Physiological Diversity Enhanced by Recurrent Divergence And
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
CATALOGUE of the GRASSES of CUBA by A. S. Hitchcock
CATALOGUE OF THE GRASSES OF CUBA By A. S. Hitchcock. INTRODUCTION. The following list of Cuban grasses is based primarily upon the collections at the Estaci6n Central Agron6mica de Cuba, situated at Santiago de las Vegas, a suburb of Habana. The herbarium includes the collections made by the members of the staff, particularly Mr. C. F. Baker, formerly head of the department of botany, and also the Sauvalle Herbarium deposited by the Habana Academy of Sciences, These specimens were examined by the writer during a short stay upon the island in the spring of 1906, and were later kindly loaned by the station authorities for a more critical study at Washington. The Sauvalle Herbarium contains a fairly complete set of the grasses col- lected by Charles Wright, the most important collection thus far obtained from Cuba. In addition to the collections at the Cuba Experiment Station, the National Herbarium furnished important material for study, including collections made by A. H. Curtiss, W. Palmer and J. H. Riley, A. Taylor (from the Isle of Pines), S. M. Tracy, Brother Leon (De la Salle College, Habana), and the writer. The earlier collections of Wright were sent to Grisebach for study. These were reported upon by Grisebach in his work entitled "Cata- logus Plant arum Cubensium," published in 1866, though preliminary reports appeared earlier in the two parts of Plantae Wrightianae. * During the spring of 1907 I had the opportunity of examining the grasses in the herbarium of Grisebach in Gottingen.6 In the present article I have, with few exceptions, accounted for the grasses listed by Grisebach in his catalogue of Cuban plants, and have appended a list of these with references to the pages in the body of this article upon which the species are considered. -
Lateral Transfers of Large DNA Fragments Spread Functional Genes Among Grasses
Lateral transfers of large DNA fragments spread functional genes among grasses Luke T. Dunninga, Jill K. Olofssona, Christian Parisodb, Rimjhim Roy Choudhuryb, Jose J. Moreno-Villenaa,1, Yang Yangc, Jacqueline Dionorad, W. Paul Quicka,d, Minkyu Parke, Jeffrey L. Bennetzene, Guillaume Besnardf, Patrik Nosila, Colin P. Osbornea, and Pascal-Antoine Christina,2 aAnimal and Plant Sciences, University of Sheffield, Western Bank, S10 2TN Sheffield, United Kingdom; bInstitute of Plant Sciences, University of Bern, 3013 Bern, Switzerland; cKunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650204 Yunnan, China; dSystems Physiology Cluster, International Rice Research Institute, 1301 Metro Manila, Philippines; eDepartment of Genetics, University of Georgia, Athens, GA 30602; and fLaboratoire Évolution & Diversité Biologique (EDB UMR5174), CNRS, Institut de Recherche pour le Développement, F-31062 Toulouse, France Edited by Jeffrey D. Palmer, Indiana University, Bloomington, IN, and approved January 17, 2019 (received for review June 11, 2018) A fundamental tenet of multicellular eukaryotic evolution is that ticellular eukaryotes, convincing cases exist where genes of adaptive vertical inheritance is paramount, with natural selection acting on significance have been transferred (e.g., refs. 3, 16, and 17). Among genetic variants transferred from parents to offspring. This lineal plants, most known LGTs concern mitochondrial genes (18–21) process means that an organism’s adaptive potential can be restricted and/or parasitic interactions -
TAXONOMIC STUDIES and GENERIC DELIMITATION in the GRASS SUBTRIBE Sorghinae
TAXONOMIC STUDIES AND GENERIC DELIMITATION IN THE GRASS SUBTRIBE Sorghinae. Moffat Pinkie Setshogo A thesis submitted in fulfilment of the requirements for the degree of Doctor of Philosophy University of Edinburgh March 1997 Dedicated to the memory of my father, Tonkana, and to my mother, Kerileng. Acknowledgements. This work was carried out under the supervision of Dr. P.M. Smith. I wish to express my sincere gratitude to him for the advice and assistance throughout the progress of the study. I also want to thank Dr. C.E. Jeffree who has been very supportive and proof read a substantial portion of the thesis. I am indebted to the University of Botswana for the financial support and for offering me a study leave to enable me to carry out this study. The work was carried out at the Department of Botany, University of Edinburgh, as well as at the Royal Botanic Garden, Edinburgh. I would like to extend my thanks to the authorities of both institutions, and their staff, who offered help in many ways. My collection of living material was cared for by Messrs Billy Adams and Bob Astles. I wish to thank them for their help. My thanks also go to members of the photographic unit of ICMB, particularly John Anthony, Dave Haswell and Frank Johnston, for their help. Mr. John Findlay (Botany Department) gave me guidance with my SEM work, for which I am grateful. I am indebted to the Directors of various herbaria who loaned me specimens. Helen Hoy and Marisa Main were in charge of the Edinburgh side of these loans. -
Global Relationships Between Plant Functional Traits and Environment in Grasslands
GLOBAL RELATIONSHIPS BETWEEN PLANT FUNCTIONAL TRAITS AND ENVIRONMENT IN GRASSLANDS EMMA JARDINE A thesis submitted in partial fulfilment of the requirements for the degree of Doctor of Philosophy The University of Sheffield Department of Animal and Plant Sciences Submission Date July 2017 ACKNOWLEDGMENTS First of all I am enormously thankful to Colin Osborne and Gavin Thomas for giving me the opportunity to undertake the research presented in this thesis. I really appreciate all their invaluable support, guidance and advice. They have helped me to grow in knowledge, skills and confidence and for this I am extremely grateful. I would like to thank the students and post docs in both the Osborne and Christin lab groups for their help, presentations and cake baking. In particular Marjorie Lundgren for teaching me to use the Licor, for insightful discussions and general support. Also Kimberly Simpson for all her firey contributions and Ruth Wade for her moral support and employment. Thanks goes to Dave Simpson, Maria Varontsova and Martin Xanthos for allowing me to work in the herbarium at the Royal Botanic Gardens Kew, for letting me destructively harvest from the specimens and taking me on a worldwide tour of grasses. I would also like to thank Caroline Lehman for her map, her useful comments and advice and also Elisabeth Forrestel and Gareth Hempson for their contributions. I would like to thank Brad Ripley for all of his help and time whilst I was in South Africa. Karmi Du Plessis and her family and Lavinia Perumal for their South African friendliness, warmth and generosity and also Sean Devonport for sharing all the much needed teas and dub. -
Grasses of Namibia Contact
Checklist of grasses in Namibia Esmerialda S. Klaassen & Patricia Craven For any enquiries about the grasses of Namibia contact: National Botanical Research Institute Private Bag 13184 Windhoek Namibia Tel. (264) 61 202 2023 Fax: (264) 61 258153 E-mail: [email protected] Guidelines for using the checklist Cymbopogon excavatus (Hochst.) Stapf ex Burtt Davy N 9900720 Synonyms: Andropogon excavatus Hochst. 47 Common names: Breëblaarterpentyngras A; Broad-leaved turpentine grass E; Breitblättriges Pfeffergras G; dukwa, heng’ge, kamakama (-si) J Life form: perennial Abundance: uncommon to locally common Habitat: various Distribution: southern Africa Notes: said to smell of turpentine hence common name E2 Uses: used as a thatching grass E3 Cited specimen: Giess 3152 Reference: 37; 47 Botanical Name: The grasses are arranged in alphabetical or- Rukwangali R der according to the currently accepted botanical names. This Shishambyu Sh publication updates the list in Craven (1999). Silozi L Thimbukushu T Status: The following icons indicate the present known status of the grass in Namibia: Life form: This indicates if the plant is generally an annual or G Endemic—occurs only within the political boundaries of perennial and in certain cases whether the plant occurs in water Namibia. as a hydrophyte. = Near endemic—occurs in Namibia and immediate sur- rounding areas in neighbouring countries. Abundance: The frequency of occurrence according to her- N Endemic to southern Africa—occurs more widely within barium holdings of specimens at WIND and PRE is indicated political boundaries of southern Africa. here. 7 Naturalised—not indigenous, but growing naturally. < Cultivated. Habitat: The general environment in which the grasses are % Escapee—a grass that is not indigenous to Namibia and found, is indicated here according to Namibian records. -
A Checklist of Lesotho Grasses
Guidelines for Using the Checklist The genera and species are arranged in alphabetical order. Accepted genus and species names are in bold print, for example, Agrostis barbuligera. Synonyms are in italics, for example, Agrostis natalensis. Not all synonyms for a species are listed. Naturalised taxa are preceded by an asterisk, for example, Pennisetum *clandestinum. These are species that were intro- duced from outside Lesotho but now occur in the wild as part of the natural flora. Single letters after the species names, on the right-hand side of the column, indicate the distribution of species within Lesotho as reflected by the ROML and MASE collections. This indicates that a species has definitely been recorded in Lesotho. L—Lowlands F—Foothills M—Mountains S—Senqu Valley Double letters after species names, on the right-hand side of the column, indicate the distribution of species along the border with South Africa as reflected in the literature. This indicates that a species could occur in Lesotho, but has not yet been recorded. KN—KwaZulu-Natal FS—Free State EC—Eastern Cape Literature references are abbreviated as follows: G—Gibbs Russell et al. (1990) J—Jacot Guillarmod (1971) SCH—Schmitz (1984) V—Van Oudtshoorn (1999) For example, G:103 refers to page 103 in the Gibbs Russell et al. (1990) publication, Grasses of southern Africa. The seven-digit number to the right of the genus names is the numbering system followed at Kew Herbarium (K) and used in Arnold & De Wet (1993) and Leistner (2000). N M F L M Free State S Kwa-Zulu Natal Key L Lowlands Zone Maize (Mabalane) F Foothills Zone Sorghum M Mountain Zone Wheat (Maloti) S Senqu Valley Zone Peas Cattle Beans Scale 1 : 1 500 000 Sheep and goats 20 40 60 km Eastern Cape Zones of Lesotho based on agricultural practices. -
The Evolution of Land Plants: a Perspective from Horizontal Gene Transfer
Acta Societatis Botanicorum Poloniae INVITED REVIEW Acta Soc Bot Pol 83(4):363–368 DOI: 10.5586/asbp.2014.043 Received: 2014-11-06 Accepted: 2014-12-04 Published electronically: 2014-12-31 The evolution of land plants: a perspective from horizontal gene transfer Qia Wang1,2, Hang Sun1, Jinling Huang3* 1 Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China 2 University of Chinese Academy of Sciences, Beijing 10049, China 3 Department of Biology, East Carolina University, Greenville, NC 27858, USA Abstract Recent studies suggest that horizontal gene transfer (HGT) played a significant role in the evolution of eukaryotic lineages. We here review the mechanisms of HGT in plants and the importance of HGT in land plant evolution. In particular, we discuss the role of HGT in plant colonization of land, phototropic response, C4 photosynthesis, and mitochondrial genome evolution. Keywords: mechanisms of HGT; plant evolution; mitochondrial genome; adaptation Introduction Mechanisms of HGT in plants Horizontal gene transfer (HGT) refers to the movement A complete and successful HGT requires that a foreign of genetic information between distinct species. Being gene first enters cells of the recipient organism, be integrated different from vertical genetic transmission from parent into the recipient genome and then transmitted to the off- to offspring, HGT circumvents normal mating barriers spring [7]. Because the physical isolation of germ cells may and may introduce novel genes into recipient genomes. As prevent foreign genes from being transmitted to the offspring such, HGT may not only accelerate the genome evolution [15,16], plants and animals were traditionally regarded to of recipient organisms, but also allow recipients to explore be resistant to HGT [3,15]. -
(Poaceae) and Characterization
EVOLUTION AND DEVELOPMENT OF VEGETATIVE ARCHITECTURE: BROAD SCALE PATTERNS OF BRANCHING ACROSS THE GRASS FAMILY (POACEAE) AND CHARACTERIZATION OF ARCHITECTURAL DEVELOPMENT IN SETARIA VIRIDIS L. P. BEAUV. By MICHAEL P. MALAHY Bachelor of Science in Biology University of Central Oklahoma Edmond, Oklahoma 2006 Submitted to the Faculty of the Graduate College of the Oklahoma State University in partial fulfillment of the requirements for the Degree of MASTER OF SCIENCE July, 2012 EVOLUTION AND DEVELOPMENT OF VEGETATIVE ARCHITECTURE: BROAD SCALE PATTERNS OF BRANCHING ACROSS THE GRASS FAMILY (POACEAE) AND CHARACTERIZATION OF ARCHITECTURAL DEVELOPMENT IN WEEDY GREEN MILLET ( SETARIA VIRIDIS L. P. BEAUV.) Thesis Approved: Dr. Andrew Doust Thesis Adviser Dr. Mark Fishbein Dr. Linda Watson Dr. Sheryl A. Tucker Dean of the Graduate College I TABLE OF CONTENTS Chapter Page I. Evolutionary survey of vegetative branching across the grass family (poaceae) ... 1 Introduction ................................................................................................................... 1 Plant Architecture ........................................................................................................ 2 Vascular Plant Morphology ......................................................................................... 3 Grass Morphology ....................................................................................................... 4 Methods ....................................................................................................................... -
Additional Chromosome Numbers in Transvaal Grasses JMJ
1958 113 Additional Chromosome Numbers in Transvaal Grasses J. M. J. de Wet Divisionof Botany,Pretoria , SouthAfrica ReceivedJune 15, 1957 The chromosome numbers of South African grasses are studied mainly to get them on record. Some of these data have a direct bearing on the relationships of certain genera . These are discussed in more detail. The genera and species are classified according to Pilger (1954) and Chippendall (1955). Material and methods The material were collected in the veld and identified by Mr . J. A. Anderson. Specimens, together with corresponding root tip slides are filed with the National Herbarium, Pretoria. Root tips were fixed in Randolph's (1953) fluid , dehydrated and embedded in the usual manner. Sections were cut 14 microns thick and stained in Stockwell's (1934) solution. Drawings were made with the aid of a camera lucida. The magnification is •~2000 . Anatomical slides were prepared ac cording to Prat (1948). Results The species studied are summarized in Table 1. The gramineae is subdivided according to Pilger (1954). Subfamily Festucoideae: This subfamily includes the tribes classified by Avdulov (1931) in his series Festuciformes together with some tribes from his miscellaneous series Phragmitiformes. Festuceae Subtribe Festucinae. Cytologically this tribe is recognized by large chromosomes in multiples of n=7. The genus Festuca as indicated by Avdulov (1931) is typical in this respect. Moffet and Hurcombe (1949) indicated that Tetrachne is Eragrostoid in respect to leaf anatomy and cytology. This is also true for the genus Fingerhuthia. In these two genera the chromosomes are small and in multiples of n=10. In respect to leaf anatomical characters the tribe Festuceae is charac terized by the Festucoid type of internal leaf anatomy (Avdulov, 1931, page 33, figure 1). -
Alloteropsis(Panicoideae/Poaceae)
Nova ocorrência de Poaceae para a América do Sul: Alloteropsis (Panicoideae/Poaceae) Antônio Elielson Sousa da ROCHA1 & Izildinha Souza MIRANDA2 RESUMO Registra-se, pela primeira vez, a ocorrência de Alloteropsis J. Presl (Panicoideae/Paniceae s.l.) no Brasil (Alloteropsis cimicina (L.) Stapf), no Estado do Amapá. Este é também o primeiro registro do gênero e da espécie na América do Sul. A espécie é descrita e ilustrada. Chaves de identificação, comentários taxonômicos, observações ecológicas e conservacionistas são também apresentados. PALAVRAS-CHAVE: Gramineae, Estado do Amapá, invasoras. New occurrences of Poaceae for the South America: Alloteropsis (Panicoideae/Poaceae) ABSTRACT In this paper, Alloteropsis J. Presl (Panicoideae/Paniceae s.l.) is registered for the first time in Brazil, in the State of Amapá.. This is also the first record of the genus in the South America. The species is described and illustrated. Identification keys and comments on the taxonomy, ecology and conservation are presented. KEYWORDS: Gramineae, Amapá State, weeds. 1 Coordenação de Botânica, Museu Paraense Emílio Goeldi, Caixa Postal 399, Belém, 66040-170, Pará, Brasil. Email: [email protected] 2 Departamento de Ciências Florestais, Faculdade de Ciências Agrárias do Pará, Caixa Postal 917, Belém, 66077-530, Pará, Brasil. Email: [email protected] 457 VOL. 42(4) 2012: 457 - 460 Nova ocorrência de Poaceae para a América do Sul: Alloteropsis (Panicoideae/Poaceae) INTRODUÇÃO RESULTADOS E DISCUSSÃO O gênero Alloteropsis J. Presl pertence à tribo Paniceae A região de coleta dos exemplares de Alloteropsis está s.l., Panicoideae, Poaceae (Sánchez-Ken e Clark 2010). Com localizada no estuário do rio Amazonas, a uma altitude de 16 ca. -
Plant Inventory No. 148
Plant Inventory No. 148 UNITED STATES DEPARTMENT OF AGRICULTURE Washington, D. C. January 1951 PLANT MATERIAL INTRODUCED BY THE DIVISION OF PLANT EX- PLORATION AND INTRODUCTION, BUREAU OF PLANT INDUSTRY,1 JULY 1 TO SEPTEMBER 30, 1941 (NOS. 142030 TO 142270) CONTENTS Pasre Inventory _ 2 Index of common and scientific names 15 This inventory, No. 148, lists the plant material (Nos. 142030 to 142270) received by the Division of Plant Exploration and Introduc- tion during the period from July 1 to September 30,1941. It is a his- torical record or plant material introduced for Department and other specialists, and is not to be considered as a list of plant material for distribution. PAUL G. RUSSELL, Botanist. Plant Industry Station, Beltsvitte, md. 1 Now Bureau of Plant Industry, Soils, and Agricultural Engineering, Agricul- tural Eesearch Administration, United States Department of Agriculture. INVENTORY 142030. CENTELLA ASIATICA (L.) Urban. Apiaceae. From India. Seeds presented by the Professor of Botany, Punjab Agricultural College, Lyallpur. Received July 15, 1941. For previous introduction see 141369. 1242031 to 142037. From the Union of South Africa. Seeds presented by the McGregor Museum, Kimberley. Received July 15, 1941. 142031. CHLOBIS OAPENSIS (Houtt.) Thell. Poaceae. Grass. A Koppie grass collected at the rock garden of the McGregor Museum, some- times called woolly fingergrass. 142032. DIGITABIA sp. Poaceae. Woolly Fingergrass. From the Kimberley rock garden. 142033. EBAGBOSTIS LEHMANNIANA var. AMPLA Stapf. Poaceae. Grass. Not as hardy as the typical species. 142034. EBAGBOSTIS SUPEBBA Peyr. Bosluis grass. A tick grass from the open grasveld. 142035. POGANABTHBIA SQUABBOSA (Licht.) Pilger. Poaceae. -
Invasive Andropogon Gayanus (Gamba Grass) Is an Ecosystem Transformer of Nitrogen Relations in Australian Savanna
Ecological Applications, 19(6), 2009, pp. 1546–1560 Ó 2009 by the Ecological Society of America Invasive Andropogon gayanus (gamba grass) is an ecosystem transformer of nitrogen relations in Australian savanna 1,2,3,6 1,3 1,3,4 1,3 2,3 N. A. ROSSITER-RACHOR, S. A. SETTERFIELD, M. M. DOUGLAS, L. B. HUTLEY, G. D. COOK, 5 AND S. SCHMIDT 1School of Environmental and Life Sciences, Charles Darwin University, Darwin, Northern Territory 0909 Australia 2CSIRO Tropical Ecosystems Research Centre, Darwin, Northern Territory 0822 Australia 3Tropical Savannas Management Cooperative Research Centre, Charles Darwin University, Darwin, Northern Territory 0909 Australia 4School for Environmental Research, Tropical Rivers and Coastal Knowledge (TRaCK) Research Hub, Charles Darwin University, Darwin, Northern Territory 0909 Australia 5School of Integrative Biology, The University of Queensland, Brisbane, Queensland 4072 Australia Abstract. Invasion by the African grass Andropogon gayanus is drastically altering the understory structure of oligotrophic savannas in tropical Australia. We compared nitrogen (N) relations and phenology of A. gayanus and native grasses to examine the impact of invasion on N cycling and to determine possible reasons for invasiveness of A. gayanus. Andropogon gayanus produced up to 10 and four times more shoot phytomass and root biomass, with up to seven and 2.5 times greater shoot and root N pools than native grass understory. These pronounced differences in phytomass and N pools between A. gayanus and native grasses were associated with an altered N cycle. Most growth occurs in the wet season when, compared with native grasses, dominance of A. gayanus was associated with significantly lower total soil N pools, lower nitrification rates, up to three times lower soil nitrate availability, and up to three times higher soil ammonium availability.