Transcriptome Study of Muscle Tissue in Nellore Cattle Divergent for Beef Quality

Total Page:16

File Type:pdf, Size:1020Kb

Transcriptome Study of Muscle Tissue in Nellore Cattle Divergent for Beef Quality UNIVERSIDADE ESTADUAL PAULISTA - UNESP CÂMPUS DE JABOTICABAL TRANSCRIPTOME STUDY OF MUSCLE TISSUE IN NELLORE CATTLE DIVERGENT FOR BEEF QUALITY Maria Malane Magalhães Muniz Zootecnista 2020 ii UNIVERSIDADE ESTADUAL PAULISTA - UNESP CÂMPUS DE JABOTICABAL TRANSCRIPTOME STUDY OF MUSCLE TISSUE IN NELLORE CATTLE DIVERGENT FOR BEEF QUALITY Maria Malane Magalhães Muniz Orientadora: Profa. Dra. Lucia Galvão de Albuquerque Coorientadora: Dra. Larissa Fernanda Simielli Fonseca Tese apresentada à Faculdade de Ciências Agrárias e Veterinárias – Unesp, Câmpus de Jaboticabal, como parte das exigências para a obtenção do título de Doutor Genética e Melhoramento Animal 2020 iii iv v DADOS CURRICULARES DO AUTOR Maria Malane Magalhães Muniz – Nasceu em Camocim, Ceará em 19 de Outubro de 1988, filha de Lucia Maria Magalhães e Manoel Gonçalves Muniz. Iniciou sua graduação em Zootecnia na Universidade Estadual Vale do Acarau (UVA), Câmpus Central de Sobral em agosto de 2009. Durante a graduação (2009-2012) participou de projetos científicos, foi bolsista EMBRAPA e CNPq, monitora na disciplina Melhoramento Genético Animal e recebeu certificado de Mérito Acadêmico por ter obtido o primeiro lugar na apresentação de trabalhos no curso de Bacharelado em Zootecnia-UVA. Em Março de 2013, iniciou seu mestrado no programa de pós-graduação em Ciências Animais da Universidade de Brasília- UNB, onde foi bolsista CNPq. Durante o mestrado dedicou-se a estudo de associação ampla do genoma para coloração de pelagem em ovinos da raça Morada Nova, sob orientação do pesquisador Dr. Samuel Rezende Paiva, recebendo o título de mestra em Março de 2015. Foi professora (2015-2016) nos programas de gradução em Agronomia e Medicina Veterinária no Centro Universitário ICESP - Águas Claras-DF. Em agosto de 2016 iniciou o Doutorado no programa de pós-graduação em Genética e Melhoramento Animal da Universidade Estadual Paulista, Faculdade de Ciências Agrárias e Veterinárias, Câmpus de Jaboticabal (FCAV/Unesp) sob orientação do professora Dra. Lucia Galvão de Albuquerque, sendo bolsista CAPES e FAPESP. Realizou Estágio de Pesquisa no Exterior, no período de Setembro de 2018 a Março de 2020, na Universidade de Guelph, Canadá, onde desenvolveu parte do seu projeto de doutorado, sob orientação do professora Dra. Angela Cánovas. Durante o período de setembro/2018 à março/2019 obteve a Bolsa Estágio de Pesquisa no Exterior (BEPE)- FAPESP. vi “O espírito que adquirir a virtude do perdão não achará dificuldade em mais nada. Haja o que houver aconteça o que acontecer, ele saberá administrar sua vida.” Chico Xavier vii DEDICO A todos aqueles que de alguma forma contribuíram com meu progresso moral e acadêmico, principalmente a minha família que sempre estive presente. viii AGRADECIMENTOS Em primeiro lugar, agradeço sempre à Deus. Agradeço pelas inúmeras oportunidades que sempre me concedeu, por me dar forças diariamente e por iluminar meus caminhos. Ao meu mentor espiritual que está sempre ao meu lado me protegendo e me guiando no caminho do bem. À Faculdade de Ciências Agrárias e Veterinárias do Campus de Jaboticabal, especificamente ao Programa de Pós-graduação em Genética e Melhoramento Animal por essa oportunidade e os conhecimentos adquiridos. À Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) nº dos processos (#2009/16118-5, #2017/04270-3, #2017/10630-2, #2018/11154-2 e #2018/ 20026-8) por todo o suporte financeiro. O presente trabalho foi realizado com apoio da Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) - Código de Financiamento 001, agradeço pelo apoio financeiro. Graças ao apoio financeiro da FAPESP e CAPES pude dedicar-me exclusiva às atividades de pós-graduação e desenvolvido na minha tese. À minha orientadora Lucia Galvão de Albuquerque, por essa grande oportunidade e ensinamentos durante todos esses anos. Serei eternamente grata! À minha coorientadora Larissa Fernanda Simielli Fonseca pelos ensinamentos, toda ajuda e amizade durante todos esses anos. Aos membros da banca de qualificação Dra. Larissa Fernanda Simielli Fonseca, e aos Doutores Jesus Aparecido Ferro, Henrique Nunes de Oliveira, Gerardo Alves Fernandes Junior e Rafael Lara Tonussi pelas sugestões que melhoraram muito o trabalho. Aos membros da banca de defesa, as Doutoras Poliana Fernanda Giachetto a Danielly Beraldo dos Santos Silva e aos Doutores Jesus Aparecido Ferro, Daniel Guariz Pinheiro pela valiosa contribuição na defesa desta tese. À Dra. Angela Canovas por ter me orientado durante meu estágio sanduíche na Unversidade de Guelph, pelo conhecimento adquirido, pela disposição e atenção que me foi dada durante todo o período de estágio. À minha família (pais, irmãos, sobrinha, tios, primos e avós) amada e amigos por todo amor, carinho e apoio. Aos amigos do Departamento de Zootecnia, ix especialmente aos meus queridos amigos: Karla, Cíntia, Ana Fabrícia, Patricia, Danielly, Anderson, Andres, Ana Cristina, Bruna, Gabriela, Marta, Larissa, Lúcio Flávio, Rafael, Henrique, Natalia, Thaise e William. Obrigada por toda ajuda, amizade e momentos de descontração e alegria. Também agradeço a todos os queridos amigos que tive a felicidade de encontrar e conviver durante a minha estada em Jaboticabal. À Universidade de Guelph pelas oportunidades de desenvolver e aprimorar este trabalho e a todas as pessoas que de alguma forma contribuíram para a preparação do mesmo, especialmente aos queridos amigos: Stephanie, Aroa, Pablo, Samir, Giovana, Riani, Hinaya, Amelia. E a todos os amigos canadenses que me acolheram, muito obrigada por toda amizade e apoio. x ESTUDO DO TRANSCRIPTOMA DO TECIDO MUSCULAR DE BOVINOS DA RAÇA NELORE DIVERGENTES PARA CARACTERÍSTICAS DE QUALIDADE DE CARNE RESUMO - As características de qualidade de carne, por serem de difícil mensuração, raramente são contempladas em programas de melhoramento genético. Porém, é necessário conhecer sobre os genes e os mecanismos moleculares que controlam essas características, isso poderá auxiliar na avaliação de animais de forma precoce. Objetivo desse estudo foi identificar e analisar genes e isoformas de mRNA diferencialmente expressos no tecido do músculo Longissimus thoracis de bovinos da raça Nelore, fenotipicamente divergentes para características cor da carne, marmoreio e maciez da carne (avaliada através das metodologias de WBSF e MFI) usando dados de RNA-Seq. Além disso, esse estudo visa a identificação dos efeitos de variantes estruturais em “splice sites” de transcriptos diferencialmente expressos em animais fenotipicamente divergentes para as características de color e marmoreio da carne. Uma média de 37 mil transcritos foram detectados sendo expressos no músculo de bovinos Nelore. Foram identificados 40 e 28 isoformas de mRNA (p-valor < 0,001) diferencialmente expressas para os fenótipos de WBSF e MFI, respectivamente. Além disso, foram identificados sendo diferencialmente expressos os mRNAs [WBSF (SYNPO-201) e MFI (ANKRD23-202)], e entre outras isoformas de mRNA relacionadas a genes que afetam a velocidade de degradação das fibras musculares durante o processo de envelhecimento da carne, como e.g. [para WBSF (MYOT, CASQ1, TPM2, MB e SYNM) e para MFI (FGFRL1 e NEB)]. Na análise de enriquecimento, esses genes foram associados com funções biológicas relacionadas á processos oxidativos, produção de energia, contração muscular estriada, via de sinalização de HIF-1 e metabolismo de aminoácidos e derivados. Além disso, 14 e 15 isoformas de mRNA foram diferencialmente expressas (p-valor ≤ 0,001) entre os animais com alto marmorização da carne em relação ao grupo de animais com baixo marmorização, e entre o grupo de animais com coloração desejável em relação ao grupo de animais com coloração indesejável da carne, respectivamente. Entre elas foram encontrados mRNAs: COL4A2-202, RPL30-203, MAPKAPK2-204, NEURL1-201, SCL16A6-201 e JSP.1-204 que apresentaram variantes estruturais (e.g., variantes de nucleotídeo único, inserção ou exclusão) responsáveis pela a interrupção de sites de splicing nessas regiões. A análise de enriquecimento, realizada para a lista de isoformas de mRNA diferencialmente expressas para marmoreio e para coloração da carne identificou vias metabólicas comuns entre essas características, como por exemplo, a via de troca de O2/CO2 nos eritrócitos, biossíntese de tirosina e a via de degradação de fenilalanina. Possivelmente, o mecanismo de interação entre essas características dá-se através da oxidação lipídica mitocondrial que está intimamente relacionada à formação de mioglobina férrica, molécula importante para manter a cor fresca da carne vermelha. Os resultados obtidos nesse estudo mostram que as isoformas de mRNAs encontrados podem ser potenciais genes reguladores das características de maciez, coloração e marmoreio da carne bovina, as quais são características economicamente importantes para a indústria de carne. Palavras-chave: Coloração da carne, isoforma de mRNA, Marmoreio, MFI, RNA- Seq, WBSF. xi TRANSCRIPTOME STUDY OF MUSCLE TISSUE IN NELLORE CATTLE DIVERGENT FOR BEEF QUALITY ABSTRACT - The measurement of meat quality traits are costly, because of that it is rarely included in breeding programs. However, it is necessary to know about the genes and the molecular mechanisms that control these traits, this may help in the evaluation of animals at an early stage.Thus, the identification of mRNA isoforms and the associated splice variants affecting meat quality traits in Nellore cattle could allow to better understanding the genetic architecture of these complex traits. The objective
Recommended publications
  • Refinement and Discovery of New Hotspots of Copy-Number Variation
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector ARTICLE Refinement and Discovery of New Hotspots of Copy-Number Variation Associated with Autism Spectrum Disorder Santhosh Girirajan,1,5 Megan Y. Dennis,1,5 Carl Baker,1 Maika Malig,1 Bradley P. Coe,1 Catarina D. Campbell,1 Kenneth Mark,1 Tiffany H. Vu,1 Can Alkan,1 Ze Cheng,1 Leslie G. Biesecker,2 Raphael Bernier,3 and Evan E. Eichler1,4,* Rare copy-number variants (CNVs) have been implicated in autism and intellectual disability. These variants are large and affect many genes but lack clear specificity toward autism as opposed to developmental-delay phenotypes. We exploited the repeat architecture of the genome to target segmental duplication-mediated rearrangement hotspots (n ¼ 120, median size 1.78 Mbp, range 240 kbp to 13 Mbp) and smaller hotspots flanked by repetitive sequence (n ¼ 1,247, median size 79 kbp, range 3–96 kbp) in 2,588 autistic individuals from simplex and multiplex families and in 580 controls. Our analysis identified several recurrent large hotspot events, including association with 1q21 duplications, which are more likely to be identified in individuals with autism than in those with developmental delay (p ¼ 0.01; OR ¼ 2.7). Within larger hotspots, we also identified smaller atypical CNVs that implicated CHD1L and ACACA for the 1q21 and 17q12 deletions, respectively. Our analysis, however, suggested no overall increase in the burden of smaller hotspots in autistic individuals as compared to controls. By focusing on gene-disruptive events, we identified recurrent CNVs, including DPP10, PLCB1, TRPM1, NRXN1, FHIT, and HYDIN, that are enriched in autism.
    [Show full text]
  • Seq2pathway Vignette
    seq2pathway Vignette Bin Wang, Xinan Holly Yang, Arjun Kinstlick May 19, 2021 Contents 1 Abstract 1 2 Package Installation 2 3 runseq2pathway 2 4 Two main functions 3 4.1 seq2gene . .3 4.1.1 seq2gene flowchart . .3 4.1.2 runseq2gene inputs/parameters . .5 4.1.3 runseq2gene outputs . .8 4.2 gene2pathway . 10 4.2.1 gene2pathway flowchart . 11 4.2.2 gene2pathway test inputs/parameters . 11 4.2.3 gene2pathway test outputs . 12 5 Examples 13 5.1 ChIP-seq data analysis . 13 5.1.1 Map ChIP-seq enriched peaks to genes using runseq2gene .................... 13 5.1.2 Discover enriched GO terms using gene2pathway_test with gene scores . 15 5.1.3 Discover enriched GO terms using Fisher's Exact test without gene scores . 17 5.1.4 Add description for genes . 20 5.2 RNA-seq data analysis . 20 6 R environment session 23 1 Abstract Seq2pathway is a novel computational tool to analyze functional gene-sets (including signaling pathways) using variable next-generation sequencing data[1]. Integral to this tool are the \seq2gene" and \gene2pathway" components in series that infer a quantitative pathway-level profile for each sample. The seq2gene function assigns phenotype-associated significance of genomic regions to gene-level scores, where the significance could be p-values of SNPs or point mutations, protein-binding affinity, or transcriptional expression level. The seq2gene function has the feasibility to assign non-exon regions to a range of neighboring genes besides the nearest one, thus facilitating the study of functional non-coding elements[2]. Then the gene2pathway summarizes gene-level measurements to pathway-level scores, comparing the quantity of significance for gene members within a pathway with those outside a pathway.
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • Identification of Potential Markers for Type 2 Diabetes Mellitus Via Bioinformatics Analysis
    1868 MOLECULAR MEDICINE REPORTS 22: 1868-1882, 2020 Identification of potential markers for type 2 diabetes mellitus via bioinformatics analysis YANA LU1, YIHANG LI1, GUANG LI1* and HAITAO LU2* 1Key Laboratory of Dai and Southern Medicine of Xishuangbanna Dai Autonomous Prefecture, Yunnan Branch, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Jinghong, Yunnan 666100; 2Key Laboratory of Systems Biomedicine, Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai 200240, P.R. China Received March 20, 2019; Accepted January 20, 2020 DOI: 10.3892/mmr.2020.11281 Abstract. Type 2 diabetes mellitus (T2DM) is a multifactorial and cell proliferation’. These candidate genes were also involved in multigenetic disease, and its pathogenesis is complex and largely different signaling pathways associated with ‘PI3K/Akt signaling unknown. In the present study, microarray data (GSE201966) of pathway’, ‘Rap1 signaling pathway’, ‘Ras signaling pathway’ β-cell enriched tissue obtained by laser capture microdissection and ‘MAPK signaling pathway’, which are highly associated were downloaded, including 10 control and 10 type 2 diabetic with the development of T2DM. Furthermore, a microRNA subjects. A comprehensive bioinformatics analysis of microarray (miR)-target gene regulatory network and a transcription data in the context of protein-protein interaction (PPI) networks factor-target gene regulatory network were constructed based was employed, combined with subcellular location information on miRNet and NetworkAnalyst databases, respectively. to mine the potential candidate genes for T2DM and provide Notably, hsa-miR‑192-5p, hsa-miR‑124-5p and hsa-miR‑335-5p further insight on the possible mechanisms involved. First, appeared to be involved in T2DM by potentially regulating the differential analysis screened 108 differentially expressed expression of various candidate genes, including procollagen genes.
    [Show full text]
  • Genome-Wide Linkage and Admixture Mapping of Type 2 Diabetes In
    ORIGINAL ARTICLE Genome-Wide Linkage and Admixture Mapping of Type 2 Diabetes in African American Families From the American Diabetes Association GENNID (Genetics of NIDDM) Study Cohort Steven C. Elbein,1,2 Swapan K. Das,1,2 D. Michael Hallman,3 Craig L. Hanis,3 and Sandra J. Hasstedt4 OBJECTIVE—We used a single nucleotide polymorphism (SNP) map in a large cohort of 580 African American families to identify regions linked to type 2 diabetes, age of type 2 diabetes ype 2 diabetes is marked by a clear genetic diagnosis, and BMI. propensity, a high concordance in identical twins, tendencies for both diabetes and age of RESEARCH DESIGN AND METHODS—After removing outli- onset to be familial (1), and marked differences ers and problematic samples, we conducted linkage analysis T in prevalence among ethnic groups (2). Despite consider- using 5,914 SNPs in 1,344 individuals from 530 families. Linkage analysis was conducted using variance components for type 2 able evidence for a genetic predisposition, unraveling the diabetes, age of type 2 diabetes diagnosis, and BMI and nonpara- genetic etiology has been daunting, with few confirmed metric linkage analyses. Ordered subset analyses were con- genes identified from genome-wide linkage scans. Recent ducted ranking on age of type 2 diabetes diagnosis, BMI, waist successes with genome-wide association scans (3) have circumference, waist-to-hip ratio, and amount of European ad- greatly increased the number of confirmed genetic loci, mixture. Admixture mapping was conducted using 4,486 markers but these successes have been limited primarily to Cauca- not in linkage disequilibrium.
    [Show full text]
  • Supplemental Table 1. Complete Gene Lists and GO Terms from Figure 3C
    Supplemental Table 1. Complete gene lists and GO terms from Figure 3C. Path 1 Genes: RP11-34P13.15, RP4-758J18.10, VWA1, CHD5, AZIN2, FOXO6, RP11-403I13.8, ARHGAP30, RGS4, LRRN2, RASSF5, SERTAD4, GJC2, RHOU, REEP1, FOXI3, SH3RF3, COL4A4, ZDHHC23, FGFR3, PPP2R2C, CTD-2031P19.4, RNF182, GRM4, PRR15, DGKI, CHMP4C, CALB1, SPAG1, KLF4, ENG, RET, GDF10, ADAMTS14, SPOCK2, MBL1P, ADAM8, LRP4-AS1, CARNS1, DGAT2, CRYAB, AP000783.1, OPCML, PLEKHG6, GDF3, EMP1, RASSF9, FAM101A, STON2, GREM1, ACTC1, CORO2B, FURIN, WFIKKN1, BAIAP3, TMC5, HS3ST4, ZFHX3, NLRP1, RASD1, CACNG4, EMILIN2, L3MBTL4, KLHL14, HMSD, RP11-849I19.1, SALL3, GADD45B, KANK3, CTC- 526N19.1, ZNF888, MMP9, BMP7, PIK3IP1, MCHR1, SYTL5, CAMK2N1, PINK1, ID3, PTPRU, MANEAL, MCOLN3, LRRC8C, NTNG1, KCNC4, RP11, 430C7.5, C1orf95, ID2-AS1, ID2, GDF7, KCNG3, RGPD8, PSD4, CCDC74B, BMPR2, KAT2B, LINC00693, ZNF654, FILIP1L, SH3TC1, CPEB2, NPFFR2, TRPC3, RP11-752L20.3, FAM198B, TLL1, CDH9, PDZD2, CHSY3, GALNT10, FOXQ1, ATXN1, ID4, COL11A2, CNR1, GTF2IP4, FZD1, PAX5, RP11-35N6.1, UNC5B, NKX1-2, FAM196A, EBF3, PRRG4, LRP4, SYT7, PLBD1, GRASP, ALX1, HIP1R, LPAR6, SLITRK6, C16orf89, RP11-491F9.1, MMP2, B3GNT9, NXPH3, TNRC6C-AS1, LDLRAD4, NOL4, SMAD7, HCN2, PDE4A, KANK2, SAMD1, EXOC3L2, IL11, EMILIN3, KCNB1, DOK5, EEF1A2, A4GALT, ADGRG2, ELF4, ABCD1 Term Count % PValue Genes regulation of pathway-restricted GDF3, SMAD7, GDF7, BMPR2, GDF10, GREM1, BMP7, LDLRAD4, SMAD protein phosphorylation 9 6.34 1.31E-08 ENG pathway-restricted SMAD protein GDF3, SMAD7, GDF7, BMPR2, GDF10, GREM1, BMP7, LDLRAD4, phosphorylation
    [Show full text]
  • Transcriptional Modulator ZBED6 Affects Cell Cycle and Growth of Human Colorectal Cancer Cells
    Transcriptional modulator ZBED6 affects cell cycle and growth of human colorectal cancer cells Muhammad Akhtar Alia,1, Shady Younisb,c,1, Ola Wallermand, Rajesh Guptab, Leif Anderssonb,d,e,1,2, and Tobias Sjöbloma,1 aScience For Life Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, SE-751 85 Uppsala, Sweden; bScience for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, SE-751 85 Uppsala, Sweden; cDepartment of Animal Production, Ain Shams University, Shoubra El-Kheima, 11241 Cairo, Egypt; dDepartment of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, SE-75007 Uppsala, Sweden; and eDepartment of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843 Contributed by Leif Andersson, May 15, 2015 (sent for review December 10, 2014; reviewed by Jan-Ake Gustafsson) The transcription factor ZBED6 (zinc finger, BED-type containing 6) (QTN) with a large impact on body composition (muscle growth is a repressor of IGF2 whose action impacts development, cell pro- and fat deposition); mutant animals showed threefold higher IGF2 liferation, and growth in placental mammals. In human colorectal expression in postnatal muscle (11). ZBED6 was identified as the cancers, IGF2 overexpression is mutually exclusive with somatic nuclear factor specifically binding the wild-type IGF2 sequence but mutations in PI3K signaling components, providing genetic evi- not the mutated site. ChIP sequencing (ChIP-seq) in mouse C2C12 dence for a role in the PI3K pathway. To understand the role of cells identified more than 1,200 putative ZBED6 target genes, in- ZBED6 in tumorigenesis, we engineered and validated somatic cell cluding 262 genes encoding transcription factors (6).
    [Show full text]
  • Cellular and Molecular Signatures in the Disease Tissue of Early
    Cellular and Molecular Signatures in the Disease Tissue of Early Rheumatoid Arthritis Stratify Clinical Response to csDMARD-Therapy and Predict Radiographic Progression Frances Humby1,* Myles Lewis1,* Nandhini Ramamoorthi2, Jason Hackney3, Michael Barnes1, Michele Bombardieri1, Francesca Setiadi2, Stephen Kelly1, Fabiola Bene1, Maria di Cicco1, Sudeh Riahi1, Vidalba Rocher-Ros1, Nora Ng1, Ilias Lazorou1, Rebecca E. Hands1, Desiree van der Heijde4, Robert Landewé5, Annette van der Helm-van Mil4, Alberto Cauli6, Iain B. McInnes7, Christopher D. Buckley8, Ernest Choy9, Peter Taylor10, Michael J. Townsend2 & Costantino Pitzalis1 1Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK. Departments of 2Biomarker Discovery OMNI, 3Bioinformatics and Computational Biology, Genentech Research and Early Development, South San Francisco, California 94080 USA 4Department of Rheumatology, Leiden University Medical Center, The Netherlands 5Department of Clinical Immunology & Rheumatology, Amsterdam Rheumatology & Immunology Center, Amsterdam, The Netherlands 6Rheumatology Unit, Department of Medical Sciences, Policlinico of the University of Cagliari, Cagliari, Italy 7Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow G12 8TA, UK 8Rheumatology Research Group, Institute of Inflammation and Ageing (IIA), University of Birmingham, Birmingham B15 2WB, UK 9Institute of
    [Show full text]
  • Transcriptomic Signature and Metabolic Programming of Bovine Classical and Nonclassical Monocytes Indicate Distinct Functional Specializations
    bioRxiv preprint doi: https://doi.org/10.1101/2020.10.30.362731; this version posted November 1, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Transcriptomic signature and metabolic programming of bovine classical and nonclassical monocytes indicate distinct functional specializations Stephanie C. Talker1,2, G. Tuba Barut1,2, Reto Rufener3, Lilly von Münchow4, Artur Summerfield1,2 1Institute of Virology and Immunology, Bern and Mittelhäusern, Switzerland 2Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland 3Institute of Parasitology, Vetsuisse Faculty, University of Bern, Bern, Switzerland 4 Bucher Biotec AG, Basel, Switzerland *Correspondence: Corresponding Author [email protected] Keywords: monocyte subsets, transcriptome, metabolism, cattle Abstract Similar to human monocytes, bovine monocytes can be split into CD14+CD16- classical and CD14-CD16+ nonclassical monocytes (cM and ncM, respectively). Here, we present an in-depth analysis of their steady-state transcriptomes, highlighting pronounced functional specializations. Gene transcription indicates that pro-inflammatory and antibacterial processes are associated with cM, while ncM appear to be specialized in regulatory/anti-inflammatory functions and tissue repair, as well as antiviral responses and T-cell immunomodulation. In support of these functional differences, we found that oxidative phosphorylation prevails in ncM, whereas cM are clearly biased towards aerobic glycolysis. Furthermore, bovine monocyte subsets differed in their responsiveness to TLR ligands, supporting an antiviral role of ncM. Taken together, these data clearly indicate a variety of subset-specific functions in cM and ncM that are likely to be transferable to monocyte subsets of other species, including humans.
    [Show full text]
  • Dynamic Repression by BCL6 Controls the Genome-Wide Liver Response To
    RESEARCH ARTICLE Dynamic repression by BCL6 controls the genome-wide liver response to fasting and steatosis Meredith A Sommars1, Krithika Ramachandran1, Madhavi D Senagolage1, Christopher R Futtner1, Derrik M Germain1, Amanda L Allred1, Yasuhiro Omura1, Ilya R Bederman2, Grant D Barish1,3,4* 1Division of Endocrinology, Metabolism, and Molecular Medicine, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, United States; 2Department of Pediatrics, Case Western Reserve University, Cleveland, United States; 3Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, United States; 4Jesse Brown VA Medical Center, Chicago, United States Abstract Transcription is tightly regulated to maintain energy homeostasis during periods of feeding or fasting, but the molecular factors that control these alternating gene programs are incompletely understood. Here, we find that the B cell lymphoma 6 (BCL6) repressor is enriched in the fed state and converges genome-wide with PPARa to potently suppress the induction of fasting transcription. Deletion of hepatocyte Bcl6 enhances lipid catabolism and ameliorates high- fat-diet-induced steatosis. In Ppara-null mice, hepatocyte Bcl6 ablation restores enhancer activity at PPARa-dependent genes and overcomes defective fasting-induced fatty acid oxidation and lipid accumulation. Together, these findings identify BCL6 as a negative regulator of oxidative metabolism and reveal that alternating recruitment of repressive and activating transcription factors to
    [Show full text]
  • In Silico Prediction and in Vitro Characterization of Multifunctional Human Rnase3
    Hindawi Publishing Corporation BioMed Research International Volume 2013, Article ID 170398, 12 pages http://dx.doi.org/10.1155/2013/170398 Research Article In Silico Prediction and In Vitro Characterization of Multifunctional Human RNase3 Pei-Chun Lien,1 Ping-Hsueh Kuo,1 Chien-Jung Chen,1 Hsiu-Hui Chang,1 Shun-lung Fang,1 Wei-Shuo Wu,2 Yiu-Kay Lai,2 Tun-Wen Pai,3 and Margaret Dah-Tsyr Chang1, 4 1 InstituteofMolecularandCellularBiology,NationalTsingHuaUniversity,No.101,Section2,KuangFuRoad, Hsinchu 30013, Taiwan 2 Institute of Biotechnology, National Tsing Hua University, No. 101, Section 2, Kuang Fu Road, Hsinchu 30013, Taiwan 3 Department of Computer Science and Engineering, National Taiwan Ocean University, 2 Pei Ning Road, Keelung 20224, Taiwan 4 Department of Medical Science, National Tsing Hua University, No. 101, Section 2, Kuang Fu Road, Hsinchu 30013, Taiwan Correspondence should be addressed to Margaret Dah-Tsyr Chang; [email protected] Received 31 October 2012; Accepted 2 December 2012 Academic Editor: Hao-Teng Chang Copyright © 2013 Pei-Chun Lien et al. is is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Human ribonucleases A (hRNaseA) superfamily consists of thirteen members with high-structure similarities but exhibits divergent physiological functions other than RNase activity. Evolution of hRNaseA superfamily has gained novel functions which may be preserved in a unique region or domain to account for additional molecular interactions. hRNase3 has multiple functions including ribonucleolytic, heparan sulfate (HS) binding, cellular binding, endocytic, lipid destabilization, cytotoxic, and antimicrobial activities.
    [Show full text]
  • Exploring Autophagy with Gene Ontology
    Autophagy ISSN: 1554-8627 (Print) 1554-8635 (Online) Journal homepage: https://www.tandfonline.com/loi/kaup20 Exploring autophagy with Gene Ontology Paul Denny, Marc Feuermann, David P. Hill, Ruth C. Lovering, Helene Plun- Favreau & Paola Roncaglia To cite this article: Paul Denny, Marc Feuermann, David P. Hill, Ruth C. Lovering, Helene Plun- Favreau & Paola Roncaglia (2018) Exploring autophagy with Gene Ontology, Autophagy, 14:3, 419-436, DOI: 10.1080/15548627.2017.1415189 To link to this article: https://doi.org/10.1080/15548627.2017.1415189 © 2018 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. View supplementary material Published online: 17 Feb 2018. Submit your article to this journal Article views: 1097 View Crossmark data Full Terms & Conditions of access and use can be found at https://www.tandfonline.com/action/journalInformation?journalCode=kaup20 AUTOPHAGY, 2018 VOL. 14, NO. 3, 419–436 https://doi.org/10.1080/15548627.2017.1415189 RESEARCH PAPER - BASIC SCIENCE Exploring autophagy with Gene Ontology Paul Denny a,†,§, Marc Feuermann b,§, David P. Hill c,f,§, Ruth C. Lovering a,§, Helene Plun-Favreau d and Paola Roncaglia e,f,§ aFunctional Gene Annotation, Institute of Cardiovascular Science, University College London, London, UK; bSIB Swiss Institute of Bioinformatics, Geneva, Switzerland; cThe Jackson Laboratory, Bar Harbor, ME, USA; dDepartment of Molecular Neuroscience, UCL Institute of Neurology, London, UK; eEuropean Bioinformatics Institute (EMBL-EBI), European Molecular Biology Laboratory, Wellcome Genome Campus, Hinxton, Cambridge, UK; fThe Gene Ontology Consortium ABSTRACT ARTICLE HISTORY Autophagy is a fundamental cellular process that is well conserved among eukaryotes. It is one of the Received 18 May 2017 strategies that cells use to catabolize substances in a controlled way.
    [Show full text]