Better Adjuvants for Better Vaccines: Progress in Adjuvant Delivery Systems, Modifications, and Adjuvant–Antigen Codelivery
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
United States Patent (10) Patent No.: US 7,935,351 B2 Klinman Et Al
US007935351B2 (12) United States Patent (10) Patent No.: US 7,935,351 B2 Klinman et al. (45) Date of Patent: *May 3, 2011 (54) USE OF CPG OLIGODEOXYNUCLEOTIDES 35. A 3. 2. RS:udolph s et alal. TO INDUCE ANGOGENESIS 5,288,509 A 2f1994 Potman et al. 5.488,039 A 1, 1996 M tal. (75) Inventors: Dennis M. Klinman, Potomac, MD 5.492.899 A 2, 1996 NE al. (US); Mei Zheng, Augusta, GA (US); 5,585,479 A 12/1996 Hoke et al. Barry T. Rouse, Knoxville, TN (US) 5,602,1095,591,721 A 2/19971/1997 MasorAgrawal et etal. al. 5,612,060 A 3, 1997 A1 d (73) Assignees: The United States of America as 5,614,191 A 3, 1997 al represented by the Department of 5,650,156 A 7/1997 Grinstaffet al. Health and Human Services, 5,663,153 A 9, 1997 Hutcerson et al. Washington, DC (US); University of 3. A RE SEE, Tennessee Research Foundation, 5,700,590 A 12/1997 Masoretal Knoxville, TN (US) 5,712.256 A 1/1998 Kulkarni et al. 5,723,335 A 3, 1998 Hutcerson et al. (*) Notice: Subject to any disclaimer, the term of this 3. 2. A 38. El cal patent is extended or adjusted under 35 5.840,705 A 11/1998 Tsukuda U.S.C. 154(b) by 761 days. 5,849,719 A 12, 1998 Carson et al. This patent is Subject to a terminal dis- 33: A 23: SEE claimer. 5,922,766 A 7/1999 Acosta et al. -
Recent Advances of Vaccine Adjuvants for Infectious Diseases
http://dx.doi.org/10.4110/in.2015.15.2.51 REVIEW ARTICLE pISSN 1598-2629 eISSN 2092-6685 Recent Advances of Vaccine Adjuvants for Infectious Diseases Sujin Lee1,2* and Minh Trang Nguyen1,2 1Department of Pediatrics, Emory University, School of Medicine, 2Children's Healthcare of Atlanta, Atlanta, Georgia 30322, USA Vaccines are the most effective and cost-efficient method for VACCINES preventing diseases caused by infectious pathogens. Despite the great success of vaccines, development of safe Infectious diseases remain the second leading cause of death and strong vaccines is still required for emerging new patho- worldwide after cardiovascular disease, but the leading cause gens, re-emerging old pathogens, and in order to improve the of death in infants and children (1). Vaccination is the most inadequate protection conferred by existing vaccines. One of efficient tool for preventing a variety of infectious diseases. the most important strategies for the development of effec- The ultimate goal of vaccination is to generate a patho- tive new vaccines is the selection and usage of a suitable adjuvant. Immunologic adjuvants are essential for enhancing gen-specific immune response providing long-lasting pro- vaccine potency by improvement of the humoral and/or tection against infection (2). Despite the significant success cell-mediated immune response to vaccine antigens. Thus, of vaccines, development of safe and strong vaccines is still formulation of vaccines with appropriate adjuvants is an at- required due to the emergence of new pathogens, re-emer- tractive approach towards eliciting protective and long-last- gence of old pathogens and suboptimal protection conferred ing immunity in humans. -
1 Title: Interim Report of a Phase 2 Randomized Trial of a Plant
medRxiv preprint doi: https://doi.org/10.1101/2021.05.14.21257248; this version posted May 17, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. All rights reserved. No reuse allowed without permission. 1 Title: Interim Report of a Phase 2 Randomized Trial of a Plant-Produced Virus-Like Particle 2 Vaccine for Covid-19 in Healthy Adults Aged 18-64 and Older Adults Aged 65 and Older 3 Authors: Philipe Gobeil1, Stéphane Pillet1, Annie Séguin1, Iohann Boulay1, Asif Mahmood1, 4 Donald C Vinh 2, Nathalie Charland1, Philippe Boutet3, François Roman3, Robbert Van Der 5 Most4, Maria de los Angeles Ceregido Perez3, Brian J Ward1,2†, Nathalie Landry1† 6 Affiliations: 1 Medicago Inc., 1020 route de l’Église office 600, Québec, QC, Canada, G1V 7 3V9; 2 Research Institute of the McGill University Health Centre, 1001 Decarie St, Montreal, 8 QC H4A 3J1; 3 GlaxoSmithKline Biologicals SA (Vaccines), Avenue Fleming 20, 1300 Wavre, 9 Belgium; 4 GlaxoSmithKline Biologicals SA (Vaccines), rue de l’Institut 89, 1330 Rixensart, 10 Belgium; † These individuals are equally credited as senior authors. 11 * Corresponding author: Nathalie Landry, 1020 Route de l’Église, Bureau 600, Québec, Qc, 12 Canada, G1V 3V9; Tel. 418 658 9393; Fax. 418 658 6699; [email protected] 13 Abstract 14 The rapid spread of SARS-CoV-2 globally continues to impact humanity on a global scale with 15 rising morbidity and mortality. Despite the development of multiple effective vaccines, new 16 vaccines continue to be required to supply ongoing demand. -
Human Naive B Cells Cells by Cpg Oligodeoxynucleotide-Primed T+
Presentation of Soluble Antigens to CD8+ T Cells by CpG Oligodeoxynucleotide-Primed Human Naive B Cells This information is current as Wei Jiang, Michael M. Lederman, Clifford V. Harding and of September 27, 2021. Scott F. Sieg J Immunol 2011; 186:2080-2086; Prepublished online 14 January 2011; doi: 10.4049/jimmunol.1001869 http://www.jimmunol.org/content/186/4/2080 Downloaded from References This article cites 36 articles, 21 of which you can access for free at: http://www.jimmunol.org/content/186/4/2080.full#ref-list-1 http://www.jimmunol.org/ Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication by guest on September 27, 2021 *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2011 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology Presentation of Soluble Antigens to CD8+ T Cells by CpG Oligodeoxynucleotide-Primed Human Naive B Cells Wei Jiang,*,† Michael M. Lederman,*,† Clifford V. Harding,†,‡ and Scott F. Sieg*,† Naive B lymphocytes are generally thought to be poor APCs, and there is limited knowledge of their role in activation of CD8+ T cells. -
Toll-Like Receptor 9 and 21 Have Different Ligand Recognition Profiles
Toll-like receptor 9 and 21 have different ligand recognition profiles and cooperatively mediate activity of CpG-oligodeoxynucleotides in zebrafish Da-Wei Yeha,b,1, Yi-Ling Liua,1, Yin-Chiu Loc, Chiou-Hwa Yuhd, Guann-Yi Yuc, Jeng-Fan Loe, Yunping Luof, Rong Xiangg, and Tsung-Hsien Chuanga,h,2 aImmunology Research Center, National Health Research Institutes, Miaoli 35053, Taiwan; bInstitute of Molecular Medicine, National Tsing-Hua University, HsinChu 30013, Taiwan; cNational Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli 35053, Taiwan; dInstitute of Molecular and Genomic Medicine, National Health Research Institutes, Miaoli 35053, Taiwan; eInstitute of Oral Biology, National Yang-Ming University, Taipei 11221, Taiwan; fDepartment of Immunology, School of Basic Medicine, Peking Union Medical College, Beijing 100005, People’s Republic of China; gSchool of Medicine, University of Nankai, Tianjin 300071, People’s Republic of China; and hProgram in Environmental and Occupational Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan Edited by Ken J. Ishii, National Institute of Biomedical Innovation, Ibaraki, Japan, and accepted by the Editorial Board October 29, 2013 (received for review March 21, 2013) CpG-oligodeoxynucleotides (CpG-ODNs) are potent immune stim- containing a GTCGTT motif. In contrast, the GTCGTT motif uli currently under investigation as antimicrobial agents for containing CpG-ODN generates stronger immune responses in different species. Toll-like receptor (TLR) 9 and TLR21 are the humans and various domestic animals (8, 9). cellular receptors of CpG-ODN in mammals and chickens, respec- Toll-like receptors (TLRs) are pattern recognition recep- tively. The avian genomes lack TLR9, whereas mammalian tors that play crucial roles in the initiation of host defense genomes lack TLR21. -
Product Information for Pandemrix H1N1 Pandemic Influenza Vaccine
Attachment 1: Product information for Pandemrix H1N1 pandemic influenza vaccine. Influenza virus haemagglutinin (A/California/7/2009(H1N1)v-like strain). GlaxoSmithKline Australia Pty Ltd. PM-2010- 02995-3-2 Final 12 February 2013. This Product Information was approved at the time this AusPAR was published. PANDEMRIX™ H1N1 PRODUCT INFORMATION Pandemic influenza vaccine (split virion, inactivated, AS03 adjuvanted) NAME OF THE MEDICINE PANDEMRIX H1N1, emulsion and suspension for emulsion for injection. Pandemic influenza vaccine (split virion, inactivated, AS03 adjuvanted). DESCRIPTION Each 0.5mL vaccine dose contains 3.75 micrograms1 of antigen2 of A/California/7/2009 (H1N1)v- like strain and is adjuvanted with AS033. 1haemagglutinin 2propagated in eggs 3The GlaxoSmithKline proprietary AS03 adjuvant system is composed of squalene (10.68 milligrams), DL-α-tocopherol (11.86 milligrams) and polysorbate 80 (4.85 milligrams) This vaccine complies with the World Health Organisation (WHO) recommendation for the pandemic. Each 0.5mL vaccine dose also contains the excipients Polysorbate 80, Octoxinol 10, Thiomersal, Sodium Chloride, Disodium hydrogen phosphate, Potassium dihydrogen phosphate, Potassium Chloride and Magnesium chloride. The vaccine may also contain the following residues: egg residues including ovalbumin, gentamicin sulfate, formaldehyde, sucrose and sodium deoxycholate. CLINICAL TRIALS This section describes the clinical experience with PANDEMRIX H1N1 after a single dose in healthy adults aged 18 years and older and the mock-up vaccines (Pandemrix H5N1) following a two-dose administration. Mock-up vaccines contain influenza antigens that are different from those in the currently circulating influenza viruses. These antigens can be considered as “novel” antigens and simulate a situation where the target population for vaccination is immunologically naïve. -
Oligodeoxynucleotide in Murine Asthma Anti-Inflammatory Effects Of
In Vivo Role of p38 Mitogen-Activated Protein Kinase in Mediating the Anti-inflammatory Effects of CpG Oligodeoxynucleotide in Murine Asthma This information is current as of September 23, 2021. Barun K. Choudhury, James S. Wild, Rafeul Alam, Dennis M. Klinman, Istvan Boldogh, Nilesh Dharajiya, William J. Mileski and Sanjiv Sur J Immunol 2002; 169:5955-5961; ; doi: 10.4049/jimmunol.169.10.5955 Downloaded from http://www.jimmunol.org/content/169/10/5955 References This article cites 37 articles, 21 of which you can access for free at: http://www.jimmunol.org/ http://www.jimmunol.org/content/169/10/5955.full#ref-list-1 Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists by guest on September 23, 2021 • Fast Publication! 4 weeks from acceptance to publication *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2002 by The American Association of Immunologists All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology In Vivo Role of p38 Mitogen-Activated Protein Kinase in Mediating the Anti-inflammatory Effects of CpG Oligodeoxynucleotide in Murine Asthma1 Barun K. -
P020210615609549638679.Pdf
The Journal of Immunology SCARB2/LIMP-2 Regulates IFN Production of Plasmacytoid Dendritic Cells by Mediating Endosomal Translocation of TLR9 and Nuclear Translocation of IRF7 Hao Guo,*,† Jialong Zhang,* Xuyuan Zhang,*,† Yanbing Wang,* Haisheng Yu,*,† Xiangyun Yin,*,† Jingyun Li,*,† Peishuang Du,* Joel Plumas,‡ Laurence Chaperot,‡ ,x,{ ,‖,# , Jianzhu Chen,* Lishan Su,* Yongjun Liu,* ** and Liguo Zhang* Downloaded from Scavenger receptor class B, member 2 (SCARB2) is essential for endosome biogenesis and reorganization and serves as a receptor for both b-glucocerebrosidase and enterovirus 71. However, little is known about its function in innate immune cells. In this study, we show that, among human peripheral blood cells, SCARB2 is most highly expressed in plasmacytoid dendritic cells (pDCs), and its expression is further upregulated by CpG oligodeoxynucleotide stimulation. Knockdown of SCARB2 in pDC cell line GEN2.2 dramatically reduces CpG-induced type I IFN production. Detailed studies reveal that SCARB2 localizes in late endosome/ http://www.jimmunol.org/ lysosome of pDCs, and knockdown of SCARB2 does not affect CpG oligodeoxynucleotide uptake but results in the retention of TLR9 in the endoplasmic reticulum and an impaired nuclear translocation of IFN regulatory factor 7. The IFN-I production by TLR7 ligand stimulation is also impaired by SCARB2 knockdown. However, SCARB2 is not essential for influenza virus or HSV-induced IFN-I production. These findings suggest that SCARB2 regulates TLR9-dependent IFN-I production of pDCs by mediating endosomal translocation of TLR9 and nuclear translocation of IFN regulatory factor 7. The Journal of Immunology, 2015, 194: 4737–4749. ysosomes are ubiquitous acid membrane-bound organelles which also includes scavenger receptor class B, member 1 involved in the degradation of molecules, complexes, and (SCARB1), and CD36 (5). -
Screening of Novel Immunostimulatory Cpg Odns and Their Anti-Leukemic Effects As Immunoadjuvants of Tumor Vaccines in Murine Acute Lymphoblastic Leukemia
519-529.qxd 20/12/2010 01:05 ÌÌ ™ÂÏ›‰·519 ONCOLOGY REPORTS 25: 519-529, 2011 519 Screening of novel immunostimulatory CpG ODNs and their anti-leukemic effects as immunoadjuvants of tumor vaccines in murine acute lymphoblastic leukemia JIN WANG, WANGGANG ZHANG, AILI HE, WANHONG ZHAO and XINGMEI CAO Department of Hematology, Second Affiliated Hospital, Medical School of Xi'an Jiaotong University, Xi'an 710004, Shaanxi Province, P.R. China Received July 29, 2010; Accepted October 11, 2010 DOI: 10.3892/or.2010.1093 Abstract. Acute lymphoblastic leukemia (ALL) is a common Additional therapeutic strategies are required in order to malignant disease and a major cause of mortality due to further prolong remission duration and eradicate minimal recurrent disease. Immunotherapy is a promising strategy for residual disease, ideally with less toxicity than conventional eradicating minimal residual disease and thus preventing the chemotherapy. One of the these approaches is active immuno- relapse of leukemia. Apart from stem cell transplantation, therapy with novel vaccination regimens. We previously CpG oligodeoxynucleotides (ODNs) are excellent candidates launched a phase-I clinical trial and evaluated the efficacy for the immunotherapy of leukemia. However, the number of and toxicity of vaccination in patients with relapsed or usable CpG ODNs is limited. In this study, we tested a panel refractory acute leukemia, which proved to be a feasible, of CpG ODNs and obtained three CpG ODN sequences with safe, and capable way of eliciting anti-leukemic responses strong immunostimulatory activity by comparing their in vivo (1). capacity to activate lymphocytes. The data revealed that the As tumor cells are considered to be poorly immunogenic, flanking bases, the spacing of individual CpG motifs and poly- it is difficult to elicit an effective specific anti-tumor activity guanosine ends, contribute to the immunostimulatory activity from these cells alone. -
Oligodeoxynucleotide Dendritic Cells to the TLR9 Agonist Cpg Distinct
Distinct Responses of Lung and Spleen Dendritic Cells to the TLR9 Agonist CpG Oligodeoxynucleotide This information is current as Li Chen, Meenakshi Arora, Manohar Yarlagadda, Timothy of September 24, 2021. B. Oriss, Nandini Krishnamoorthy, Anuradha Ray and Prabir Ray J Immunol 2006; 177:2373-2383; ; doi: 10.4049/jimmunol.177.4.2373 http://www.jimmunol.org/content/177/4/2373 Downloaded from References This article cites 62 articles, 32 of which you can access for free at: http://www.jimmunol.org/content/177/4/2373.full#ref-list-1 http://www.jimmunol.org/ Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication by guest on September 24, 2021 *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2006 by The American Association of Immunologists All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology Distinct Responses of Lung and Spleen Dendritic Cells to the TLR9 Agonist CpG Oligodeoxynucleotide1 Li Chen,* Meenakshi Arora,* Manohar Yarlagadda,* Timothy B. Oriss,* Nandini Krishnamoorthy,* Anuradha Ray,*† and Prabir Ray2*† Dendritic cells (DCs) sense various components of invading pathogens via pattern recognition receptors such as TLRs. -
Enhanced Immune Response After a Second Dose of an AS03-Adjuvanted H1N1 Influenza a Vaccine in Patients After Hematopoietic Stem Cell Transplantation
BRIEF ARTICLES Enhanced Immune Response after a Second Dose of an AS03-Adjuvanted H1N1 Influenza A Vaccine in Patients after Hematopoietic Stem Cell Transplantation Saskia Gueller,1 Regina Allwinn,2 Sabine Mousset,1 Hans Martin,1 Imke Wieters,4 Eva Herrmann,3 Hubert Serve,1 Markus Bickel,4,* Gesine Bug1,* Seroconversion rates following influenza vaccination in patients with hematologic malignancies after hema- topoietic stem cell transplantation (HSCT) are known to be lower compared to healthy adults. The aim of our diagnostic study was to determine the rate of seroconversion after 1 or 2 doses of a novel split virion, inactivated, AS03-adjuvanted pandemic H1N1 influenza vaccine (A/California/7/2009) in HSCT recipients (ClinicalTrials.gov Identifier: NCT01017172). Blood samples were taken before and 21 days after a first dose and 21 days after a second dose of the vaccine. Antibody (AB) titers were determined by hemaggluti- nation inhibition assay. Seroconversion was defined by either an AB titer of #1:10 before and $1:40 after or $1:10 before and $4-fold increase in AB titer 21 days after vaccination. Seventeen patients (14 allogeneic, 3 autologous HSCT) received 1 dose and 11 of these patients 2 doses of the vaccine. The rate of seroconver- sion was 41.2% (95% confidence interval [CI] 18.4-67.1) after the first and 81.8% (95% CI 48.2-97.7) after the second dose. Patients who failed to seroconvert after 1 dose of the vaccine were more likely to receive any immunosuppressive agent (P 5 .003), but time elapsed after or type of HSCT, age, sex, or chronic graft- versus-host disease was not different when compared to patients with seroconversion. -
Oligonucleotide-Ficoll Conjugate Nanoparticle Adjuvant for Enhanced Immunogenicity of Anthrax Protective Antigen † † † † † † Bob Milley,*, Radwan Kiwan, Gary S
This is an open access article published under an ACS AuthorChoice License, which permits copying and redistribution of the article or any adaptations for non-commercial purposes. Article pubs.acs.org/bc Optimization, Production, and Characterization of a CpG- Oligonucleotide-Ficoll Conjugate Nanoparticle Adjuvant for Enhanced Immunogenicity of Anthrax Protective Antigen † † † † † † Bob Milley,*, Radwan Kiwan, Gary S. Ott, Carlo Calacsan, Melissa Kachura, John D. Campbell, ‡ † Holger Kanzler, and Robert L. Coffman † Dynavax Technologies Corporation, 2929 Seventh Street, Suite 100, Berkeley, California 94710, United States ‡ MedImmune LLC, One MedImmune Way, Gaithersburg, Maryland 20878, United States ABSTRACT: We have synthesized and characterized a novel phosphorothioate CpG oligodeoxynucleotide (CpG ODN)-Ficoll conjugated nanoparticulate adjuvant, termed DV230-Ficoll. This adjuvant was constructed from an amine-functionalized-Ficoll, a heterobifunctional linker (succinimidyl-[(N-maleimidopropionamido)- hexaethylene glycol] ester) and the CpG-ODN DV230. Herein, we describe the evaluation of the purity and reactivity of linkers of different lengths for CpG-ODN-Ficoll conjugation, optimization of linker coupling, and conjugation of thiol-functionalized CpG to maleimide- functionalized Ficoll and process scale-up. Physicochemical character- ization of independently produced lots of DV230-Ficoll reveal a bioconjugate with a particle size of approximately 50 nm and covalent attachment of more than 100 molecules of CpG per Ficoll. Solutions of purified DV230-Ficoll were stable for at least 12 months at frozen and refrigerated temperatures and stability was further enhanced in lyophilized form. Compared to nonconjugated monomeric DV230, the DV230-Ficoll conjugate demonstrated improved in vitro potency for induction of IFN-α from human peripheral blood mononuclear cells and induced higher titer neutralizing antibody responses against coadministered anthrax recombinant protective antigen in mice.