Sensation and Perception

Total Page:16

File Type:pdf, Size:1020Kb

Sensation and Perception MYTH SCIENCE? Is it true . That subliminal messages in advertising can make you buy particular products? That an object’s color is not an intrinsic property of the object? That pheromones can make some people irresistible to members of the preferred sex? That different tastes are detected on different parts of your tongue? That most psychologists study ESP? That magnets can relieve pain? (inset) monkeybusinessimages/Getty Images Images (bkgrd) Erik Isakson/Tetraimages/Getty Erik Isakson/Tetra images/Getty Images Sensation and Perception adult, he earned a master’s degree in It was through skiing that Mike met international affairs from Johns Hop- his wife, Jennifer. An accomplished kins University, went to work for the skier herself, she volunteered to be Learning to See CIA, and then became a successful his guide at a ski slope. Today, Mike Mike was just three years old when businessman. and Jennifer and their two sons are all a jar of chemicals, left in an old He also learned to skydive, wind- avid skiers ( Abrams, 2002 ). storage shed, exploded in his face. surf, water ski, and snow ski. How does In his forties, Mike started a suc- The blast destroyed his left eye and a blind person ski down mountains? If cessful company that develops global severely damaged his right eye. For you answered, “Very carefully,” you’d positioning devices— along with more than four decades, Mike May be wrong— at least in Mike’s case. With other mobility devices— for the blind. was completely blind ( Kurson, 2007 ). a guide skiing in front of him shouting The portable navigation system gives But despite his blindness, Mike expe- “left” or “right” to identify obstacles, visually impaired people informa- rienced—and accomplished—much Mike hurtled down the most difficult tion about their location, landmarks, more than most people ever dream black diamond slopes at speeds up streets, and so forth wherever they of achieving. Always athletic, Mike to 65 miles per hour. In fact, Mike has travel. With his white cane and guide played flag football in elementary won several medals in national and dog, Josh, Mike traveled the world, school and wrestled and played soc- international championships for blind both as a businessperson and as a cer in high school and college. As an downhill speed skiing. tourist, ever optimistic and open to 78 Copyright ©2018 Worth Publishers. Distributed by Worth Publishers. Not for redistribution. 04_HOC_13639_Ch03_078_121_pp4.indd 78 25/07/18 8:47 PM CHAPTER 3 adventure (Kurson, 2007). His per- the truth is, I knew exactly what she sonal motto: “There is always a way.” looked like, so it wasn’t all that dra- IN THIS CHAPTER: But Mike’s keen sensory world of matic to see her. The same with my INTRODUCTION: What Are Sensation touch, sounds, and aroma was on the kids. Now, seeing other people that and Perception? verge of expanding. A new surgical I can’t touch, well, that’s interesting Vision: From Light to Sight technique offered the chance that because I couldn’t see them before.” Hearing: From Vibration to Sound Mike’s vision in his right eye might be But what did Mike see? Anatom- The Chemical and Body Senses: Smell, restored. Forty- three years after Mike ically, his right eye was now nor- Taste, Touch, and Position lost his sight, Jennifer held her breath mal. But rather than being 20/20, his Perception as the bandages were removed. “It vision was closer to 20/1,000. What Perceptual Illusions was so unexpected— there was just that means is his view of the world The Effects of Experience on Perceptual a whoosh! of light blasting into my was very blurry. He could see col- Interpretations eye,” Mike later recalled (May, 2002). ors, shapes, lines, shadows, and light PSYCH FOR YOUR LIFE: Strategies to For the first time since he was three and dark patches. So why wasn’t the Control Pain years old, Mike May could see. world crystal clear? And what was it like when Mike Although the structures of his eye could see Jennifer for the first time? were working, his brain did not know “It was incredible,” he explained, “but how to interpret the signals it was 79 Copyright ©2018 Worth Publishers. Distributed by Worth Publishers. Not for redistribution. 04_HOC_13639_Ch03_078_121_pp4.indd 79 25/07/18 8:47 PM 80 CHAPTER 3 SENSATION AND PERCEPTION receiving. As neuropsy- surgery? Mike was dazzled by the Mike’s Moment of Sight: A Little Bit of chologist Ione Fine (2002) sight of the tall, dark green trees, the Vision . Although Mike could “see” from the moment the bandages were removed explained, “Most people snow, and the distant peaks against from his eye (below), he still had trouble learn the language of the blue sky ( May, 2004 ). But although identifying objects, especially stationary vision between the you might think that vision, even ones. Mike tells this story of a walk down age of birth and two blurry vision, would be a distinct an unfamiliar street in Barcelona, Spain: years old. Mike has advantage to an expert skier, this was “I picked my way through some street had to learn it as an not the case. Mike found it easier to construction. I saw a fluorescent green object in my path and tapped it with my adult.” Indeed, there is ski with his eyes closed, with Jen- cane. It wasn’t hard like a sign so I tapped much more to seeing nifer skiing ahead and shouting out it a bit harder as I still couldn’t figure out than meets the eye. directions. With his eyes open, he visually what it was. I was startled as a Faces posed a partic- was overwhelmed by all the visual burst of Spanish profanity came from the ular challenge for Mike. stimuli and the frightening sense that workman bent over digging out a hole in the sidewalk. He didn’t take too kindly During conversations, objects were rushing toward him. “By to me poking him in the behind with my he found it very dis- the time I thought about and guessed cane. A little bit of vision can be dangerous tracting to look at at what the shadows on the snow sometimes” ( May, 2004 ). people’s faces. As meant, I would miss the turn or fall on Mike wrote in his my face. It was best to close my eyes,” Florence Low journal, “I can see he explained. their lips moving, Throughout this chapter, we will eyelashes flickering, head nodding, come back to Mike’s story. We’ll also and hands gesturing. It was easiest to tell you what neuropsychologists close my eyes or tune out the visual Ione Fine and Don MacLeod learned input. This was often necessary in after conducting fMRI scans of Mike’s order to pay attention to what they brain. And, later in the chapter, we’ll were saying” ( May, 2004 ). see how well you do, compared to And what was it like the first time Mike, at deciphering some visual he went skiing, just weeks after his illusions. Florence Low INTRODUCTION: What Are Sensation and Perception? Glance around you. Notice the incredible variety of colors, shades, shadows, and images. Listen carefully to the diversity of sounds, loud and soft, near and far. Focus on everything that’s touching you— your clothes, your shoes, the chair you’re sitting on. Now, inhale deeply through your nose and identify the aromas in the air. With these simple observations, you have exercised four of your senses: vision, hearing, touch, and smell. As we saw in the chapter on neuroscience, the primary function of the nervous system is communication— the transmission of information from one part of the body to the other. Where does that information come from? Put simply, your senses are the gateway through which your brain receives all its infor- mation about the environment. It’s a process that is so natural and automatic that we typically take it for granted until it is disrupted by illness or injury. Nevertheless, as Mike’s story demonstrates, people with one nonfunctional sense are amazingly adap- tive. Often, they learn to compensate for the missing environmental information by relying on their other senses. sensation The process of detecting a physical In this chapter, we will explore the overlapping processes of sensation and perception. stimulus, such as light, sound, heat, or pressure. Sensation refers to the detection and basic sensory experience of environmental stim- perception The process of integrating, uli, such as sounds, images, and odors. Perception occurs when we integrate, organize, organizing, and interpreting sensations. and interpret sensory information in a way that is meaningful. Here’s a simple example Copyright ©2018 Worth Publishers. Distributed by Worth Publishers. Not for redistribution. 04_HOC_13639_Ch03_078_121_pp4.indd 80 25/07/18 8:47 PM Introduction: What Are Sensation and Perception? 81 to contrast the two terms. Your eyes’ physical response to light, splotches of color, and lines exemplifies sensation. Integrating and organizing those sensations so that you interpret the light, splotches of color, and lines as a painting, a flag, or some other object represents perception. Mike’s visual world reflects this distinction. Although his eye was accurately transmitting visual information from his environment (sensation), his brain was unable to make sense out of the information (perception). Where does the process of sensation leave off and the process of perception begin? There is no clear boundary line between the two processes as we actually experience them. However, we’ll discuss sensation and perception separately. We’ll begin with the basics of sensation— how our sensory receptors respond to stimulation and transmit that information in usable form to the brain.
Recommended publications
  • Original Article the Acute E€Ects of Continuous and Conditional
    Spinal Cord (2001) 39, 420 ± 428 ã 2001 International Medical Society of Paraplegia All rights reserved 1362 ± 4393/01 $15.00 www.nature.com/sc Original Article The acute eects of continuous and conditional neuromodulation on the bladder in spinal cord injury APS Kirkham*,1, NC Shah1, SL Knight1, PJR Shah1 and MD Craggs1 1Neuroprostheses Research Centre, Royal National Orthopaedic Hospital, Stanmore, Middlesex HA7 4LP, UK Study design: Laboratory investigation using serial slow-®ll cystometrograms. Objectives: To examine the acute eects of dierent modes of dorsal penile nerve stimulation on detrusor hyperre¯exia, bladder capacity and bladder compliance in spinal cord injury (SCI). Setting: Spinal Injuries Unit, Royal National Orthopaedic Hospital, Stanmore, Middlesex, UK. Methods: Fourteen SCI patients were examined. Microtip transducer catheters enabled continuous measurement of anal sphincter, urethral sphincter and intravesical pressures. Control cystometrograms were followed by stimulation of the dorsal penile nerve at 15 Hz, 200 ms pulse width and amplitude equal to twice that which produced a pudendo-anal re¯ex. Stimulation was either continuous or in bursts of one minute triggered by a rise in detrusor pressure of 10 cm water (conditional). Further control cystometrograms were then performed to examine the residual eects of stimulation. Results: Bladder capacity increased signi®cantly during three initial control ®lls. Continuous stimulation (n=6) signi®cantly increased bladder capacity by a mean of 110% (+Standard Deviation 85%) or 173 ml (+146 ml), and bladder compliance by a mean of 53% (+31%). Conditional stimulation in a dierent group of patients (n=6) signi®cantly increased bladder capacity, by 144% (+127%) or 230 ml (+143 ml).
    [Show full text]
  • BJCP Mead Exam Study Guide
    BJCP Mead Exam Study Guide What you need to know to pass the Mead Exam September 2009 Initial release: September 22, 2009 Contributing Authors Gordon Strong Susan Ruud Kristen England Ken Schramm Curt Stock Petar Bakulić Michael Zapolski, Sr. (Hightest) Copyright © 2009 by the authors and the BJCP TABLE OF CONTENTS 1. Introduction............................................................................................................................. 1 1.1. Recommended Reading.................................................................................................. 1 1.2. Advanced Reading.......................................................................................................... 3 1.3. Important BJCP References............................................................................................ 3 2. The BJCP Mead Exam............................................................................................................ 4 2.1. Mead Exam Details......................................................................................................... 4 2.1.1. Written Section..................................................................................................... 4 2.1.2. Tasting Section..................................................................................................... 5 2.2. BJCP Mead Judge Question Pool ................................................................................... 5 2.2.1. Section 1..............................................................................................................
    [Show full text]
  • Taste and Smell Laboratory Experiments Activity 1
    Name ___________________ Per._____________________ Taste and Smell Laboratory Experiments Activity 1 : Use a mirror to examine your tongue. Describe the location and structure of the three types of papillae. Papillae Location Observation of structure circumvallate filiform fungiform Activity 2: Stimulating your taste buds. 1. Dry the superior surface of your tongue with a paper towel. 2. Place a few sugar crystals on your dried tongue. Do not close your mouth. 3. Time how long it takes to taste the sugar. ____________ sec. 4. Why couldn’t you taste the sugar immediately? Activity 3: Plotting taste bud distribution. 1. Prepare to make a taste sensation map of your lab partner’s tongue by obtaining the following: cotton-tipped swabs, salt solution, bitter solution, sweet solution and sour solution. 2. Before each test, the subject should rinse his or her mouth thoroughly with water and lightly dry his or her mouth with paper towel. 3. Generously moisten a swab with the sweet solution and touch it to the center, back, tip, and sides of the dorsal surface of the subject’s tongue. 4. Map, with O’s on the tongue outline below, the location of the sweet receptors. 5. Using a fresh swab in each case, repeat the procedure with the other solutions. Use a “B” to map location the bitter receptors, a “+” to map the salt receptors and a “–“ to map the sour receptors. 6. What area of the tongue seems to lack receptors? _________________________________ Tongue Map Activity 4: Examining the combined effects of smell and texture on taste. 1. Ask the subject to sit with eyes closed and to pinch his or her nostrils shut.
    [Show full text]
  • A Proposed Neural Pathway for Vocalization in South African Clawed Frogs, Xenopus Laevis
    Journal of J Comp Physiol A (1985) 157:749-761 Sensory, Comparative and.ou~,, Physiology A Physiology~h.v,or* Springer-Verlag 1985 A proposed neural pathway for vocalization in South African clawed frogs, Xenopus laevis Daniel M. Wetzel*, Ursula L. Haerter*, and Darcy B. Kelley** Program in Neuroscience, Department of Psychology, Princeton University, Princeton, New Jersey 08544, USA, and Department of Biological Sciences, Columbia University, New York, New York 10027, USA Accepted September 9, 1985 Summary. 1. Vocalizations of South African 3. Injection of HRP-WGA into DTAM re- clawed frogs are produced by contractions of la- sulted in labelled cells in the striatum, preoptic area ryngeal muscles innervated by motor neurons of and thalamus. Posterior to DTAM, labelled cells the caudal medulla (within cranial nerve nucleus were found in the rhombencephalic reticular nuclei IX-X). We have traced afferents to laryngeal mo- as well as n. IX-X of males. Results in females tor neurons in male and female frogs using retro- were similar with the exception that n. IX-X la- grade axonal transport of horseradish peroxidase belled cells were only seen after very large injec- conjugated to wheat germ agglutinin (HRP- tions of unconjugated HRP into DTAM and sur- WGA). rounding tegmentum. Thus, the projection of n. 2. After iontophoretic injection of HRP-WGA IX-X neurons to DTAM is not as robust in fe- into n. IX-X, retrogradely labelled neurons were males as males. seen in the contralateral n. IX-X, in rhombence- 4. These anatomical studies revealed candidate phalic reticular nuclei, and in the pre-trigeminal brain nuclei contributing to the generation of vocal nucleus of the dorsal tegmental area (DTAM) of behaviors and confirmed some features of a model both males and females.
    [Show full text]
  • Selective Neural Pathway Targeting Reveals Key Roles of Thalamostriatal Projection in the Control of Visual Discrimination
    The Journal of Neuroscience, November 23, 2011 • 31(47):17169–17179 • 17169 Behavioral/Systems/Cognitive Selective Neural Pathway Targeting Reveals Key Roles of Thalamostriatal Projection in the Control of Visual Discrimination Shigeki Kato,1 Masahito Kuramochi,1,2 Kenta Kobayashi,1 Ryoji Fukabori,1 Kana Okada,1,2 Motokazu Uchigashima,3 Masahiko Watanabe,3 Yuji Tsutsui,4 and Kazuto Kobayashi1,2 1Department of Molecular Genetics, Institute of Biomedical Sciences, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan, 2Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Kawaguchi 332-0012, Japan, 3Department of Anatomy, Hokkaido University School of Medicine, Sapporo 060-8638, Japan, and 4Faculty of Symbiotic Systems Science, Fukushima University, Fukushima 960-1296, Japan The dorsal striatum receives converging excitatory inputs from diverse brain regions, including the cerebral cortex and the intralaminar/ midline thalamic nuclei, and mediates learning processes contributing to instrumental motor actions. However, the roles of each striatal input pathway in these learning processes remain uncertain. We developed a novel strategy to target specific neural pathways and applied this strategy for studying behavioral roles of the pathway originating from the parafascicular nucleus (PF) and projecting to the dorso- lateral striatum. A highly efficient retrograde gene transfer vector encoding the recombinant immunotoxin (IT) receptor was injected into the dorsolateral striatum in mice to express the receptor in neurons innervating the striatum. IT treatment into the PF of the vector-injected animals caused a selective elimination of neurons of the PF-derived thalamostriatal pathway. The elimination of this pathway impaired the response selection accuracy and delayed the motor response in the acquisition of a visual cue-dependent discrim- ination task.
    [Show full text]
  • Loss of Taste Is Very Common After HCT: Taste in Wine Is Very Important
    Bone Marrow Transplantation (2020) 55:995–996 https://doi.org/10.1038/s41409-019-0775-y EDITORIAL Loss of taste is very common after HCT: taste in wine is very important. Shaun R. McCann1 Received: 24 November 2019 / Revised: 26 November 2019 / Accepted: 3 December 2019 / Published online: 17 December 2019 © Springer Nature Limited 2019 ‘The first taste of a wine is like the first kiss; you look Of course, taste and smell are intimately related [4] forward to the second’. and smelling a wine cork or a small sample of wine, Andre Tcelistcheff. American winemaker. 1901–1994 without swilling, to detect contamination with TCA (2,4,6—Trichloroanisole) is paramount (Fig. 1). We are all Tchelistcheff’s words remind me of the lyrics ‘… a kiss is familiar with the tongue map wherein certain areas of the just a kiss…’ from the song ‘As Time Goes by’ written by tongue were believed to detect certain tastes, (sweetness, Herman Hupfeld in 1931 and made famous in the film sourness, bitterness and saltiness), with bitterness at the 1234567890();,: 1234567890();,: ‘Casablanca’ in 1942 sung by Sam (played by the American back, sourness and saltiness at the sides and sweetness at actor, singer and musician Arthur ‘Dooley’ Wilson) in the tip (Fig. 2). You can add ‘umami’ to this list a word Rick’s Café. derived from Japanese that refers to detection of a savoury Most physicians who look after patients who have taste (yes, I only learnt this word when researching this received a haematopoietic cell transplant (HCT) are not particularly concerned with dysgeusia (a distortion of the sense of taste).
    [Show full text]
  • Central Neurocircuits Regulating Food Intake in Response to Gut Inputs—Preclinical Evidence
    nutrients Review Central Neurocircuits Regulating Food Intake in Response to Gut Inputs—Preclinical Evidence Kirsteen N. Browning * and Kaitlin E. Carson Department of Neural and Behavioral Sciences, Penn State College of Medicine, Hershey, PA 17033, USA; [email protected] * Correspondence: [email protected]; Tel.: +1-717-531-8267 Abstract: The regulation of energy balance requires the complex integration of homeostatic and hedonic pathways, but sensory inputs from the gastrointestinal (GI) tract are increasingly recognized as playing critical roles. The stomach and small intestine relay sensory information to the central nervous system (CNS) via the sensory afferent vagus nerve. This vast volume of complex sensory information is received by neurons of the nucleus of the tractus solitarius (NTS) and is integrated with responses to circulating factors as well as descending inputs from the brainstem, midbrain, and forebrain nuclei involved in autonomic regulation. The integrated signal is relayed to the adjacent dorsal motor nucleus of the vagus (DMV), which supplies the motor output response via the efferent vagus nerve to regulate and modulate gastric motility, tone, secretion, and emptying, as well as intestinal motility and transit; the precise coordination of these responses is essential for the control of meal size, meal termination, and nutrient absorption. The interconnectivity of the NTS implies that many other CNS areas are capable of modulating vagal efferent output, emphasized by the many CNS disorders associated with dysregulated GI functions including feeding. This review will summarize the role of major CNS centers to gut-related inputs in the regulation of gastric function Citation: Browning, K.N.; Carson, with specific reference to the regulation of food intake.
    [Show full text]
  • Oral Sensation
    Oral sensation Beata Keremi DMD, PhD Department of Oral Biology General sensation in the oral cavity Protopathic: – touch A beta and A delta fibers – pressure (II and III types sensory neurons) – temperature – pain Epicritic: – stereognosia: detect the shape of objects General sensation in the oral cavity http://joecicinelli.com/homunculus-training/ Temperature sensation mucous membranes – very sensitive protective mechanism receptors are bare nerve endings – cold receptor - below a threshold – hot receptor - above a threshold – skin temperature receptor - around 25ºC - same on the lips – maximum tolerable temperature: 70-80 ºC A delta and C fibers – relatively slow (III or IV types sensory neurons) Pressure sensation teeth are sensitive – axially and laterally applied pressure – receptors in the periodontal ligaments end-organs of the Ruffini type - A beta nerve fibers – slow adaptation http://faculty.washington.edu/chudler/receptor.html http://people.usd.edu/~cliff/Courses/Behavioral%20Neuroscience/Lordosis/Lordosisfigs/lorsenspics.html excitability depend on the position Proprioception Proprioceptive impulses from: – muscles of the tongue Muscle spindle – masticatory muscles • elevator • depressor - few – temporomandibular joint http://medical-dictionary.thefreedictionary.com/muscle+spindle Neuropeptide - suggesting the presence of nerve endings – joint capsules – synovial discs Taste and smell Nose and mouth are sentinels of chemical world In dysfunction can be an early indicator of serious diseases – Alzheimer’s; Parkinson’s diseases
    [Show full text]
  • The Five Neural Pathways of Memory HU Jian-Feng
    5th International Conference on Education, Management, Information and Medicine (EMIM 2015) The five neural pathways of memory HU Jian-feng Institute of Information Technology, Jiangxi University of Technology, Nanchang 330098, China Keywords: Memory; Neuron; Learning; Brain Abstract: All the acquisition of knowledge is a memory, the memory is the foundation of all intellectual activities. Memory is also the basis of education. This paper presents five neural pathways of memory, respectively, based on information, rules, concepts, expectations and integration. These pathways has important significance on the formation and maintain of memory. Understanding these is very helpful to improve education. Introduction Memory is the results of modified synaptic transmission. The most prominent bottleneck to understand the mechanisms of memory is the connection structure of fine synapses. However, we still don't know how to connect the brain nerve, how synaptic connection work between what the specific types of neurons, and how synaptic connections modify. The lack of effective research method is important to explore the mechanism of memory, such as brain imaging device resolution and coverage is a contradiction, high resolution is often limited coverage, large coverage often insufficient resolution. Based on combining the various models of learning and memory, combined with some cases of pathological or genius, this paper proposes five neural pathway of memory. Pathway one: Memory based on information (the basis of information transmission) The input data are some sophisticated audio-visual information, following cognitive learning mechanism, then through neural pathway of audio-visual information processing, finally to realize the access of cognitive information by the area of cortex.
    [Show full text]
  • Pathway-Specific Control of Reward Learning and Its Flexibility Via Selective Dopamine Receptors in the Nucleus Accumbens
    Pathway-specific control of reward learning and its flexibility via selective dopamine receptors in the nucleus accumbens Satoshi Yawata, Takashi Yamaguchi, Teruko Danjo, Takatoshi Hikida1, and Shigetada Nakanishi2 Department of Systems Biology, Osaka Bioscience Institute, Suita, Osaka 565-0874, Japan Contributed by Shigetada Nakanishi, June 26, 2012 (sent for review June 6, 2012) In the basal ganglia, inputs from the nucleus accumbens (NAc) are is reversibly blocked in a doxycycline-regulated manner (13–15). transmitted through both direct and indirect pathways and control In this technique, the transmission-blocking tetanus toxin is reward-based learning. In the NAc, dopamine (DA) serves as a key expressed in a pathway-specific and doxycycline-regulated man- neurotransmitter, modulating these two parallel pathways. This ner, thus allowing separate and reversible blockade of neuro- study explored how reward learning and its flexibility are controlled transmission in the direct pathway (D-RNB mice) or the indirect in a pathway-specific and DA receptor-dependent manner. We used pathway (I-RNB mice) in vivo (15, 16). The function of the basal two techniques (i) reversible neurotransmission blocking (RNB), in ganglia circuitry becomes defective only when both sides of the which transmission of the direct (D-RNB) or the indirect pathway basal ganglia circuit are simultaneously impaired in the brain (I-RNB) in the NAc on both sides of the hemispheres was selectively hemispheres (17, 18). We thus extended the RNB technique to blocked by transmission-blocking tetanus toxin; and (ii) asymmetric an asymmetric RNB (aRNB) technique, in which one side of the RNB, in which transmission of the direct (D-aRNB) or the indirect path- basal ganglia circuit is blocked by the RNB technique, and the way (I-aRNB) was unilaterally blocked by RNB techniques and the other intact side is treated with an agonist or antagonist specific intact side of the NAc was infused with DA agonists or antagonists.
    [Show full text]
  • Anatomy and Physiology of the Vestibular System
    1/28/2013 Overview Anatomy and Physiology of the Vestibular System J. Douglas Green, Jr, MD Input Central Processing Output Anatomy Vestibular Anatomy • Angular movements stimulate semicircular canals and are primarily important for visual stabilization • Semicircular canals paired with a contralateral semicircular canal (i.e. R Lat SCC with L Lat SCC) • Movement in any plane stimulates on SCC and inhibits corresponding SCC on opposite side • Otolithic labyrinth (utricle and saccule) respond to linear movement and primarily orient with regard to gravity • Static tilt results in continued stimulation 1 1/28/2013 Vestibular Hair Cells Anatomy Semicircular Canals • Stereocilia • Orientation • Kinocilium • Ampulla • Resting firing rate of 90 spikes/sec • Increased firing rate when deflection towards kinocilium Physiology Central Vestibular System Semicircular Canals • Push pull interaction • Sup SCC, Lat SCC, utricle and ant/sup portion • VOR of saccule innervated by Superior Vestibular Nerve • Post SCC and majority of saccule innervated by Inferior Vestibular Nerve • VIII consists of bipolar neurons with cell bodies in Scarpa’s Ganglion in IAC • Vestibular Nuclei in brainstem 2 1/28/2013 Vestibulo‐Ocular Reflex Physiology Otolithic Organs • Stabilizes gaze during active head movements • Otoconia • Absent VOR results in bouncing environment • Resting neural discharge while walking, riding in car or other activities • Linear acceleration (oscillopsia) • Superior Vestibular Nerve synapses in medial and superior vestibular nuclei then on to
    [Show full text]
  • Molecular Gastronomy and Sensory Science
    Sensory Science – myth busting Jannie Vestergaard Michael Bom Frøst, PhD Project manager Associate Professor, Director of Studies Taste Skåne Department of Food Science Skåne food Innovation Sensory Science Group Network [email protected] jannie.vestergaard@ livsmedelsakademin.se OVERVIEW • An envelope with unusual content • The senses at work in real life • Matching coffee with foods • Complexity enters the equation – Is really good coffee complex? • Learning to taste – train and be challenged – Tricks of the sensory trade The envelope Taste kit for the lecture 1. Take a piece of chewing gum (the white rectangular piece) Nordic Barista Cup, August 25 2011, Jannie Vestergaard & Michael Bom Frøst 3 THE SENSES AT WORK IN REAL LIFE Three basic properties by sense perception The quality (Qualitas) • Identification • What is the property? • Recognition of objects (= a number of properties) Intensity (magnitude = the size) • How much is there of it? Affective dimension • Affect: The experience of emotion • Is it something I like/don’t like Nordic Barista Cup, August 25 2011, Jannie Vestergaard & Michael Bom Frøst 5 The senses – 5 classic + some less known The remote senses Vision The higher senses Audition Olfaction The lower The near senses senses Gustation The chemical Somesthesis ( ~ sense of touch) senses Pressure Temperature Pain / irritation / chemesthesis Balance Body and joint position Nordic Barista Cup, August 25 2011, Jannie Vestergaard & Michael Bom Frøst 6 Taste – Myth busting : The tongue map The different basic tastes are experienced at different locations in the mouth: Bitter only in the back Tongues on scientific evidence: Take out the chewing gum Apply the filter paper to the tip of your tongue Taste-receptor cells, buds and papillae.
    [Show full text]