How Homophily Affects the Speed of Learning and Best-Response
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Network Topologies Topologies
Network Topologies Topologies Logical Topologies A logical topology describes how the hosts access the medium and communicate on the network. The two most common types of logical topologies are broadcast and token passing. In a broadcast topology, a host broadcasts a message to all hosts on the same network segment. There is no order that hosts must follow to transmit data. Messages are sent on a First In, First Out (FIFO) basis. Token passing controls network access by passing an electronic token sequentially to each host. If a host wants to transmit data, the host adds the data and a destination address to the token, which is a specially-formatted frame. The token then travels to another host with the destination address. The destination host takes the data out of the frame. If a host has no data to send, the token is passed to another host. Physical Topologies A physical topology defines the way in which computers, printers, and other devices are connected to a network. The figure provides six physical topologies. Bus In a bus topology, each computer connects to a common cable. The cable connects one computer to the next, like a bus line going through a city. The cable has a small cap installed at the end called a terminator. The terminator prevents signals from bouncing back and causing network errors. Ring In a ring topology, hosts are connected in a physical ring or circle. Because the ring topology has no beginning or end, the cable is not terminated. A token travels around the ring stopping at each host. -
Network Analysis of the Multimodal Freight Transportation System in New York City
Network Analysis of the Multimodal Freight Transportation System in New York City Project Number: 15 – 2.1b Year: 2015 FINAL REPORT June 2018 Principal Investigator Qian Wang Researcher Shuai Tang MetroFreight Center of Excellence University at Buffalo Buffalo, NY 14260-4300 Network Analysis of the Multimodal Freight Transportation System in New York City ABSTRACT The research is aimed at examining the multimodal freight transportation network in the New York metropolitan region to identify critical links, nodes and terminals that affect last-mile deliveries. Two types of analysis were conducted to gain a big picture of the region’s freight transportation network. First, three categories of network measures were generated for the highway network that carries the majority of last-mile deliveries. They are the descriptive measures that demonstrate the basic characteristics of the highway network, the network structure measures that quantify the connectivity of nodes and links, and the accessibility indices that measure the ease to access freight demand, services and activities. Second, 71 multimodal freight terminals were selected and evaluated in terms of their accessibility to major multimodal freight demand generators such as warehousing establishments. As found, the most important highways nodes that are critical in terms of connectivity and accessibility are those in and around Manhattan, particularly the bridges and tunnels connecting Manhattan to neighboring areas. Major multimodal freight demand generators, such as warehousing establishments, have better accessibility to railroad and marine port terminals than air and truck terminals in general. The network measures and findings in the research can be used to understand the inventory of the freight network in the system and to conduct freight travel demand forecasting analysis. -
Lecture 20 — March 20, 2013 1 the Maximum Cut Problem 2 a Spectral
UBC CPSC 536N: Sparse Approximations Winter 2013 Lecture 20 | March 20, 2013 Prof. Nick Harvey Scribe: Alexandre Fr´echette We study the Maximum Cut Problem with approximation in mind, and naturally we provide a spectral graph theoretic approach. 1 The Maximum Cut Problem Definition 1.1. Given a (undirected) graph G = (V; E), the maximum cut δ(U) for U ⊆ V is the cut with maximal value jδ(U)j. The Maximum Cut Problem consists of finding a maximal cut. We let MaxCut(G) = maxfjδ(U)j : U ⊆ V g be the value of the maximum cut in G, and 0 MaxCut(G) MaxCut = jEj be the normalized version (note that both normalized and unnormalized maximum cut values are induced by the same set of nodes | so we can interchange them in our search for an actual maximum cut). The Maximum Cut Problem is NP-hard. For a long time, the randomized algorithm 1 1 consisting of uniformly choosing a cut was state-of-the-art with its 2 -approximation factor The simplicity of the algorithm and our inability to find a better solution were unsettling. Linear pro- gramming unfortunately didn't seem to help. However, a (novel) technique called semi-definite programming provided a 0:878-approximation algorithm [Goemans-Williamson '94], which is optimal assuming the Unique Games Conjecture. 2 A Spectral Approximation Algorithm Today, we study a result of [Trevison '09] giving a spectral approach to the Maximum Cut Problem with a 0:531-approximation factor. We will present a slightly simplified result with 0:5292-approximation factor. -
Geodesic Distance Descriptors
Geodesic Distance Descriptors Gil Shamai and Ron Kimmel Technion - Israel Institute of Technologies [email protected] [email protected] Abstract efficiency of state of the art shape matching procedures. The Gromov-Hausdorff (GH) distance is traditionally used for measuring distances between metric spaces. It 1. Introduction was adapted for non-rigid shape comparison and match- One line of thought in shape analysis considers an ob- ing of isometric surfaces, and is defined as the minimal ject as a metric space, and object matching, classification, distortion of embedding one surface into the other, while and comparison as the operation of measuring the discrep- the optimal correspondence can be described as the map ancies and similarities between such metric spaces, see, for that minimizes this distortion. Solving such a minimiza- example, [13, 33, 27, 23, 8, 3, 24]. tion is a hard combinatorial problem that requires pre- Although theoretically appealing, the computation of computation and storing of all pairwise geodesic distances distances between metric spaces poses complexity chal- for the matched surfaces. A popular way for compact repre- lenges as far as direct computation and memory require- sentation of functions on surfaces is by projecting them into ments are involved. As a remedy, alternative representa- the leading eigenfunctions of the Laplace-Beltrami Opera- tion spaces were proposed [26, 22, 15, 10, 31, 30, 19, 20]. tor (LBO). When truncated, the basis of the LBO is known The question of which representation to use in order to best to be the optimal for representing functions with bounded represent the metric space that define each form we deal gradient in a min-max sense. -
Evolving Networks and Social Network Analysis Methods And
DOI: 10.5772/intechopen.79041 ProvisionalChapter chapter 7 Evolving Networks andand SocialSocial NetworkNetwork AnalysisAnalysis Methods and Techniques Mário Cordeiro, Rui P. Sarmento,Sarmento, PavelPavel BrazdilBrazdil andand João Gama Additional information isis available atat thethe endend ofof thethe chapterchapter http://dx.doi.org/10.5772/intechopen.79041 Abstract Evolving networks by definition are networks that change as a function of time. They are a natural extension of network science since almost all real-world networks evolve over time, either by adding or by removing nodes or links over time: elementary actor-level network measures like network centrality change as a function of time, popularity and influence of individuals grow or fade depending on processes, and events occur in net- works during time intervals. Other problems such as network-level statistics computation, link prediction, community detection, and visualization gain additional research impor- tance when applied to dynamic online social networks (OSNs). Due to their temporal dimension, rapid growth of users, velocity of changes in networks, and amount of data that these OSNs generate, effective and efficient methods and techniques for small static networks are now required to scale and deal with the temporal dimension in case of streaming settings. This chapter reviews the state of the art in selected aspects of evolving social networks presenting open research challenges related to OSNs. The challenges suggest that significant further research is required in evolving social networks, i.e., existent methods, techniques, and algorithms must be rethought and designed toward incremental and dynamic versions that allow the efficient analysis of evolving networks. Keywords: evolving networks, social network analysis 1. -
Homophily and Polarization in the Age of Misinformation
Eur. Phys. J. Special Topics 225, 2047–2059 (2016) © EDP Sciences, Springer-Verlag 2016 THE EUROPEAN DOI: 10.1140/epjst/e2015-50319-0 PHYSICAL JOURNAL SPECIAL TOPICS Regular Article Homophily and polarization in the age of misinformation Alessandro Bessi1,2, Fabio Petroni3, Michela Del Vicario2, Fabiana Zollo2, Aris Anagnostopoulos3, Antonio Scala4, Guido Caldarelli2,and Walter Quattrociocchi1,a 1 IUSS, Pavia, Italy 2 IMT Institute for Advanced Studies, Lucca, Italy 3 Sapienza University, Roma, Italy 4 ISC-CNR, Roma, Italy Received 1 December 2015 / Received in final form 30 January 2016 Published online 26 October 2016 Abstract. The World Economic Forum listed massive digital misin- formation as one of the main threats for our society. The spreading of unsubstantiated rumors may have serious consequences on public opin- ion such as in the case of rumors about Ebola causing disruption to health-care workers. In this work we target Facebook to characterize information consumption patterns of 1.2 M Italian users with respect to verified (science news) and unverified (conspiracy news) contents. Through a thorough quantitative analysis we provide important in- sights about the anatomy of the system across which misinformation might spread. In particular, we show that users’ engagement on veri- fied (or unverified) content correlates with the number of friends hav- ing similar consumption patterns (homophily). Finally, we measure how this social system responded to the injection of 4, 709 false information. We find that the frequent (and selective) exposure to specific kind of content (polarization) is a good proxy for the detection of homophile clusters where certain kind of rumors are more likely to spread. -
Perceptions of Social Support Within the Context of Religious Homophily: A
Louisiana State University LSU Digital Commons LSU Master's Theses Graduate School 2003 Perceptions of social support within the context of religious homophily: a social network analysis Sally Robicheaux Louisiana State University and Agricultural and Mechanical College, [email protected] Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_theses Part of the Sociology Commons Recommended Citation Robicheaux, Sally, "Perceptions of social support within the context of religious homophily: a social network analysis" (2003). LSU Master's Theses. 166. https://digitalcommons.lsu.edu/gradschool_theses/166 This Thesis is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Master's Theses by an authorized graduate school editor of LSU Digital Commons. For more information, please contact [email protected]. PERCEPTIONS OF SOCIAL SUPPORT WITHIN THE CONTEXT OF RELIGIOUS HOMOPHILY: A SOCIAL NETWORK ANALYSIS A Thesis Submitted to the Graduate Faculty of the Louisiana State University and Agricultural and Mechanical College in partial fulfillment of the requirements for the degree of Master of Arts in The Department of Sociology by Sally Robicheaux B.A., University of Southwestern Louisiana, 1998 May 2003 ACKNOWLEDGEMENTS I would like to take this opportunity to thank several people who accompanied me through this process. First, I am deeply indebted to the members of my examining committee, Jeanne S. Hurlbert, John J. Beggs, and Yang Cao, for their keen insight, direction, and contributions to this thesis. I especially wish to thank my committee chair, and advisor, Jeanne S. Hurlbert, for all the invaluable guidance, instruction, and encouragement in helping me design and carry out this project. -
Network Science
This is a preprint of Katy Börner, Soma Sanyal and Alessandro Vespignani (2007) Network Science. In Blaise Cronin (Ed) Annual Review of Information Science & Technology, Volume 41. Medford, NJ: Information Today, Inc./American Society for Information Science and Technology, chapter 12, pp. 537-607. Network Science Katy Börner School of Library and Information Science, Indiana University, Bloomington, IN 47405, USA [email protected] Soma Sanyal School of Library and Information Science, Indiana University, Bloomington, IN 47405, USA [email protected] Alessandro Vespignani School of Informatics, Indiana University, Bloomington, IN 47406, USA [email protected] 1. Introduction.............................................................................................................................................2 2. Notions and Notations.............................................................................................................................4 2.1 Graphs and Subgraphs .........................................................................................................................5 2.2 Graph Connectivity..............................................................................................................................7 3. Network Sampling ..................................................................................................................................9 4. Network Measurements........................................................................................................................11 -
Networkx Reference Release 1.9.1
NetworkX Reference Release 1.9.1 Aric Hagberg, Dan Schult, Pieter Swart September 20, 2014 CONTENTS 1 Overview 1 1.1 Who uses NetworkX?..........................................1 1.2 Goals...................................................1 1.3 The Python programming language...................................1 1.4 Free software...............................................2 1.5 History..................................................2 2 Introduction 3 2.1 NetworkX Basics.............................................3 2.2 Nodes and Edges.............................................4 3 Graph types 9 3.1 Which graph class should I use?.....................................9 3.2 Basic graph types.............................................9 4 Algorithms 127 4.1 Approximation.............................................. 127 4.2 Assortativity............................................... 132 4.3 Bipartite................................................. 141 4.4 Blockmodeling.............................................. 161 4.5 Boundary................................................. 162 4.6 Centrality................................................. 163 4.7 Chordal.................................................. 184 4.8 Clique.................................................. 187 4.9 Clustering................................................ 190 4.10 Communities............................................... 193 4.11 Components............................................... 194 4.12 Connectivity.............................................. -
Latent Distance Estimation for Random Geometric Graphs ∗
Latent Distance Estimation for Random Geometric Graphs ∗ Ernesto Araya Valdivia Laboratoire de Math´ematiquesd'Orsay (LMO) Universit´eParis-Sud 91405 Orsay Cedex France Yohann De Castro Ecole des Ponts ParisTech-CERMICS 6 et 8 avenue Blaise Pascal, Cit´eDescartes Champs sur Marne, 77455 Marne la Vall´ee,Cedex 2 France Abstract: Random geometric graphs are a popular choice for a latent points generative model for networks. Their definition is based on a sample of n points X1;X2; ··· ;Xn on d−1 the Euclidean sphere S which represents the latent positions of nodes of the network. The connection probabilities between the nodes are determined by an unknown function (referred to as the \link" function) evaluated at the distance between the latent points. We introduce a spectral estimator of the pairwise distance between latent points and we prove that its rate of convergence is the same as the nonparametric estimation of a d−1 function on S , up to a logarithmic factor. In addition, we provide an efficient spectral algorithm to compute this estimator without any knowledge on the nonparametric link function. As a byproduct, our method can also consistently estimate the dimension d of the latent space. MSC 2010 subject classifications: Primary 68Q32; secondary 60F99, 68T01. Keywords and phrases: Graphon model, Random Geometric Graph, Latent distances estimation, Latent position graph, Spectral methods. 1. Introduction Random geometric graph (RGG) models have received attention lately as alternative to some simpler yet unrealistic models as the ubiquitous Erd¨os-R´enyi model [11]. They are generative latent point models for graphs, where it is assumed that each node has associated a latent d point in a metric space (usually the Euclidean unit sphere or the unit cube in R ) and the connection probability between two nodes depends on the position of their associated latent points. -
Topological Optimisation of Artificial Neural Networks for Financial Asset
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by LSE Theses Online The London School of Economics and Political Science Topological Optimisation of Artificial Neural Networks for Financial Asset Forecasting Shiye (Shane) He A thesis submitted to the Department of Management of the London School of Economics for the degree of Doctor of Philosophy. April 2015, London 1 Declaration I certify that the thesis I have presented for examination for the MPhil/PhD degree of the London School of Economics and Political Science is solely my own work other than where I have clearly indicated that it is the work of others (in which case the extent of any work carried out jointly by me and any other person is clearly identified in it). The copyright of this thesis rests with the author. Quotation from it is permitted, provided that full acknowledgement is made. This thesis may not be reproduced without the prior written consent of the author. I warrant that this authorization does not, to the best of my belief, infringe the rights of any third party. 2 Abstract The classical Artificial Neural Network (ANN) has a complete feed-forward topology, which is useful in some contexts but is not suited to applications where both the inputs and targets have very low signal-to-noise ratios, e.g. financial forecasting problems. This is because this topology implies a very large number of parameters (i.e. the model contains too many degrees of freedom) that leads to over fitting of both signals and noise. -
Semantic Homophily in Online Communication: Evidence from Twitter
A Semantic homophily in online communication: evidence from Twitter SANjA Sˇ CEPANOVI´ C´ , Aalto University IGOR MISHKOVSKI, University Ss. Cyril and Methodius BRUNO GONC¸ALVES, New York University NGUYEN TRUNG HIEU, University of Tampere PAN HUI, Hong Kong University of Science and Technology People are observed to assortatively connect on a set of traits. This phenomenon, termed assortative mixing or sometimes homophily, can be quantified through assortativity coefficient in social networks. Uncovering the exact causes of strong assortative mixing found in social networks has been a research challenge. Among the main suggested causes from sociology are the tendency of similar individuals to connect (often itself referred as homophily) and the social influence among already connected individuals. Distinguishing between these tendencies and other plausible causes and quantifying their contribution to the amount of assortative mixing has been a difficult task, and proven not even possible from observational data. However, another task of similar importance to researchers and in practice can be tackled, as we present here: understanding the exact mechanisms of interplay between these tendencies and the underlying social network structure. Namely, in addition to the mentioned assortativity coefficient, there are several other static and temporal network properties and substructures that can be linked to the tendencies of homophily and social influence in the social network and we herein investigate those. Concretely, we tackle a computer-mediated communication network (based on Twitter mentions) and a particular type of assortative mixing that can be inferred from the semantic features of communication content that we term semantic homophily. Our work, to the best of our knowledge, is the first to offer an in-depth analysis on semantic homophily in a communication network and the interplay between them.