decoupling bond formation from of b-substituted ketones to furnish stereode- of structural motifs are amenable to stereo- stereoinduction, as racemic intermediates can fined g-substituted alcohols as products. A chemical interconversion (or stereoablation) be converted to stereochemically pure final crucial design element of this DKR strategy under prescribed reaction conditions. These products. is the inability of alcohol products to form the inducibly dynamic centers typically incorpo- Dynamic kinetic resolutions are nonetheless key b-enaminyl radical intermediate, thereby rate (i) acidic C–H bonds that can undergo currently restricted to substrates that incorpo- precluding the product from undergoing race- reversible deprotonation in the presence of rate traditionally inducibly dynamic stereo- mization after its formation. an appropriate base (e.g., a-carbonyl C–H centers, which constitutes a serious limitation A proposed mechanism for this photoredox- bonds); (ii) a-heteroatom C–H bonds (such given that most stereogenic centers in organic and enzyme-catalyzed DKR of b-substituted as a-hydroxy or a-amino) that can readily chemistry are static. With this in mind, we ketones is outlined in Fig. 2A. For demonstration participate in hydrogen atom transfer (Fig. sought to determine whether it might be feasi- purposes, we have depicted the racemization 1A, right); and (iii) C–heteroatom bonds ble to develop catalytic approaches that would process as the conversion of (S)-1 to the faster that can undergo reversible formation via render traditionally static stereocenters dy- reacting active enantiomer (R)-1.Thisbegins 1,2- or 1,4-addition (e.g., acetals or b-amino namic under mild conditions. In particular, we through the condensation of (S)-1 with amine carbonyls) (7). were interested in combining such racemization catalyst 2 to form stereodefined enamine (S)-3 Although dynamic stereochemistry might protocols with the exquisite stereoselectivity in situ. At the same time, photoexcitation of seem antithetical to the objective of a multi- of enzymes toward molecules with static distal photocatalyst [Ir(dF(CF3)ppy)2(dtbbpy)](PF6)(4) step stereoselective synthesis, there have been stereocenters (14) (Fig. 1B, right). Here, we would generate the highly oxidizing excited describe such an advance, wherein we apply state *Ir(III) (5) (half-wave reduction potential red III II Merck Center for Catalysis, Princeton University, Princeton, photoredox catalysis to racemize traditionally E1/2 [*Ir /Ir ]=+1.21Vversusthesatu- NJ 08544, USA. static b-keto stereocenters while successfully rated calomel electrode (SCE) in MeCN) (21). *These authors contributed equally to this work. S 3 †Corresponding author. Email: [email protected] merging this protocol with biocatalysis to This species can then oxidize enamine ( )- •+ (D.W.C.M.); [email protected] (T.K.H.) achieve a dynamic kinetic resolution. (half-peak potential Ep [3/3 ]=+0.36Vversus DeHovitz et al., Science 369, 1113–1118 (2020) 28 August 2020 1of6 RESEARCH | REPORT Downloaded from http://science.sciencemag.org/ on October 13, 2020 Fig. 1. Inducing dynamic stereochemistry for asymmetric synthesis. reactions. R and S indicate the stereochemistry of compounds. (B) Combination (A) Static stereocenters versus inducibly dynamic stereocenters. Red circles of photoredox catalysis and biocatalysis for stereoconvergent reactions. (C) (filled and unfilled) indicate substrates containing static stereocenters. Blue Proposed photoredox- and enzyme-catalyzed dynamic kinetic resolution. Me, circles (filled and unfilled) indicate substrates containing inducibly dynamic methyl; Et, ethyl; iPr, isopropyl; Bn, benzyl; En, enamine; H•, hydrogen atom stereocenters. Blue diamonds indicate products formed from stereoconvergent transfer. SCE in MeCN) (22) to give reduced Ir(II) spe- 76.9 kcal mol−1 (25)]. We expect this HAT PhS–]=–0.06 V versus SCE in MeCN] (26). cies (6) and enaminyl radical cation 7. Sub- event to be nonstereoselective, resulting in the Finally, enamine (R)-3 undergoes hydrolysis sequent allylic deprotonation of 7, due to an gradual racemization of the stereocenter, with to furnish the active enantiomer of the ketone increase in acidity of the allylic C–Hbond,can the formation of the opposite enantiomer of (R)-1. Concurrent with this racemization pro- then provide the nucleophilic 5p e– b-enaminyl the enamine [(R)-3] occurring only 50% of the cess, the ketoreductase-catalyzed stereoselec- radical 8 (23). The formation of this key pro- time. The photoredox and HAT catalytic cycles tive reduction of (R)-1 is constantly occurring chiral radical intermediate ablates the stereo- canthenconvergeinasingle-electrontransfer to furnish enantiopure alcohol 12 as product, chemistry at the b-carbon, and subsequent (SET) event between
Recommended publications
  • Improved Catalytic Performance of Carrier-Free Immobilized Lipase by Advanced Cross-Linked Enzyme Aggregates Technology
    Improved Catalytic Performance of Carrier-Free Immobilized Lipase by Advanced Cross-Linked Enzyme Aggregates Technology Xia Jiaojiao Jiangsu University of Science and Technology: Jiangsu University Yan Yan Jiangsu University Bin Zou ( [email protected] ) Jiangsu University https://orcid.org/0000-0003-3816-8776 Adesanya Idowu Onyinye Jiangsu University Research Article Keywords: lipase, carrier-free, immobilization, ionic liquid, stability Posted Date: May 24th, 2021 DOI: https://doi.org/10.21203/rs.3.rs-505612/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Page 1/20 Abstract The cross-linked enzyme aggregates (CLEAs) are one of the technologies that quickly immobilize the enzyme without a carrier. This carrier-free immobilization method has the advantages of simple operation, high reusability and low cost. In this study, ionic liquid with amino group (1-aminopropyl-3- methylimidazole bromideIL) was used as the novel functional surface molecule to modify industrialized lipase (Candida rugosa lipase, CRL). The enzymatic properties of the prepared CRL-FIL-CLEAs were investigated. The activity of CRL-FIL-CLEAs (5.51 U/mg protein) was 1.9 times higher than that of CRL- CLEAs without surface modication (2.86 U/mg protein). After incubation at 60℃ for 50 min, CRL-FIL- CLEAs still maintained 61% of its initial activity, while the value for CRL-CLEAs was only 22%. After repeated use for ve times, compared with the 22% residual activity of CRL-CLEAs, the value of CRL-FIL- CLEAs was 51%. Further kinetic analysis indicated that the Km values for CRL-FIL-CLEAs and CRL-CLEAs were 4.80 mM and 8.06 mM, respectively, which was inferred that the anity to substrate was increased after modication.
    [Show full text]
  • – with Novozymes Enzymes for Biocatalysis
    Biocatalysis Pregabalin case study Smarter chemical synthesis – with Novozymes enzymes for biocatalysis The new biocatalytic route results in process improvements, reduced organic solvent usage and substantial reduction of waste streams in Pregabalin production. Introduction Biocatalysis is the application of enzymes to replace chemical Using Lipolase®, a commercially available lipase, rac-2- catalysts in synthetic processes. In recent past, the use of carboxyethyl-3-cyano-5-methylhexanoic acid ethyl ester biocatalysis has gained momentum in the chemical and (1) can be resolved to form (S)-2-carboxyethyl-3-cyano-5- pharmaceutical industries. Today, it’s an important tool for methylhexanoic acid (2). Compared to the first-generation medicinal, process and polymer chemists to develop efficient process, this new route substantially improves process and highly attractive organic synthetic processes on an efficiency by setting the stereocenter early in the synthesis and industrial scale. enabling the facile racemization and reuse of (R)-1. The biocatalytic process for Pregabalin has been developed It outperforms the first-generation manufacturing process also by Pfizer to boost efficiency in Pregabalin production using by delivering higher yields of Pregabalin and by resulting in Novozymes Lipolase®. substantial reductions of waste streams, corresponding to a 5-fold decrease in the E-Factor from 86 to 17. Development of the biocatalytic process for Pregabalin involves four stages: • Screening to identify a suitable enzyme • Performing optimization of the enzymatic reaction to optimize throughput and reduce enzyme loading • Exploring a chemical pathway to preserve the enantiopurity of the material already obtained and lead to Pregabalin, and • Developing a procedure for the racemization of (R)-1 Process improvements thanks to the biocatalytic route Pregabalin chemical synthesis H Knovenagel CN condensation cyanation KOH 0 Et02C CO2Et Et02C CO2Et Et02C CO2Et CNDE (1) CN NH2 1.
    [Show full text]
  • A Reminder… Chirality: a Type of Stereoisomerism
    A Reminder… Same molecular formula, isomers but not identical. constitutional isomers stereoisomers Different in the way their Same connectivity, but different atoms are connected. spatial arrangement. and trans-2-butene cis-2-butene are stereoisomers. Chirality: A Type of Stereoisomerism Any object that cannot be superimposed on its mirror image is chiral. Any object that can be superimposed on its mirror image is achiral. Chirality: A Type of Stereoisomerism Molecules can also be chiral or achiral. How do we know which? Example #1: Is this molecule chiral? 1. If a molecule can be superimposed on its mirror image, it is achiral. achiral. Mirror Plane of Symmetry = Achiral Example #1: Is this molecule chiral? 2. If you can find a mirror plane of symmetry in the molecule, in any achiral. conformation, it is achiral. Can subject unstable conformations to this test. ≡ achiral. Finding Chirality in Molecules Example #2: Is this molecule chiral? 1. If a molecule cannot be superimposed on its mirror image, it is chiral. chiral. The mirror image of a chiral molecule is called its enantiomer. Finding Chirality in Molecules Example #2: Is this molecule chiral? 2. If you cannot find a mirror plane of symmetry in the molecule, in any conformation, it is chiral. chiral. (Or maybe you haven’t looked hard enough.) Pharmacology of Enantiomers (+)-esomeprazole (-)-esomeprazole proton pump inhibitor inactive Prilosec: Mixture of both enantiomers. Patent to AstraZeneca expired 2002. Nexium: (+) enantiomer only. Process patent coverage to 2007. More examples at http://z.umn.edu/2301drugs. (+)-ibuprofen (-)-ibuprofen (+)-carvone (-)-carvone analgesic inactive (but is converted to spearmint oil caraway oil + enantiomer by an enzyme) Each enantiomer is recognized Advil (Wyeth) is a mixture of both enantiomers.
    [Show full text]
  • Screening of Macromolecular Cross-Linkers and Food-Grade Additives for Enhancement of Catalytic Performance of MNP-CLEA-Lipase of Hevea Brasiliensis
    IOP Conference Series: Materials Science and Engineering PAPER • OPEN ACCESS Screening of macromolecular cross-linkers and food-grade additives for enhancement of catalytic performance of MNP-CLEA-lipase of hevea brasiliensis To cite this article: Nur Amalin Ab Aziz Al Safi and Faridah Yusof 2020 IOP Conf. Ser.: Mater. Sci. Eng. 932 012019 View the article online for updates and enhancements. This content was downloaded from IP address 170.106.202.226 on 23/09/2021 at 18:45 1st International Conference on Science, Engineering and Technology (ICSET) 2020 IOP Publishing IOP Conf. Series: Materials Science and Engineering 932 (2020) 012019 doi:10.1088/1757-899X/932/1/012019 Screening of macromolecular cross-linkers and food-grade additives for enhancement of catalytic performance of MNP- CLEA-lipase of hevea brasiliensis. Nur Amalin Ab Aziz Al Safi1 and Faridah Yusof1 1 Department of Biotechnology Engineering, International Islamic University Malaysia. Abstract. Skim latex from Hevea brasiliensis (rubber tree) consist of many useful proteins and enzymes that can be utilized to produce value added products for industrial purposes. Lipase recovered from skim latex serum was immobilized via cross-linked enzyme aggregates (CLEA) technology, while supported by magnetic nanoparticles for properties enhancement, termed ‘Magnetic Nanoparticles CLEA-lipase’ (MNP-CLEA-lipase). MNP-CLEA-lipase was prepared by chemical cross-linking of enzyme aggregates with amino functionalized magnetic nanoparticles. Instead of using glutaraldehyde as cross-linking agent, green, non-toxic and renewable macromolecular cross-linkers (dextran, chitosan, gum Arabic and pectin) were screened and the best alternative based on highest residual activity was chosen for further analysis.
    [Show full text]
  • Chapter 4: Stereochemistry Introduction to Stereochemistry
    Chapter 4: Stereochemistry Introduction To Stereochemistry Consider two of the compounds we produced while finding all the isomers of C7H16: CH3 CH3 2-methylhexane 3-methylhexane Me Me Me C Me H Bu Bu Me Me 2-methylhexane H H mirror Me rotate Bu Me H 2-methylhexame is superimposable with its mirror image Introduction To Stereochemistry Consider two of the compounds we produced while finding all the isomers of C7H16: CH3 CH3 2-methylhexane 3-methylhexane H C Et Et Me Pr Pr 3-methylhexane Me Me H H mirror Et rotate H Me Pr 2-methylhexame is superimposable with its mirror image Introduction To Stereochemistry Consider two of the compounds we produced while finding all the isomers of C7H16: CH3 CH3 2-methylhexane 3-methylhexane .Compounds that are not superimposable with their mirror image are called chiral (in Greek, chiral means "handed") 3-methylhexane is a chiral molecule. .Compounds that are superimposable with their mirror image are called achiral. 2-methylhexane is an achiral molecule. .An atom (usually carbon) with 4 different substituents is called a stereogenic center or stereocenter. Enantiomers Et Et Pr Pr Me CH3 Me H H 3-methylhexane mirror enantiomers Et Et Pr Pr Me Me Me H H Me H H Two compounds that are non-superimposable mirror images (the two "hands") are called enantiomers. Introduction To Stereochemistry Structural (constitutional) Isomers - Compounds of the same molecular formula with different connectivity (structure, constitution) 2-methylpentane 3-methylpentane Conformational Isomers - Compounds of the same structure that differ in rotation around one or more single bonds Me Me H H H Me H H H H Me H Configurational Isomers or Stereoisomers - Compounds of the same structure that differ in one or more aspects of stereochemistry (how groups are oriented in space - enantiomers or diastereomers) We need a a way to describe the stereochemistry! Me H H Me 3-methylhexane 3-methylhexane The CIP System Revisited 1.
    [Show full text]
  • Chirality and Enantiomers
    16.11.2010 Bioanalytics Part 5 12.11.2010 Chirality and Enantiomers • Definition: Optical activity • Properties of enantiomers • Methods: – Polarimetry – Circular dichroism • Nomenclature • Separation of enantiomers • Determination of enantiomeric excess (ee) Determination of absolute configuration • Enantiomeric ratio (E‐value) 1 16.11.2010 Definitions Enantiomers: the two mirror images of a molecule Chirality: non‐superimposable mirror‐images •Depends on the symmetry of a molecule •Point‐symmetry: asymmetric C, Si, S, P‐atoms •Helical structures (protein α‐helix) Quarz crystals snail‐shell amino acids Properties of Enantiomers – Chemical identical – Identical UV, IR, NMR‐Spectra – Differences: • Absorption and refraction of circular polarized light is different – Polarimetry, CD‐spectroscopy • Interaction with other chiral molecules/surfaces is different – Separation of enantiomers on chiral columns (GC, HPLC) 2 16.11.2010 Chiral compounds show optical activity A polarimeter is a device which measures the angle of rotation by passing polarized light through an „optical active“ (chiral) substance. Interaction of light and matter If light enters matter, its intensity (amplitude), polarization, velocity, wavelength, etc. may alter. The two basic phenomena of the interaction of light and matter are absorption (or extinction) and a decrease in velocity. 3 16.11.2010 Interaction of light and matter Absorption means that the intensity (amplitude) of light decreases in matter because matter absorbs a part of the light. (Intensity is the square of amplitude.) Interaction of light and matter The decrease in velocity (i.e. the slowdown) of light in matter is caused by the fact that all materials (even materials that do not absorb light at all) have a refraction index, which means that the velocity of light is smaller in them than in vacuum.
    [Show full text]
  • Amino Acid Catalyzed Direct Asymmetric Mannich Type Reactions Employing Unmodified Donors: Structure Based Catalyst Screening for Anti/Syn Selectivity
    Asian Journal of Chemistry Vol. 20, No. 7 (2008), 5203-5208 Amino Acid Catalyzed Direct Asymmetric Mannich Type Reactions Employing Unmodified Donors: Structure Based Catalyst Screening for Anti/syn Selectivity SUBHENDU DAS and RAJESH K. SINGH* Department of Chemistry, North Orissa University, Takatpur, Baripada-757 003, India E-mail: [email protected] Amino acid catalyzed direct Mannich-type additions to N-Tos protected α-imino ethyl glyoxylate employing unmodi- fied carbonyl donors is described. The reaction was performed in DMSO using a catalytic amount (30 mol %) of L-proline and its derivatives providing a facile route to functionalized β-keto substituted α-amino acid derivatives with excellent diastereo- and enantioselectivities. Unmodified 3-pentanone and cyclohexanone were used as donors for the one pot gener- ation of two quaternary stereocenter. Organocatalysis using L-proline and 5,5-dimethyl thiazolidinium-4-carboxylate were typically syn-diastereoselective. Anti-diastereoselectivity was achieved using (S)-2-methoxymethyl-pyrrolidine and L-proline benzyl ester. Stereochemical outcomes are explained on the basis of previously proposed transition state and the reasons governing syn- and anti-selectivity are described. Poor selectivity of (S)-2-methoxy-methylpyrrolidine compared to L-proline benzyl ester in contrast to earlier reports are expla- ined in terms of a fast cis-trans event and possible sterics. Key Words: Amino acids, Mannich reaction, Anti/syn Selectivity. INTRODUCTION Stereoselective transformation employing asymmetric organocatalysis is a rapidly growing field1-3. Reactions utilizing proline as chiral enantio- selective organocatalyst in catalytic amount has been the focus of great interest recently4,5. Organocatalytic reactions of proline and its derivatives has been well demonstrated for its versatility and potential to create both functional and structural diversity6.
    [Show full text]
  • Lipase-Catalyzed Kinetic Resolution of Dimethyl and Dibutyl 1-Butyryloxy-1-Carboxymethylphosphonates
    catalysts Article Lipase-Catalyzed Kinetic Resolution of Dimethyl and Dibutyl 1-Butyryloxy-1-carboxymethylphosphonates Paulina Majewska Laboratory of Biotechnology, Department of Biochemistry, Molecular Biology and Biotechnology, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeze˙ Wyspia´nskiego27, 50-370 Wrocław, Poland; [email protected]; Tel.: +48-71-320-4614 Abstract: The main objective of this study is the enantioselective synthesis of carboxyhydroxyphos- phonates by lipase-catalyzed reactions. For this purpose, racemic dimethyl and dibutyl 1-butyryloxy- 1-carboxymethylphosphonates were synthesized and hydrolyzed, using a wide spectrum of commer- cially available lipases from different sources (e.g., fungi and bacteria). The best hydrolysis results of dimethyl 1-butyryloxy-1-carboxymethylphosphonate were obtained with the use of lipases from Candida rugosa, Candida antarctica, and Aspergillus niger, leading to optically active dimethyl 1-carboxy- 1-hydroxymethylphosphonate (58%–98% enantiomeric excess) with high enantiomeric ratio (reaching up to 126). However, in the case of hydrolysis of dibutyl 1-butyryloxy-1-carboxymethylphosphonate, the best results were obtained by lipases from Burkholderia cepacia and Termomyces lanuginosus, leading to optically active dibutyl 1-carboxy-1-hydroxymethylphosphonate (66%–68% enantiomeric excess) with moderate enantiomeric ratio (reaching up to 8.6). The absolute configuration of the products after biotransformation was also determined. In most cases, lipases hydrolyzed (R) enantiomers of both compounds. Keywords: biocatalysis; hydroxyphosphonates; lipolytic activity; determination of absolute configu- Citation: Majewska, P. Lipase- ration; enantiomers Catalyzed Kinetic Resolution of Dimethyl and Dibutyl 1-Butyryloxy-1- carboxymethylphosphonates. Catalysts 2021, 11, 956. https:// 1. Introduction doi.org/10.3390/catal11080956 Enantioselective biocatalysis has long been used as an alternative to traditional meth- ods for obtaining pure chemical isomers [1].
    [Show full text]
  • Chapter 2 Immobilization of Enzymes
    Chapter 2 Immobilization of Enzymes: A Literature Survey Beatriz Brena , Paula González-Pombo , and Francisco Batista-Viera Abstract The term immobilized enzymes refers to “enzymes physically confi ned or localized in a certain defi ned region of space with retention of their catalytic activities, and which can be used repeatedly and continuously.” Immobilized enzymes are currently the subject of considerable interest because of their advantages over soluble enzymes. In addition to their use in industrial processes, the immobilization techniques are the basis for making a number of biotechnology products with application in diagnostics, bioaffi nity chromatography, and biosensors. At the beginning, only immobilized single enzymes were used, after 1970s more complex systems including two-enzyme reactions with cofactor regeneration and living cells were developed. The enzymes can be attached to the support by interactions ranging from reversible physical adsorp- tion and ionic linkages to stable covalent bonds. Although the choice of the most appropriate immobilization technique depends on the nature of the enzyme and the carrier, in the last years the immobilization tech- nology has increasingly become a matter of rational design. As a consequence of enzyme immobilization, some properties such as catalytic activity or thermal stability become altered. These effects have been demonstrated and exploited. The concept of stabilization has been an important driving force for immobilizing enzymes. Moreover, true stabilization at the molecular level has been demonstrated, e.g., proteins immobilized through multipoint covalent binding. Key words Immobilized enzymes , Bioaffi nity chromatography , Biosensors , Enzyme stabilization , Immobilization methods 1 Background Enzymes are biological catalysts that promote the transformation of chemical species in living systems.
    [Show full text]
  • Recent Advances in Biocatalyst Development in the Pharmaceutical Industry
    Pharmaceutical Review Pharm. Bioprocess. (2013) 1(2), 179–196 Recent advances in biocatalyst development in the pharmaceutical industry Biocatalysts are increasingly employed as more efficient and environmentally safer Mingzi M Zhang†1, Xiaoyun alternatives to traditional chemical catalysts in the manufacturing of fine chemicals. Su†1, Ee Lui Ang1 & This is driven by advances in recombinant DNA technology, protein engineering and Huimin Zhao*1,2 bioinformatics, all of which are critical in the discovery, tailoring and optimization of 1Metabolic Engineering Research enzymes for industrial processes. In this article we review these key technological in- Laboratory, Institute of Chemical & Engineering Sciences, Agency for novations, as well as highlight the strategic application of these tools in the develop- Science, Technology & Research, ment of biocatalysts in the production of advanced pharmaceutical intermediates. Singapore 2Departments of Chemical & Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA The synthesis of pharmaceutical products covery and development for pharmaceutical *Author for correspondence: and therapeutic agents using biological sys- processes. For a comprehensive summary of Tel. : +1 217 333 2631 tems is becoming increasingly important for recent examples of biocatalyst application E-mail: zhao5@illinois. edu the healthcare industry. Integral to pharma- in the pharmaceutical industry, readers can †Authors contributed equally ceutical bioprocessing is the development refer
    [Show full text]
  • Applications of Enzyme Catalysis – Biocatalysis
    10.542 – Biochemical Engineering Spring 2005 Applications of Enzyme Catalysis – Biocatalysis • Working definition – the use of an enzyme-catalyzed reaction to convert a single starting compound to a single product o distinguished from the use of whole cells for multi-step synthetic pathways, which also use enzymes to catalyze each conversion Why use enzyme catalysis over traditional (usu. solvent-based) organic synthesis? ( Rozzell, J. D. "Commercial scale biocatalysis: myths and realities." Bioorg Med Chem 7, no. 10 (October 1999): 2253-61.) • Catalyst selectivity/specificity • Mild reaction conditions • Environmentally friendly, “green chemistry” • High catalytic efficiency ¾ Greatest interest industrially is for production of chiral compounds (see handout for examples) Substrate selectivity versus substrate range • Industrial emphasis on selectivity is most often in the context of stereoselectivity, i.e., selective conversion or production of one enantiomer, but • The best industrial enzymes will have a broad substrate range, i.e., the ability the catalyze the same type of reaction (attack the same functional group) with a variety of substrates. Example – Subtilisin (serine protease) Natural reaction: peptide bond hydrolysis, though activity against esters was known O O R2 O R2 O NH NH NH NH OH NH H2N O R R1 3 R1 O R3 Unnatural reaction: resolution of a racemic ester mixture for production of a pharmaceutical intermediate (Courtesy of Merck & Co. Used with permission.) F F F F F F O O O H + H MeO N HO N MeO N N O N O N O OMe OMe OMe DHP Methyl Ester R-DHP Acid S-DHP MethylEster See “Survey of Biocatalytic Reactions” handout for additional examples.
    [Show full text]
  • Is Life Based on Chirality of Pentavalent Elements Possible? Resolution of Stable Isomers, Enantiomers and Diastereomers of Pentavalent Nitrogen
    Voice of the Publisher, 2021, 7, 44-55 https://www.scirp.org/journal/vp ISSN Online: 2380-7598 ISSN Print: 2380-7571 Is Life Based on Chirality of Pentavalent Elements Possible? Resolution of Stable Isomers, Enantiomers and Diastereomers of Pentavalent Nitrogen Ilia Brondz Norwegian Drug Control and Drug Discovery Institute (NDCDDI) AS, Ski, Norway How to cite this paper: Brondz, I. (2021). Abstract Is Life Based on Chirality of Pentavalent Elements Possible? Resolution of Stable V-valent elements such as nitrogen, phosphorus, sulfur, and several others Isomers, Enantiomers and Diastereomers fulfill requirements for chirality. In the system on Earth, and with the present of Pentavalent Nitrogen. Voice of the Pub- thermodynamic conditions—pressure, temperature, radiation, and oth- lisher, 7, 44-55. https://doi.org/10.4236/vp.2021.71004 ers—the carbon atom’s chirality is the primary factor in the creation of living creatures. However, even in our galaxy and surely elsewhere in the universe, Received: November 26, 2020 there are places with very different temperatures, pressure, radiation and Accepted: March 13, 2021 other conditions for life that differ from our model. Life on Earth in its Published: March 16, 2021 present forms would not be imaginable if the average temperature was above Copyright © 2021 by author(s) and 60˚C because of instability in DNA, RNA, and protein molecules at such a Scientific Research Publishing Inc. temperature. Humankind is stuck in the doctrine that life must look like the This work is licensed under the Creative model we are familiar with or be similar. However, other elements with the Commons Attribution International License (CC BY 4.0).
    [Show full text]