Analysis of Mass Based and Density Based Clustering Techniques on Numerical Datasets

Total Page:16

File Type:pdf, Size:1020Kb

Analysis of Mass Based and Density Based Clustering Techniques on Numerical Datasets Journal of Information Engineering and Applications www.iiste.org ISSN 2224-5782 (print) ISSN 2225-0506 (online) Vol.3, No.4, 2013 Analysis of Mass Based and Density Based Clustering Techniques on Numerical Datasets Rekha Awasthi 1* Anil K Tiwari 2 Seema Pathak 3 1. Disha College Ram Nager Kota Raipur 492010 Chhattisgarh India 2. Disha College Ram Nager Kota Raipur 492010 Chhattisgarh India 3. Disha College Ram Nager Kota Raipur 492010 Chhattisgarh India *E-mail: [email protected] Abstract Clustering is the techniques adopted by data mining tools across a range of application . It provides several algorithms that can assess large data set based on specific parameters & group related points . This paper gives comparative analysis of density based clustering algorithms and mass based clustering algorithms. DBSCAN [15] is a base algorithm for density based clustering techniques. One of the advantages of using these techniques is that method does not require the number of clusters to be given a prior and it can detect the clusters of different shapes and sizes from large amount of data which contains noise and outliers. OPTICS [14] on the other hand does not produce a clustering of a data set explicitly, but instead creates an augmented ordering of the database representing its density based clustering structure. Mass based clustering algorithm mass estimation technique is used (it is alternate of density based clustering) .In Mass based clustering algorithm [22] there are also core regions and noise points are used as a parameter. We analyze the algorithms in terms of the parameters essential for creating meaningful clusters. All the algorithms are tested using numerical data sets for low as well as high dimensional data sets. Keywords : Mass Based (DEMassDBSCAN) ,DBSCAN,OPTICS. 1. Introduction Data mining is the use of automated data analysis techniques to uncover previously undetected relationships among data items. Data mining often involves the analysis of data stored in a data warehouse. Three of the major data mining techniques are regression, classification and clustering . In this research paper we are working only with the clustering because it is most important process, if we have a very large database. We are using Weka tools for clustering . Clustering is the task of assigning a set of objects into groups (called clusters) so that the objects in the same cluster are more similar (in some sense or another) to each other than to those in other clusters. Clustering is a main task of explorative data mining, and a common technique for statistical data analysis used in many fields, including machine learning, pattern recognition, image analysis, information retrieval, and bioinformatics. We are using Weka data mining tools for this purpose. It provides a batter interface to the user than compare the other data mining tools. 2. Literature Survey Clustering is an active research area in data mining with various methods reported. Xin et al. and Howard et al. made a comparative analysis of two density-based Clustering algorithms i.e. DBSCAN and DBRS which is a density- based clustering algorithm. They concluded that DBSCAN gives extremely good results and is r is efficient in many datasets. However, if a dataset has clusters of widely varying densities, than DBSCAN is not able to perform well. Also DBRS aims to reduce the running time for datasets with varying densities. It also works well on high-density clusters. In [19] Mariam et al. and Syed et al. made a comparison for two density-based clustering algorithm i.e. DBSCAN and RDBC i.e. Recursive density based clustering. RDBC is an improvement of DBSCAN. In this algorithm it calls DBSCAN with different density distance thresholds ε and density threshold MinPts. It concludes that the number of clusters formed by RDBC is more as compared to DBSCAN also we see that the runtime of RDBC is less as compared to DBSCAN. In [1] K.Santhisree et al. described a similarity measure for density-based clustering of web usage data. They developed a new similarity measure named sequence similarity measure and enhanced DBSCAN [15] and OPTICS [14] for web personalization. As an experimental result it was found that the 29 Journal of Information Engineering and Applications www.iiste.org ISSN 2224-5782 (print) ISSN 2225-0506 (online) Vol.3, No.4, 2013 average intra cluster distance in DBSCAN is more as compared to OPTICS and the average intra cluster distance is minimum in OPTICS. In [17] K.Mumtaz et al. and Dr. K.Duraiswamy described an analysis on Density-Based Clustering of Multi-Dimensional Spatial Data. They showed the results of analyzing the properties of density-based clustering characteristics of three clustering algorithms namely DBSCAN, k-means and SOM using synthetic two dimensional spatial data sets. It was seen that DBSCAN performs better for spatial data sets and produces the correct set of clusters compared to SOM and k-means algorithm In [11] A.Moreia, M.Santos and S.Corneiro et al. described the implementation of two density based clustering algorithms: DBSCAN [15] and SNN [12]. The no of input required by SNN is more as compared to DBSCAN. The results showed that SNN performs better than DBSCAN since it can detect clusters with different densities while the former cannot. 3. Mass Based And Density-Based Clustering Techniques The mass estimation is another technique to find clusters in arbitrary shape data. In the clustering the mass estimation is unique because in this estimation there is no use of distance or density [20]. DEMassDBSCAN clustering mass estimation technique is used (it is alternate of density based clustering) .In DEMassDBSCAN algorithm there are also core regions and noise points are used as a parameter. Density based clustering is to discover clusters of arbitrary shape in spatial databases with noise. It forms clusters based on maximal set of density connected points. The core part in Density-Based clustering is density-reach ability and density connectivity. Also it requires two input parameters i.e. Eps which is known as radius and the MinPts i.e. the minimum number of points required to form a cluster. It starts with an arbitrary starting point that has not visited once. Then the ε- neighborhood is retrieved, and if it contains sufficiently many points than a cluster is started. Otherwise, the point is labeled as noise. This section describes two density based clustering algorithms briefly i.e. DBSCAN (Density Based Spatial Clustering of Application with Noise) and OPTICS (Ordering Points to Identify the Clustering Structure). Here, Density=number of points within a specified radius. Density-Based clustering Algorithms mainly include two techniques: - DBSCAN [15] which grows clusters according to a density-based connectivity analysis. - OPTICS [14] extends DBSCAN to produce a cluster ordering obtained from a wide range of parameter setting. Mass Based Clustering: In the clustering approach there is various estimation techniques are used to form clusters. The mass estimation is another technique to find clusters in arbitrary shape data. In the clustering the mass estimation is unique because in this estimation there is no use of distance or density [20]. In the DBSCAN clustering algorithm hyper spheres are used to show points but in DEMassDBSCAN clustering algorithm rectangular regions are used for showing the points [21]. mass - Number of points in a given region is called mass of that region. Each region in a given data space having rectangular shape and for estimation of mass a function that called rectangular function [18]. One-Dimensional Mass Estimation : The estimation of mass in data space is depends on levels (h). If value of level h=1 the shape of function is concave. For multidimensional mass estimation the value of h is > 1. , 1, 1 Eq- 1 [20] , , 1 In the one dimensional mass estimation the value of is equals to For one-dimensional mass estimation the value of h is equals to 1. , 1 In the above equation the m i(x) mass base function. 30 Journal of Information Engineering and Applications www.iiste.org ISSN 2224-5782 (print) ISSN 2225-0506 (online) Vol.3, No.4, 2013 , , !" #$ 2 Combining these two equations- " + & ()* ' ' + - , & ,) . ' + - , & ,) !. For large data bases the values of t is 1000 and 256. For' small data sets the value of h and is is varies. In multidimensional Mass Estimation /: In multidimensional mass estimation there is/ value of h>1. In multidimensional mass estimation there are two functions mass and random spaces generator in data space. ' + - [20] 0 & ' ,) !. Mass Based Clustering:+ - [20] 1 2 )344 5 ,) !. Multidimensional mass estimation using h:d Trees: ' + [20] 0 & ' 1 2 )344 6 The multi dimensional+ data set the value of h (level) is greater than 1and is is similar to one dimensional mass estimation. In this equation the value of x is replaced by X. MassTER Algorithm: In the MassTER algorithm the mass will estimate using h:d trees. In the h:d trees the h stands for no of times attribute appears and d stands for no. of dimensions. The height of tree is calculated as l=h×d. Algorithm Step 1 Build trees t i Step 2 Assign a cluster seed for every instance. Step 3 Join two seed based clusters. Step 4 Cluster having instances less than Ƞ are called noise instances. Step 5: return clusters c j,j=1,2,3,-------k. And E. (noise instances) Data input: D= Input Data. T= No of trees. Ψ= Sampling size. h= how many times attribute come in a path. Ƞ= minimum instances in a cluster In this algorithm firstly h:d trees are made of instance in a region. The cluster seed is assigned for each region in data space. The cluster seed are joined and make pair with neighbor cluster seed.
Recommended publications
  • A Literature Review on Patent Texts Analysis Techniques Guanlin Li
    International Journal of Knowledge www.ijklp.org and Language Processing KLP International ⓒ2018 ISSN 2191-2734 Volume 9, Number 3, 2018 pp.1–-15 A Literature Review on Patent Texts Analysis Techniques Guanlin Li School of Software & Microelectronics Peking University No.5 Yiheyuan Road Haidian District Beijing, 100871, China [email protected] Received Sep 2018; revised Sep 2018 ABSTRACT. Patent data are expanding explosively nowadays with the advent of new technologies, and it’s significant to put forward the method of automatic patent analysis and use appropriate patent analysis techniques to make use of scattered, multi-source and interrelated patent text, in order to improve the efficiency of patent analyzing. Currently there are a lot of techniques being used to process patent intelligence. This literature review focuses on automatic patent text analysis techniques, which use computer to automatically analyze large scale of patent texts and find useful information in them. These techniques are divided into the following categories: semantic analysis based techniques, rule based techniques, machine learning based techniques and patent text clustering techniques. Keywords: Patent analysis, text mining, patent intelligence 1. Introduction. Patents are important sources of technology information, in which we can find great value of scientific and technological intelligence. At the same time, patents are of high commercial value. Enterprise analyzes patent information, which contains more than 90% of the world's scientific and technological
    [Show full text]
  • Enhancement of DBSCAN Algorithm and Transparency Clustering Of
    IJRECE VOL. 5 ISSUE 4 OCT.-DEC. 2017 ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE) Enhancement of DBSCAN Algorithm and Transparency Clustering of Large Datasets Kumari Silky1, Nitin Sharma2 1Research Scholar, 2Assistant Professor Institute of Engineering Technology, Alwar, Rajasthan, India Abstract: The data mining is the technique which can extract process of dividing the data into similar objects groups. A level useful information from the raw data. The clustering is the of simplification is achieved in case of less number of clusters technique of data mining which can group similar and dissimilar involved. But because of less number of clusters some of the type of information. The density based clustering is the type of fine details have been lost. With the use or help of clusters the clustering which can cluster data according to the density. The data is modeled. According to the machine learning view, the DBSCAN is the algorithm of density based clustering in which clusters search in a unsupervised manner and it is also as the EPS value is calculated which define radius of the cluster. The hidden patterns. The system that comes as an outcome defines a Euclidian distance will be calculated using neural networks data concept [3]. The clustering mechanism does not have only which calculate similarity in the more effective manner. The one step it can be analyzed from the definition of clustering. proposed algorithm is implemented in MATLAB and results are Apart from partitional and hierarchical clustering algorithms analyzed in terms of accuracy, execution time. number of new techniques has been evolved for the purpose of clustering of data.
    [Show full text]
  • Comparison of Dimensionality Reduction Techniques on Audio Signals
    Comparison of Dimensionality Reduction Techniques on Audio Signals Tamás Pál, Dániel T. Várkonyi Eötvös Loránd University, Faculty of Informatics, Department of Data Science and Engineering, Telekom Innovation Laboratories, Budapest, Hungary {evwolcheim, varkonyid}@inf.elte.hu WWW home page: http://t-labs.elte.hu Abstract: Analysis of audio signals is widely used and this work: car horn, dog bark, engine idling, gun shot, and very effective technique in several domains like health- street music [5]. care, transportation, and agriculture. In a general process Related work is presented in Section 2, basic mathe- the output of the feature extraction method results in huge matical notation used is described in Section 3, while the number of relevant features which may be difficult to pro- different methods of the pipeline are briefly presented in cess. The number of features heavily correlates with the Section 4. Section 5 contains data about the evaluation complexity of the following machine learning method. Di- methodology, Section 6 presents the results and conclu- mensionality reduction methods have been used success- sions are formulated in Section 7. fully in recent times in machine learning to reduce com- The goal of this paper is to find a combination of feature plexity and memory usage and improve speed of following extraction and dimensionality reduction methods which ML algorithms. This paper attempts to compare the state can be most efficiently applied to audio data visualization of the art dimensionality reduction techniques as a build- in 2D and preserve inter-class relations the most. ing block of the general process and analyze the usability of these methods in visualizing large audio datasets.
    [Show full text]
  • DBSCAN++: Towards Fast and Scalable Density Clustering
    DBSCAN++: Towards fast and scalable density clustering Jennifer Jang 1 Heinrich Jiang 2 Abstract 2, it quickly starts to exhibit quadratic behavior in high di- mensions and/or when n becomes large. In fact, we show in DBSCAN is a classical density-based clustering Figure1 that even with a simple mixture of 3-dimensional procedure with tremendous practical relevance. Gaussians, DBSCAN already starts to show quadratic be- However, DBSCAN implicitly needs to compute havior. the empirical density for each sample point, lead- ing to a quadratic worst-case time complexity, The quadratic runtime for these density-based procedures which is too slow on large datasets. We propose can be seen from the fact that they implicitly must compute DBSCAN++, a simple modification of DBSCAN density estimates for each data point, which is linear time which only requires computing the densities for a in the worst case for each query. In the case of DBSCAN, chosen subset of points. We show empirically that, such queries are proximity-based. There has been much compared to traditional DBSCAN, DBSCAN++ work done in using space-partitioning data structures such can provide not only competitive performance but as KD-Trees (Bentley, 1975) and Cover Trees (Beygelzimer also added robustness in the bandwidth hyperpa- et al., 2006) to improve query times, but these structures are rameter while taking a fraction of the runtime. all still linear in the worst-case. Another line of work that We also present statistical consistency guarantees has had practical success is in approximate nearest neigh- showing the trade-off between computational cost bor methods (e.g.
    [Show full text]
  • Density-Based Clustering of Static and Dynamic Functional MRI Connectivity
    Rangaprakash et al. Brain Inf. (2020) 7:19 https://doi.org/10.1186/s40708-020-00120-2 Brain Informatics RESEARCH Open Access Density-based clustering of static and dynamic functional MRI connectivity features obtained from subjects with cognitive impairment D. Rangaprakash1,2,3, Toluwanimi Odemuyiwa4, D. Narayana Dutt5, Gopikrishna Deshpande6,7,8,9,10,11,12,13* and Alzheimer’s Disease Neuroimaging Initiative Abstract Various machine-learning classifcation techniques have been employed previously to classify brain states in healthy and disease populations using functional magnetic resonance imaging (fMRI). These methods generally use super- vised classifers that are sensitive to outliers and require labeling of training data to generate a predictive model. Density-based clustering, which overcomes these issues, is a popular unsupervised learning approach whose util- ity for high-dimensional neuroimaging data has not been previously evaluated. Its advantages include insensitivity to outliers and ability to work with unlabeled data. Unlike the popular k-means clustering, the number of clusters need not be specifed. In this study, we compare the performance of two popular density-based clustering methods, DBSCAN and OPTICS, in accurately identifying individuals with three stages of cognitive impairment, including Alzhei- mer’s disease. We used static and dynamic functional connectivity features for clustering, which captures the strength and temporal variation of brain connectivity respectively. To assess the robustness of clustering to noise/outliers, we propose a novel method called recursive-clustering using additive-noise (R-CLAN). Results demonstrated that both clustering algorithms were efective, although OPTICS with dynamic connectivity features outperformed in terms of cluster purity (95.46%) and robustness to noise/outliers.
    [Show full text]
  • Semantic Computing
    SEMANTIC COMPUTING 10651_9789813227910_TP.indd 1 24/7/17 1:49 PM World Scientific Encyclopedia with Semantic Computing and Robotic Intelligence ISSN: 2529-7686 Published Vol. 1 Semantic Computing edited by Phillip C.-Y. Sheu 10651 - Semantic Computing.indd 1 27-07-17 5:07:03 PM World Scientific Encyclopedia with Semantic Computing and Robotic Intelligence – Vol. 1 SEMANTIC COMPUTING Editor Phillip C-Y Sheu University of California, Irvine World Scientific NEW JERSEY • LONDON • SINGAPORE • BEIJING • SHANGHAI • HONG KONG • TAIPEI • CHENNAI • TOKYO 10651_9789813227910_TP.indd 2 24/7/17 1:49 PM World Scientific Encyclopedia with Semantic Computing and Robotic Intelligence ISSN: 2529-7686 Published Vol. 1 Semantic Computing edited by Phillip C.-Y. Sheu Catherine-D-Ong - 10651 - Semantic Computing.indd 1 22-08-17 1:34:22 PM Published by World Scientific Publishing Co. Pte. Ltd. 5 Toh Tuck Link, Singapore 596224 USA office: 27 Warren Street, Suite 401-402, Hackensack, NJ 07601 UK office: 57 Shelton Street, Covent Garden, London WC2H 9HE Library of Congress Cataloging-in-Publication Data Names: Sheu, Phillip C.-Y., editor. Title: Semantic computing / editor, Phillip C-Y Sheu, University of California, Irvine. Other titles: Semantic computing (World Scientific (Firm)) Description: Hackensack, New Jersey : World Scientific, 2017. | Series: World Scientific encyclopedia with semantic computing and robotic intelligence ; vol. 1 | Includes bibliographical references and index. Identifiers: LCCN 2017032765| ISBN 9789813227910 (hardcover : alk. paper) | ISBN 9813227915 (hardcover : alk. paper) Subjects: LCSH: Semantic computing. Classification: LCC QA76.5913 .S46 2017 | DDC 006--dc23 LC record available at https://lccn.loc.gov/2017032765 British Library Cataloguing-in-Publication Data A catalogue record for this book is available from the British Library.
    [Show full text]
  • An Improvement for DBSCAN Algorithm for Best Results in Varied Densities
    Computer Engineering Department Faculty of Engineering Deanery of Higher Studies The Islamic University-Gaza Palestine An Improvement for DBSCAN Algorithm for Best Results in Varied Densities Mohammad N. T. Elbatta Supervisor Dr. Wesam M. Ashour A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science in Computer Engineering Gaza, Palestine (September, 2012) 1433 H ii stnkmegnelnonkcA Apart from the efforts of myself, the success of any project depends largely on the encouragement and guidelines of many others. I take this opportunity to express my gratitude to the people who have been instrumental in the successful completion of this project. I would like to thank my parents for providing me with the opportunity to be where I am. Without them, none of this would be even possible to do. You have always been around supporting and encouraging me and I appreciate that. I would also like to thank my brothers and sisters for their encouragement, input and constructive criticism which are really priceless. Also, special thanks goes to Dr. Homam Feqawi who did not spare any effort to review and audit my thesis linguistically. My heartiest gratitude to my wonderful wife, Nehal, for her patience and forbearance through my studying and preparing this study. I would like to express my sincere gratitude to my advisor Dr. Wesam Ashour for the continuous support of my master study and research, for his patience, motivation, enthusiasm, and immense knowledge. His guidance helped me in all the time of research and writing of this thesis. I could not have imagined having a better advisor and mentor for my master study.
    [Show full text]
  • Unsupervised Novelty Detection Using Deep Autoencoders with Density Based Clustering
    applied sciences Article Unsupervised Novelty Detection Using Deep Autoencoders with Density Based Clustering Tsatsral Amarbayasgalan 1, Bilguun Jargalsaikhan 1 and Keun Ho Ryu 1,2,* 1 Database and Bioinformatics Laboratory, School of Electrical and Computer Engineering, Chungbuk National University, Cheongju 28644, Korea; [email protected] (T.A.); [email protected] (B.J.) 2 Faculty of Information Technology, Ton Duc Thang University, Ho Chi Minh City 700000, Vietnam * Correspondence: [email protected] or [email protected]; Tel.: +82-43-261-2254 Received: 30 July 2018; Accepted: 22 August 2018; Published: 27 August 2018 Abstract: Novelty detection is a classification problem to identify abnormal patterns; therefore, it is an important task for applications such as fraud detection, fault diagnosis and disease detection. However, when there is no label that indicates normal and abnormal data, it will need expensive domain and professional knowledge, so an unsupervised novelty detection approach will be used. On the other hand, nowadays, using novelty detection on high dimensional data is a big challenge and previous research suggests approaches based on principal component analysis (PCA) and an autoencoder in order to reduce dimensionality. In this paper, we propose deep autoencoders with density based clustering (DAE-DBC); this approach calculates compressed data and error threshold from deep autoencoder model, sending the results to a density based cluster. Points that are not involved in any groups are not considered a novelty; the grouping points will be defined as a novelty group depending on the ratio of the points exceeding the error threshold. We have conducted the experiment by substituting components to show that the components of the proposed method together are more effective.
    [Show full text]
  • Mobility Modes Awareness from Trajectories Based on Clustering and a Convolutional Neural Network
    International Journal of Geo-Information Article Mobility Modes Awareness from Trajectories Based on Clustering and a Convolutional Neural Network Rui Chen * , Mingjian Chen, Wanli Li, Jianguang Wang and Xiang Yao Institute of Geospatial Information, Information Engineering University, Zhengzhou 450000, China; [email protected] (M.C.); [email protected] (W.L.); [email protected] (J.W.); [email protected] (X.Y.) * Correspondence: [email protected]; Tel.: +86-181-4029-5462 Received: 13 March 2019; Accepted: 5 May 2019; Published: 7 May 2019 Abstract: Massive trajectory data generated by ubiquitous position acquisition technology are valuable for knowledge discovery. The study of trajectory mining that converts knowledge into decision support becomes appealing. Mobility modes awareness is one of the most important aspects of trajectory mining. It contributes to land use planning, intelligent transportation, anomaly events prevention, etc. To achieve better comprehension of mobility modes, we propose a method to integrate the issues of mobility modes discovery and mobility modes identification together. Firstly, route patterns of trajectories were mined based on unsupervised origin and destination (OD) points clustering. After the combination of route patterns and travel activity information, different mobility modes existing in history trajectories were discovered. Then a convolutional neural network (CNN)-based method was proposed to identify the mobility modes of newly emerging trajectories. The labeled history trajectory data were utilized to train the identification model. Moreover, in this approach, we introduced a mobility-based trajectory structure as the input of the identification model. This method was evaluated with a real-world maritime trajectory dataset. The experiment results indicated the excellence of this method.
    [Show full text]
  • Representatives for Visually Analyzing Cluster Hierarchies
    Visually Mining Through Cluster Hierarchies Stefan Brecheisen Hans-Peter Kriegel Peer Kr¨oger Martin Pfeifle Institute for Computer Science University of Munich Oettingenstr. 67, 80538 Munich, Germany brecheis,kriegel,kroegerp,pfeifle @dbs.informatik.uni-muenchen.de f g Abstract providing the user with significant and quick information. Similarity search in database systems is becoming an increas- In this paper, we introduce algorithms for automatically detecting hierarchical clusters along with their correspond- ingly important task in modern application domains such as ing representatives. In order to evaluate our ideas, we de- multimedia, molecular biology, medical imaging, computer veloped a prototype called BOSS (Browsing OPTICS Plots aided engineering, marketing and purchasing assistance as for Similarity Search). BOSS is based on techniques related well as many others. In this paper, we show how visualizing to visual data mining. It helps to visually analyze cluster the hierarchical clustering structure of a database of objects hierarchies by providing meaningful cluster representatives. can aid the user in his time consuming task to find similar ob- To sum up, the main contributions of this paper are as jects. We present related work and explain its shortcomings follows: which led to the development of our new methods. Based We explain how different important application ranges on reachability plots, we introduce approaches which auto- • would benefit from a tool which allows visually mining matically extract the significant clusters in a hierarchical through cluster hierarchies. cluster representation along with suitable cluster represen- We reason why the hierarchical clustering algorithm tatives. These techniques can be used as a basis for visual • OPTICS forms a suitable foundation for such a brows- data mining.
    [Show full text]
  • Visualization of the Optics Algorithm
    Visualization of the Optics Algorithm Gregor Redinger* Markus Hunner† 01163940 01503441 VIS 2017 - Universitt Wien ABSTRACT Our Visualization not only helps in interpreting this Reachability- In our Project we have the goal to provide a visualization for the Plot, but also provides the functionality of picking a cutoff value OPTICS Clustering Algorithm. There hardly exist in-depth visual- for parameter e, that we called e’, with this cutoff it is possible to izations of this algorithm and we developed a online tool to fill this interpret one result of the OPTICS algorithm like several results of the related DBSCAN clustering algorithm. Thus our visualization gap. In this paper we will give you a deep insight in our solution. 0 In a first step we give an introduction to our visualization approach. provides a parameter space exploration for all e < e. Then we will discuss related work and introduce the different parts Users Therefore our visualization enables users without prior of our visualization. Then we discuss the software stack we used knowledge of the OPTICS algorithm and its unusual result format for our application and which challenges and problems we encoun- to easily interpret the ordered result structure as cluster assignments. tered during the development. After this, we will look at concrete Additionally it allows the user to explore the parameter space of use cases for our visualization, take a look at the performance and the eparameter in an intuitive way, without the need to educate the present the results of a evaluation in form of a field study. At last we user on the algorithmic details of OPTICS and why introducing a will discuss the strengths and weaknesses of our approach and take cutoff value for the calculated distance measures corresponds to the a closer look at the lessons we learned from our project.
    [Show full text]
  • Comparative Study of Different Clustering Algorithms for Association Rule Mining Ms
    Ms. Pooja Gupta et al./ International Journal of Computer Science & Engineering Technology (IJCSET) Comparative Study of Different Clustering Algorithms for Association Rule Mining Ms. Pooja Gupta, Ms. Monika Jena, Computer science and Engineering Department, Amity University, Noida, India [email protected] [email protected] Ms. Manisha Chowdhary, Ms. Shilpi Singh, CSE Department, United group of Institutions, Greater Noida, India [email protected] [email protected] Abstract— In data mining, association rule mining is an important research area in today’s scenario. Various association rule mining can find interesting associations and correlation relationship among a large set of data items[1]. To find association rules for single dimensional database Apriori algorithm is appropriate. For large databases lots of candidate sets are generated. Thus Apriori algorithm is not efficient for large databases. We need some extension in the existing Apriori algorithm so that it can also work for large multidimensional database or quantitative database. For this purpose to work with apriori in large multidimensional database, data is divided into multiple data sets called as clusters. In order to divide large data bases into clusters we need various clustering algorithms which can be based on Statistical methods, Hierarchical methods, Density Based method or Grid based method. Once clusters are created by these clustering algorithms, the apriori algorithm can be easily applied on clusters of our interest for mining association rules. Since overall process of finding association rules highly depends on clustering algorithms so we have to use best suited clustering algorithm according to given data base ,thus overall execution time will be reduced.
    [Show full text]