The Afar RRR Triple Junction, a Focus Area for MARGINS RIE, Plate

Total Page:16

File Type:pdf, Size:1020Kb

The Afar RRR Triple Junction, a Focus Area for MARGINS RIE, Plate The Afar R­R­R Triple Junction, a Focus Area for MARGINS RIE, Plate Boundary Deformation and Geodynamics Rebecca Bendick, Dept. of Geosciences, Univ. of Montana <[email protected]> Robert Reilinger, DEAPS, MIT, Cambridge, MA <[email protected]> Katie Keranen, School of Geology and Geophys., Oklahoma Univ., <[email protected]> Lucy Flesch, Dept. of Earth and Atm. Sci., Purdue Univ., IN, < [email protected]> Shimelles Fisseha, Geophy. Obs., AAU, Addis Ababa, Ethiopia <[email protected]> The Afar Triple Junction (ATJ) is defined by the intersection of the Red Sea (RS), Gulf of Aden (GA), and East Africa Rift (EAR) system. These three structures cover the full range of rifting stages and styles from the earliest stages of continental breakup (EAR) through the initial stages of ocean spreading (central/northern Red Sea), to full‐ocean rifting along the GA. Deciphering the kinematic complexities of the ATJ and its time evolution as the Aden rift propagated into the Nubian plate to form the present Afar Depression and Danakil Block is critical to improving understanding of three topics in geodynamics: i. What are the critical parameters that control the initiation of rifting of the continental lithosphere (the roles of pre‐existing weaknesses, the sub‐lithosphere erosion [hot spot], subduction/continental collision), ii. How do extensional plate boundaries evolve over time, and how do real R‐R‐R triple junctions develop under finite extension (in contrast to the limit of a 0D triple junction in a vector sum approximation), and iii. How is the distribution of surface deformation related to crustal/lithospheric mechanics and rheology? The relative motion between AR, NU, and SO, as well as the motions of AR and NU with respect to Eurasia, are well constrained by plate tectonic, geologic, and geodetic studies – these motions are remarkable for their simplicity and uniformity in time. NU‐AR and SO‐AR motion, and resulting RS and GA extension, developed in 2 stages, initial, slow extension starting at 24 ± 4 Ma that accelerated by a factor of 2 at ~11 Ma, and has remained steady to the present time (ArRajehi et al., 2010; McClusky et al., 2010). NU‐SO motion likely initiated simultaneously with that in the RS and GA (i.e., 24 ± 4 Ma; e.g., Garfunkel and Beyth, 2006), although the rate of extension has been slower by roughly a factor of 4 – 5 than that in the RS and GA, and there is no clear evidence for changes in rate since rift initiation. These well‐defined motions provide simple boundary conditions for the rifting process allowing focus on the influence of the rate and orientation of plate motions, the influence of pre‐ existing structures (lithospheric and crustal), magmatism, and mantle flow, among other possible factors. Despite the recent research focus on both the ATJ and the Ethiopian Rift, the available data for the region is limited and insufficient to determine whether the classic Wilson cycle concept of rifting and margin formation fits the African example. In the Ethiopian Rift, a variety of active and passive source seismic products image the structural rift, but have very limited resolution beyond the rift bounding faults (Keranen et al., 2009; Keranen and Klemperer, 2008; Bendick et al., 2006; Pasyanos, 2005; Kendall et al., 2005; Bastow et al., 2005). Geodetic data is also most dense within the structural rift. Geochemical and structural studies extend further into the Nubian and Somalian plates, but are still sparse. In the Red Sea and Gulf of Aden recent geodetic results provide bounds on the total extension rates, but not on how or where extension is accommodated (e.g. ArRajehi et al., 2010; Pallister et al., in press). In the Afar region itself, geodetic data has been collected mostly in a transect along a single, sparse transect from the Ethiopian Highlands to the Red Sea coast, with additional observations around the Dabbahu dike injection site, supported by limited seismic data (Figure 1). All of these observations suffice to place some bounds on the kinematics and mechanics of the region, but have also stimulated new questions, especially about how continental breakup initiates and evolves, how feedbacks between strain and temperature evolution affect the process, and how the mechanics of continental rifting change in space and time. The ATJ and associated rift structures continue to be the focus of a broad range of geologic and geophysical studies by US, African, Arabian, and European investigators. Substantial geophysical studies were supported under the MARGINS RCL initiative (seismic, geologic, geodetic) that provide a strong basis for future studies. Saudi Arabia is dedicating major resources to study rifting processes and associated hazards along the Red Sea, ARAMCO has an expanding interest in seismic exploration of the Red Sea, and European investigators have long focused on Mediterranean active tectonics that are a direct consequence of changes in NU‐EU convergence (Jolivet and Faccenna, 2000; McClusky et al., 2010). The development of AFREF, a US lead project to initiate geodetic infrastructure in Sub‐Saharan Africa, will facilitate all future active tectonic studies, as will the proliferation of national GPS networks in N Africa (Morocco, Libya, Algeria, Egypt). Establishing this broad region as a GeoPRISMS focus site will provide further opportunities for the academic Earth science community to gain access to these important data. Broader Impacts: Development of Geophysical expertise in Africa and Arabia through direct collaborations. Constraints for, and development of, basin models for resource exploration. International collaborations. Student involvement in international research. Hazard mitigation (eqs, surface failures, volcanic events, improved weather forecasting using national GPS networks). Methodology: Possible research targets for the region should include enhanced geodesy for deformation monitoring (distribution of strain across rift structures at different stages of evolution and in different tectono‐magmatic settings), ongoing study of existing geodetic assets to improve temporal resolution, improvement of geodetic resolution within the ATJ with network expansion, seismic studies for constraining crustal, lithospheric, and deep mantle structure, fault geometry, and basin evolution within the ATJ and extending into the Nubian and Somalian “plates”, geodynamic simulations, and geochemistry and geochronology of regional magmatic activity. References A. ArRajehi, et al. (2010) Geodetic constraints on present‐day motion of the Arabian Plate: Implications for Red Sea and Gulf of Aden rifting, Tectonics, 29, TC3011, doi:10.1029/2009TC002482. I. Bastow, G. Stuart, J. Kendall, and C. Ebinger (2005) Upper‐mantle seismic structure in a region of incipient continental breakup: northern Ethiopian rift, Geophys. J. Int. 162: 479‐ 493. Z. Garfunkel, Z., and M. Beyth (2006) Constraints on the structural development of Afar imposed by the kinematics of the major surrounding plates, in The Afar Volcanic Province Within the East African Rift System, edited by G. Yirgu, C. J. Ebinger, and P. K. H. Maquire, Geol. Soc. Spec. Publ., 259, 23–42. L. Jolivet and C. Faccenna, Mediterranean extension and the Africa‐Eurasia Collision, Tectonics, 19: 1095‐1106, 2000. J. Kendall, G. Stuart, C. Ebinger, I. Bastow, and D. Keir (2005) Magma‐assisted rifting in Ethiopia, Nature 433: 146‐148. K. Keranen, S. Klemperer, J. Julia, J. Lawrence, and A. Nyblade (2009) Low lower crustal velocity across Ethiopia: is the Main Ethiopian Rift a narrow rift in a hot craton? G3 10:q0AB01. K. Keranen and S. Klemperer (2008) Discontinuous and diachronous evolution of the Main Ethiopian Rift: Implications for development in continental rifts, Earth Planet. Sci. Lett. 265: 96‐111. S. McClusky, R. Reilinger, and 9 others (2010b) Kinematics of the southern Red Sea‐Afar Triple junction and implications for plate dynamics, Geophys. Res. Lett., 37, L05301, doi:10.1029/2009GL041127. S. McClusky and R. Reilinger, Arabia/Africa/Eurasia kinematics and the Dynamics of Post‐ Oligocene Mediterranean Tectonics, AGU Fall Meeting, T23 (abstract), 2010. J. Pallister, W. McCausland, S. Jonsson, Z. Lu, H. Zahran, S. El Hadidy, A. Aburukbah, I. Stewart, P. Lundgren, R. White, and M. Moufti (2010) Dyke intrusion crisis in Saudi Arabia and discovery of a new volcanic earthquake type, Nature Geosciences, in press. M. Pasyanos (2005) A variable resolution surface wave dispersion study of Eurasia, North Africa, and surrounding regions, J. Geophys. Res. 110: B12301. Figure 1. The proposed rift mechanics study area. The approximate EAGLE seismic experiment footprint is the black box. Existing GPS sites are open circles. The red boxes show the target regions for new seismic and numerical simulation studies; red circles are potential new geodetic observation sites. Broad scale studies of the mechanics of plate motions will consider the full AR, NU, SO, EU plate system. .
Recommended publications
  • Kinematic Reconstruction of the Caribbean Region Since the Early Jurassic
    Earth-Science Reviews 138 (2014) 102–136 Contents lists available at ScienceDirect Earth-Science Reviews journal homepage: www.elsevier.com/locate/earscirev Kinematic reconstruction of the Caribbean region since the Early Jurassic Lydian M. Boschman a,⁎, Douwe J.J. van Hinsbergen a, Trond H. Torsvik b,c,d, Wim Spakman a,b, James L. Pindell e,f a Department of Earth Sciences, Utrecht University, Budapestlaan 4, 3584 CD Utrecht, The Netherlands b Center for Earth Evolution and Dynamics (CEED), University of Oslo, Sem Sælands vei 24, NO-0316 Oslo, Norway c Center for Geodynamics, Geological Survey of Norway (NGU), Leiv Eirikssons vei 39, 7491 Trondheim, Norway d School of Geosciences, University of the Witwatersrand, WITS 2050 Johannesburg, South Africa e Tectonic Analysis Ltd., Chestnut House, Duncton, West Sussex, GU28 OLH, England, UK f School of Earth and Ocean Sciences, Cardiff University, Park Place, Cardiff CF10 3YE, UK article info abstract Article history: The Caribbean oceanic crust was formed west of the North and South American continents, probably from Late Received 4 December 2013 Jurassic through Early Cretaceous time. Its subsequent evolution has resulted from a complex tectonic history Accepted 9 August 2014 governed by the interplay of the North American, South American and (Paleo-)Pacific plates. During its entire Available online 23 August 2014 tectonic evolution, the Caribbean plate was largely surrounded by subduction and transform boundaries, and the oceanic crust has been overlain by the Caribbean Large Igneous Province (CLIP) since ~90 Ma. The consequent Keywords: absence of passive margins and measurable marine magnetic anomalies hampers a quantitative integration into GPlates Apparent Polar Wander Path the global circuit of plate motions.
    [Show full text]
  • Tracing the Central African Rift and Shear Systems Offshore Onto
    Tracing the West and Central African Rift and Shear Systems offshore onto oceanic crust: a ‘rolling’ triple junction William Dickson (DIGs), and James W. Granath, PhD, (Granath & Associates) Abstract Compared to the understood kinematics of its continental margins and adjacent ocean basins, the African continent is unevenly or even poorly known. Consequently, the connections from onshore fault systems into offshore spreading centers and ridges are inaccurately positioned and inadequately understood. This work considers a set of triple junctions and the related oceanic fracture systems within the Gulf of Guinea from Nigeria to Liberia. Our effort redefines the greater Benue Trough, onshore Nigeria, and reframes WCARS (West and Central African Rift and Shear Systems) as it traces beneath the onshore Niger Delta and across the Cameroon Volcanic Line (CVL), Figure 1. We thus join onshore architecture to oceanic fracture systems, forming a kinematically sound whole. This required updating basin outlines and relocating mis- positioned features, marrying illustrations from the literature to imagery suitable for basin to sub- basin mapping. The resulting application of systems structural geology explains intraplate deformation in terms of known structural styles and interplay of their elements. Across the Benue Trough and along WCARS, we infer variations in both structural setting and thermal controls that require further interpretation of their petroleum systems. Introduction Excellent work has defined Africa's onshore geology and the evolution and driving mechanisms of the adjacent (particularly the circum-Atlantic) ocean basins. However, understanding of the oceanic realm has outpaced that of the continent of Africa. This paper briefly reviews onshore work. We then discuss theoretical geometry of tectonic boundaries (including triple junctions) and our data (sources and compilation methods).
    [Show full text]
  • The Caribbean-North America-Cocos Triple Junction and the Dynamics of the Polochic-Motagua Fault Systems
    The Caribbean-North America-Cocos Triple Junction and the dynamics of the Polochic-Motagua fault systems: Pull-up and zipper models Christine Authemayou, Gilles Brocard, C. Teyssier, T. Simon-Labric, A. Guttierrez, E. N. Chiquin, S. Moran To cite this version: Christine Authemayou, Gilles Brocard, C. Teyssier, T. Simon-Labric, A. Guttierrez, et al.. The Caribbean-North America-Cocos Triple Junction and the dynamics of the Polochic-Motagua fault systems: Pull-up and zipper models. Tectonics, American Geophysical Union (AGU), 2011, 30, pp.TC3010. 10.1029/2010TC002814. insu-00609533 HAL Id: insu-00609533 https://hal-insu.archives-ouvertes.fr/insu-00609533 Submitted on 19 Jan 2012 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. TECTONICS, VOL. 30, TC3010, doi:10.1029/2010TC002814, 2011 The Caribbean–North America–Cocos Triple Junction and the dynamics of the Polochic–Motagua fault systems: Pull‐up and zipper models C. Authemayou,1,2 G. Brocard,1,3 C. Teyssier,1,4 T. Simon‐Labric,1,5 A. Guttiérrez,6 E. N. Chiquín,6 and S. Morán6 Received 13 October 2010; revised 4 March 2011; accepted 28 March 2011; published 25 June 2011.
    [Show full text]
  • Geological Evolution of the Red Sea: Historical Background, Review and Synthesis
    See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/277310102 Geological Evolution of the Red Sea: Historical Background, Review and Synthesis Chapter · January 2015 DOI: 10.1007/978-3-662-45201-1_3 CITATIONS READS 6 911 1 author: William Bosworth Apache Egypt Companies 70 PUBLICATIONS 2,954 CITATIONS SEE PROFILE Some of the authors of this publication are also working on these related projects: Near and Middle East and Eastern Africa: Tectonics, geodynamics, satellite gravimetry, magnetic (airborne and satellite), paleomagnetic reconstructions, thermics, seismics, seismology, 3D gravity- magnetic field modeling, GPS, different transformations and filtering, advanced integrated examination. View project Neotectonics of the Red Sea rift system View project All content following this page was uploaded by William Bosworth on 28 May 2015. The user has requested enhancement of the downloaded file. All in-text references underlined in blue are added to the original document and are linked to publications on ResearchGate, letting you access and read them immediately. Geological Evolution of the Red Sea: Historical Background, Review, and Synthesis William Bosworth Abstract The Red Sea is part of an extensive rift system that includes from south to north the oceanic Sheba Ridge, the Gulf of Aden, the Afar region, the Red Sea, the Gulf of Aqaba, the Gulf of Suez, and the Cairo basalt province. Historical interest in this area has stemmed from many causes with diverse objectives, but it is best known as a potential model for how continental lithosphere first ruptures and then evolves to oceanic spreading, a key segment of the Wilson cycle and plate tectonics.
    [Show full text]
  • Subduction Controls the Distribution and Fragmentation of Earth’S Tectonic Plates Claire Mallard, Nicolas Coltice, Maria Seton, R.D
    Subduction controls the distribution and fragmentation of Earth’s tectonic plates Claire Mallard, Nicolas Coltice, Maria Seton, R.D. Müller, Paul J. Tackley To cite this version: Claire Mallard, Nicolas Coltice, Maria Seton, R.D. Müller, Paul J. Tackley. Subduction controls the distribution and fragmentation of Earth’s tectonic plates. Nature, Nature Publishing Group, 2016, 535 (7610), pp.140-143. 10.1038/nature17992. hal-01355818 HAL Id: hal-01355818 https://hal.archives-ouvertes.fr/hal-01355818 Submitted on 24 Aug 2016 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Subduction controls the distribution and fragmentation of Earth’s tectonic plates Claire Mallard1, Nicolas Coltice1,2, Maria Seton3, R. Dietmar Müller3, Paul J. Tackley4 1. Laboratoire de géologie de Lyon, École Normale Supérieure, Université de Lyon 1, 69622 Villeurbanne, France. 2. Institut Universitaire de France, 103, Bd Saint Michel, 75005 Paris, France 3. EarthByte Group, School of Geosciences, Madsen Building F09, University of Sydney, NSW, 2006, Australia 4. Institute of Geophysics, Department of Earth Sciences, ETH Zürich, Sonneggstrasse 5, 8092 Zurich, Switzerland The theory of plate tectonics describes how the surface of the Earth is split into an organized jigsaw of seven large plates1 of similar sizes and a population of smaller plates, whose areas follow a fractal distribution2,3.
    [Show full text]
  • Mcclusky.2009Gl041127.X 1..5
    GEOPHYSICAL RESEARCH LETTERS, VOL. 37, L05301, doi:10.1029/2009GL041127, 2010 Click Here for Full Article Kinematics of the southern Red Sea–Afar Triple Junction and implications for plate dynamics Simon McClusky,1 Robert Reilinger,1 Ghebrebrhan Ogubazghi,2 Aman Amleson,2 Biniam Healeb,3 Philippe Vernant,4 Jamal Sholan,5 Shimelles Fisseha,6 Laike Asfaw,6 Rebecca Bendick,7 and Lewis Kogan7 Received 2 November 2009; revised 6 January 2010; accepted 15 January 2010; published 4 March 2010. [1] GPS measurements adjacent to the southern Red Sea and African rifts [e.g., McKenzie et al. 1970; Le Pichon and Afar Triple Junction, indicate that the Red Sea Rift bifurcates Gaulier, 1988]. The Triple Junction lies above the Afar south of 17° N latitude with one branch following a Hot Spot that is responsible for the voluminous volcanic continuation of the main Red Sea Rift (∼150° Az.) and activity and high elevation that has characterized the region the other oriented more N‐S, traversing the Danakil since the Late Oligocene [e.g., Hoffman et al., 1997], and Depression. These two rift branches account for the full which continues to the present time [e.g., Wright et al., Arabia–Nubia relative motion. The partitioning of 2006]. Interaction between tectonic extension and the Afar extension between rift branches varies approximately Hot Spot has resulted in spatially distributed, and temporally linearly along strike; north of ∼16°N latitude, extension evolving deformation around the Triple Junction [e.g., (∼15 mm/yr) is all on the main Red Sea Rift while at Garfunkel and Beyth, 2006], although Arabia–Nubia– ∼13°N, extension (∼20 mm/yr) has transferred completely Somalia relative plate motions have remained approxi- to the Danakil Depression.
    [Show full text]
  • Mid-Cretaceous Tectonic Evolution of the Tongareva Triple Junction in the Southwestern Pacific Basin
    Mid-Cretaceous tectonic evolution of the Tongareva triple junction in the southwestern Paci®c Basin Roger L. Larson Graduate School of Oceanography, University of Rhode Island, Narragansett, Rhode Island 02882, Robert A. Pockalny USA Richard F. Viso Elisabetta Erba Dipartimento di Scienze della Terra, UniversitaÁ di Milano, 20133 Milano, Italy Lewis J. Abrams Center for Marine Science, University of North Carolina, Wilmington, North Carolina 28409, USA Bruce P. Luyendyk Department of Geological Sciences, University of California, Santa Barbara, California 93106, USA Joann M. Stock Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California Robert W. Clayton 91125, USA ABSTRACT The trace of the ridge-ridge-ridge triple junction that con- nected the Paci®c, Farallon, and Phoenix plates during mid-Creta- ceous time originates at the northeast corner of the Manihiki Pla- teau near the Tongareva atoll, for which the structure is named. The triple junction trace extends .3250 km south-southeast, to and beyond a magnetic anomaly 34 bight. It is identi®ed by the inter- section of nearly orthogonal abyssal hill fabrics, which mark the former intersections of the Paci®c-Phoenix and Paci®c-Farallon Ridges. A distinct trough is commonly present at the intersection. A volcanic episode from 125 to 120 Ma created the Manihiki Pla- teau with at least twice its present volume, and displaced the triple junction southeast from the Nova-Canton Trough to the newly formed Manihiki Plateau. Almost simultaneously, the plateau was rifted by the new triple junction system, and large fragments of the plateau were rafted away to the south and east.
    [Show full text]
  • Rift-Valley-1.Pdf
    R E S O U R C E L I B R A R Y E N C Y C L O P E D I C E N T RY Rift Valley A rift valley is a lowland region that forms where Earth’s tectonic plates move apart, or rift. G R A D E S 6 - 12+ S U B J E C T S Earth Science, Geology, Geography, Physical Geography C O N T E N T S 9 Images For the complete encyclopedic entry with media resources, visit: http://www.nationalgeographic.org/encyclopedia/rift-valley/ A rift valley is a lowland region that forms where Earth’s tectonic plates move apart, or rift. Rift valleys are found both on land and at the bottom of the ocean, where they are created by the process of seafloor spreading. Rift valleys differ from river valleys and glacial valleys in that they are created by tectonic activity and not the process of erosion. Tectonic plates are huge, rocky slabs of Earth's lithosphere—its crust and upper mantle. Tectonic plates are constantly in motion—shifting against each other in fault zones, falling beneath one another in a process called subduction, crashing against one another at convergent plate boundaries, and tearing apart from each other at divergent plate boundaries. Many rift valleys are part of “triple junctions,” a type of divergent boundary where three tectonic plates meet at about 120° angles. Two arms of the triple junction can split to form an entire ocean. The third, “failed rift” or aulacogen, may become a rift valley.
    [Show full text]
  • Internal Deformation of the Southern Gorda Plate: Fragmentation of a Weak Plate Near the Mendocino Triple Junction
    Internal deformation of the southern Gorda plate: Fragmentation of a weak plate near the Mendocino triple junction Sean P.S. Gulick* Department of Earth and Environmental Sciences, Lehigh University, Bethlehem, Pennsylvania 18015, Anne S. Meltzer USA Timothy J. Henstock* Department of Geology and Geophysics, Rice University, Houston, Texas 77005, USA Alan Levander ABSTRACT Gorda plate that may serve as the northern North-south compression across the Gorda-Paci®c plate boundary caused by the north- limit of in¯uence of the triple junction on the ward-migrating Mendocino triple junction appears to reactivate Gorda plate normal Juan de Fuca±Gorda plate system. Near the faults, originally formed at the spreading ridge, as left-lateral strike-slip faults. Both seis- triple junction, the plate shows evidence of mically imaged faults and magnetic anomalies fan eastward from ;N208E near the Gorda fragmenting (Fig. 1B). ridge to ;N758E near the triple junction. Near the triple junction, the Gorda plate is faulted pervasively and appears to be extending east-southeast as it subducts beneath GORDA PLATE DEFORMATION North America. Continuation of northeast-southwest±oriented deformation in the southern Oceanic crust imaged on seismic lines Gorda plate beneath the continental margin contrasts with the northwest-southeast±trend- MTJ-3, MTJ-5, and MTJ-6 is rough and per- ing structures in the overlying accretionary prism, suggesting partial Gorda±North Amer- vasively faulted (Fig. 3). The crust appears in ican plate decoupling. Southeast of the triple junction, a slabless window is generated by places to be broken into crustal blocks bound- removal of the subducting Gorda plate.
    [Show full text]
  • Plate Kinematics of the Afro-Arabian Rift System with an Emphasis on the Afar Depression
    Scholars' Mine Doctoral Dissertations Student Theses and Dissertations Fall 2012 Plate kinematics of the Afro-Arabian Rift System with an emphasis on the Afar Depression Helen Carrie Bottenberg Follow this and additional works at: https://scholarsmine.mst.edu/doctoral_dissertations Part of the Geology Commons, and the Geophysics and Seismology Commons Department: Geosciences and Geological and Petroleum Engineering Recommended Citation Bottenberg, Helen Carrie, "Plate kinematics of the Afro-Arabian Rift System with an emphasis on the Afar Depression" (2012). Doctoral Dissertations. 2237. https://scholarsmine.mst.edu/doctoral_dissertations/2237 This thesis is brought to you by Scholars' Mine, a service of the Missouri S&T Library and Learning Resources. This work is protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the permission of the copyright holder. For more information, please contact [email protected]. iii iv PLATE KINEMATICS OF THE AFRO-ARABIAN RIFT SYSTEM WITH EMPHASIS ON THE AFAR DEPRESSION, ETHIOPIA by HELEN CARRIE BOTTENBERG A DISSERTATION Presented to the Faculty of the Graduate School of the MISSOURI UNIVERSITY OF SCIENCE & TECHNOLOGY In Partial Fulfillment of the Requirements for the Degree DOCTOR OF PHILOSOPHY in GEOLOGY & GEOPHYSICS 2012 Approved by Mohamed Abdelsalam, Advisor Stephen Gao Leslie Gertsch John Hogan Allison Kennedy Thurmond v 2012 Helen Carrie Bottenberg All Rights Reserved iii PUBLICATION DISSERTATION OPTION This dissertation has been prepared in the style utilized by Geosphere and The Journal of African Earth Sciences. Pages 6-41 and Pages 97-134 will be submitted for separate publications in Geosphere and pages 44-96 will be submitted to Journal of African Earth Sciences iv ABSTRACT This work utilizes the Four-Dimensional Plates (4DPlates) software, and Differential Interferometric Synthetic Aperture Radar (DInSAR) to examine plate-scale, regional- scale and local-scale kinematics of the Afro-Arabian Rift System with emphasis on the Afar Depression in Ethiopia.
    [Show full text]
  • Crustal Structure and Upper Mantle Anisotropy of the Afar Triple Junction U
    Kumar et al. Earth, Planets and Space (2021) 73:166 https://doi.org/10.1186/s40623-021-01495-0 FULL PAPER Open Access Crustal structure and upper mantle anisotropy of the Afar triple junction U. Kumar1, C. P. Legendre1,2* and B. S. Huang1 Abstract The Afar region is a tectonically distinct area useful for studying continental break-up and rifting. Various conficting models have been suggested to explain the lateral variations of the anisotropy in this region. To address this issue, we investigated the tectonics of the Afar region using receiver function and shear-wave splitting measurements based on broadband seismic data from 227 stations in the region. Further, the receiver function results were inverted to obtain the crustal thickness and Vp/Vs ratio of the region. Our results reveal a thick African crust (thicker than 40 km) with typical Vp/Vs values for the continental crust, elongated down to 21 km along the rift system with very high Vp/Vs values near the fractured zones, suggesting crustal thinning near the fractured zones. Our shear-wave splitting measurements indicate a general fast axis orientation of N030E. However, substantial disparities in the fast anisotropy direction exist in the triple junction region, with some stations displaying a direction of N120E, which is perpendicular to the fast directions measured at the surrounding stations. In addition, many stations located close to the rifts and within the Arabian Plate provide mostly null measurements, indicating the presence of fuids or isotropic media. This study uses several methodologies to unravel the structure and evolution of the Afar region, providing valuable insight into the Afar, a tectonically distinct region, which will be useful for elucidating the mechanisms and characteristics of a continental break-up and the rifting process.
    [Show full text]
  • Triple Junctions
    GLG412/598: GEOTECTONICS SPRING 2006 PROFESSOR MATTHEW J. FOUCH SUPPLEMENT TO HOMEWORK #2 TRIPLE JUNCTIONS (From Cox and Hart [1986]) Points where three plates meet, which are called triple junctions, are especially important tectonically. An example of tectonic action near a triple junction is shown in cartoon form in Figure 3-1, where the triple junction J is the point where the Pacific (P), Juan de Fuca (F), and North America (N) plates meet. If the triple junction J moves up along the coast, point e will find itself in a transform environment; if J is stationary or moves southward, e will remain in a subduction environment. In this section we will show how to calculate the velocities of triple junctions. Figure 3-1: A triple junction marks the juncture of the Pacific plate (P), the Juan de Fuca plate (F), and the North America plate (N). Two transforms and a trench meet at this triple junction. As the triple junction moves northwestward, the tectonic environment at e will change from subduction to transform in character. First, however, let's ask ourselves an interesting topological question. What is the maximum number of plates that can meet at a point? If the earth were cut like a pie, a large number of plates could touch where the cuts all intersect; however, plate boundaries on the earth look much more like random slices than pie cuts. Try creating some plates by drawing random lines on a piece of paper. How many plates come into contact where two lines cross? Obviously the answer is four.
    [Show full text]