Plant List 2021

Total Page:16

File Type:pdf, Size:1020Kb

Plant List 2021 Plant List BOTANICAL NAME COMMON NAME MĀORI NAME Acaena novae-zelandiae Red bidibid Acaena purpurea Purple Bidibid Adiantum hispidulum Rough Maidenhair fern Agathis australis Kauri Alectryon excelsus Titoki Anemanthele lessoniana Wind grass Apodasmia similis Jointed wire rush Oioi Aristotelia serrata Wineberry Makomako Arthropodium cirratum Renga lily Renga renga Asplenium bulbiferum Hen & Chicken Fern Pikopiko Asplenium oblongifolium Shining spleenwort Huruhuruwhenua Astelia banksii Coast Astelia Kowharawhara Astelia chathamica Chatham Island astelia Kakaha Astelia grandis Swamp Astelia Austroderia fulvida Cliff Toetoe Austroderia splendens Toetoe Beilschmiedia tarairi Tarairi Austroblechnum lanceolatum (Blechnum Lance water fern Nini chambersii) Blechnum discolor Crown Fern Petipeti Blechnum fluviatile Kiwikiwi Blechnum novae-zelandiae Kiokio Bolboschoenus fluviatilis Marsh Clubrush Kukuraho Brachyglottis greyi Daisy bush Brachyglottis repanda bushman's friend Rangiora Calystegia soldanella Shore Bindweed Carex buchananii Buchanan's sedge Carex dipsacea Carex dissita Carex flagellifera 'Green' Trip me up sedge Carex flagellifera 'Bronze' Weeping brown sedge Carex geminata Cutty grass Rautahi Carex lambertiana Forest sedge Carex lessoniana Cutty grass Rautahi Carex pumila Sand Sedge Carex secta Purei Carex testacea Speckled Sedge Carex virgata Swamp Sedge Pukio Carmichaelia australis Common broom Maukoro Carpodetus serratus Marbleleaf Putaputaweta Carpodetus serratus Prostrata Chionochloa flavicans Snow Tussock Clematis paniculata White clematis Puawhananga Clianthus puniceus Kaka beak Coprosma acerosa Sand Coprosma Coprosma 'Black Cloud' Coprosma Coprosma crassifolia Coprosma grandifolia Kanono Coprosma acerosa 'Hawera' Coprosma kirkii Coprosma lucida Shining Karamu Karamū Coprosma macrocarpa Coastal karamu Coprosma mangatangi Coprosma middlemore Coprosma neglecta Coprosma repens 'Poor Knights' Coprosma propinqua Mingimingi Coprosma prostrata Coprosma repens Taupata Coprosma rhamnoides Coprosma rigida Coprosma robusta Karamū Coprosma 'Taiko' Coprosma tenuicaulis Swamp Coprosma Hukihuki Coprosma virescens Mingimingi Cordyline australis Cabbage Tree Ti Kouka Cordyline obtecta Three Kings cabbage tree Corokia cotoneaster Wire-nettting bush Korokio Corokia 'Geentys Green' Corynocarpus laevigatus Karaka Cyathea dealbata Silver Fern Ponga Cyathea medullaris Black tree fern Mamaku Cyperus ustulatus Giant Umbrella Sedge Dacrycarpus dacrydioides White pine Kahikatea Dacrydium cupressinum Red pine Rimu Dianella latissima Dianella nigra New Zealand blueberry Turutu Dicksonia squarrosa Rough tree fern Wheki Dietes bicolor South African iris Dietes grandiflora Fairy iris Disphyma australe Native ice plant Horokaka Dodonaea viscosa 'Green' Akeake Dodonaea viscosa 'Purple' Akeake Doodia australis Rasp Fern Dysoxylum spectabile Kohekohe Eleocharis acuta Sharp spike sedge Eleocharis sphacelata Bamboo spike sedge Kutakuta Entelea arborescens Whau Euphorbia glauca Shore spurge Waiūatua Festuca coxii Blue grass Ficinia nodosa Knobby club rush Wiwi Ficinia spiralis Golden sand sedge Pingao Fuchsia procumbens Creeping Fuchsia Gahnia setifolia Māpere Geniostoma ligustrifolium Hangehange Griselinia littoralis Broadleaf Kapuka Griselinia lucida Shining broadleaf Hebe diosmifolia Hebe macrocarpa Hebe parviflora Hebe speciosa Titirangi Hebe stricta Koromiko Hebe 'Wiri Mist' Hoheria populnea Lacebark Houhere Juncus edgariae Wiwi Juncus kraussii Sea Rush Juncus pallidus Giant Rush Knightia excelsa Rewarewa Kunzea linearis Sand kanuka Kunzea robusta Kanuka Laurelia novae-zelandiae Pukatea Leptinella dioica Leptospermum 'Pink Cascade' Pink weeping manuka Leptospermum scoparium Manuka Leptospermum scoparium 'prostrate' Leptospermum 'White Cascade' White weeping manuka Leucopogon fasciculatus Mingimingi Libertia grandiflora New Zealand Iris Mikoiko Libertia ixioides New Zealand Iris Libertia peregrinans New Zealand Iris Libocedrus plumosa Kawaka Lobelia angulata Lomandra nyalla Lomandra tanika Machaerina articulata Jointed twig rush Machaerina rubiginosa Soft twig rush Machaerina sinclairii Machaerina teretifolia Melicope ternata Wharangi Melicytus novae-zelandiae Coastal mahoe Melicytus ramiflorus Whiteywood Māhoe Meryta sinclairii Puka Metrosideros carminea Carmine Rata Akakura Metrosideros excelsa Pohutakawa Pōhutukawa Metrosideros perforata White rata Akatea Muehlenbeckia astonii Shrubby Tororaro Mingimingi Muehlenbeckia axillaris Creeping Pohuehue Muehlenbeckia complexa Scrub pohuehue Pohuehue Myoporum laetum Ngaio Myrsine australis Red matipo Māpou Myrsine divaricata Weeping Matipo Nestegis cunninghamii Black maire Olearia albida Tanguru Olearia paniculata Akiraho Olearia solandri Coastal tree daisy Ozothamnus leptophylla Tauhinu Pachystegia insignis Marlborough rock daisy Passiflora tetrandra New Zealand passionflower Kohia Pennantia corymbosa Kaikomako Phormium cookianum Mountain Flax Wharariki Phormium 'Emerald Gem' Phormium tenax Flax Harakeke Phyllocladus trichomanoides Celery pine Tanekaha Pimelea prostrata New Zealand Daphne Pinatoro Piper excelsum Kawakawa Kawakawa Pittosporum crassifolium Karo Karo Pittosporum eugenioides Lemonwood Tarata Pittosporum tenuifolium Black matipo Kohuhu Plagianthus divaricatus Saltmarsh ribbonwood Makaka Plagianthus regius Ribbonwood Manatu Poa billardierei (Austofestuca littoralis) Sand tussock Hinarepe Poa cita Silver tussock Podocarpus totara Totara Tōtara Pomaderris kumeraho Gum-diggers soap Kūmarahou Prumnopitys ferruginea Brown pine Miro Prumnopitys taxifolia Black pine Matai Pseudopanax arboreus Fivefinger Whauwhaupaku Pseudopanax crassifolius Lancewood Horoeka Pseudopanax lessonii Houpara Houpara Rhopalostylis sapida Nikau Rubus cissoides Bush lawyer Tataramoa Samolus repens Sea primrose Schefflera digitata Pate Schoenoplectus tabernaemontani Kuawa Selliera radicans Remuremu Solanum laciniatum Poroporo Sophora chathamica Coastal Kowhai Kowhai Sophora microphylla Kowhai Kowhai Spinifex sericeus Spinifex Kowhangatara Streblus banksii Large leaved milk tree Turepo Tetragonia tetragonioides New Zealand Spinach Kokihi Typha orientalis Bulrush Raupo Vitex lucens Puriri Puriri Xeronema callistemon Poor Knights Lily .
Recommended publications
  • Toward a Resolution of Campanulid Phylogeny, with Special Reference to the Placement of Dipsacales
    TAXON 57 (1) • February 2008: 53–65 Winkworth & al. • Campanulid phylogeny MOLECULAR PHYLOGENETICS Toward a resolution of Campanulid phylogeny, with special reference to the placement of Dipsacales Richard C. Winkworth1,2, Johannes Lundberg3 & Michael J. Donoghue4 1 Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, Caixa Postal 11461–CEP 05422-970, São Paulo, SP, Brazil. [email protected] (author for correspondence) 2 Current address: School of Biology, Chemistry, and Environmental Sciences, University of the South Pacific, Private Bag, Laucala Campus, Suva, Fiji 3 Department of Phanerogamic Botany, The Swedish Museum of Natural History, Box 50007, 104 05 Stockholm, Sweden 4 Department of Ecology & Evolutionary Biology and Peabody Museum of Natural History, Yale University, P.O. Box 208106, New Haven, Connecticut 06520-8106, U.S.A. Broad-scale phylogenetic analyses of the angiosperms and of the Asteridae have failed to confidently resolve relationships among the major lineages of the campanulid Asteridae (i.e., the euasterid II of APG II, 2003). To address this problem we assembled presently available sequences for a core set of 50 taxa, representing the diver- sity of the four largest lineages (Apiales, Aquifoliales, Asterales, Dipsacales) as well as the smaller “unplaced” groups (e.g., Bruniaceae, Paracryphiaceae, Columelliaceae). We constructed four data matrices for phylogenetic analysis: a chloroplast coding matrix (atpB, matK, ndhF, rbcL), a chloroplast non-coding matrix (rps16 intron, trnT-F region, trnV-atpE IGS), a combined chloroplast dataset (all seven chloroplast regions), and a combined genome matrix (seven chloroplast regions plus 18S and 26S rDNA). Bayesian analyses of these datasets using mixed substitution models produced often well-resolved and supported trees.
    [Show full text]
  • The New Zealand Rain Forest: a Comparison with Tropical Rain Forest! J
    The New Zealand Rain Forest: A Comparison with Tropical Rain Forest! J. W. DAWSON2 and B. V. SNEDDON2 ABSTRACT: The structure of and growth forms and habits exhibited by the New Zealand rain forest are described and compared with those of lowland tropical rain forest. Theories relating to the frequent regeneration failure of the forest dominants are outlined. The floristic affinities of the forest type are discussed and it is suggested that two main elements can be recognized-lowland tropical and montane tropical. It is concluded that the New Zealand rain forest is comparable to lowland tropical rain forest in structure and in range of special growth forms and habits. It chiefly differs in its lower stature, fewer species, and smaller leaves. The floristic similarity between the present forest and forest floras of the Tertiary in New Zealand suggest that the former may be a floristically reduced derivative of the latter. PART 1 OF THIS PAPER describes the structure The approximate number of species of seed and growth forms of the New Zealand rain plants in these forests is 240. From north to forest as exemplified by a forest in the far north. south there is an overall decrease in number of In Part 2, theories relating to the regeneration species. At about 38°S a number of species, of the dominant trees in the New Zealand rain mostly trees and shrubs, drop out or become forest generally are reviewed briefly, and their restricted to coastal sites, but it is not until about relevance to the situation in the study forest is 42°S, in the South Island, that many of the con­ considered.
    [Show full text]
  • Divaricating Plants in New Zealand in Relation to Moa Browsing
    GREENWOOD AND ATKINSON: DIYARICATING PLANTS AND MOA BROWSING 21 EVOLUTION OF DIVARICATING PLANTS IN NEW ZEALAND IN RELATION TO MOA BROWSING R. M. GREENWOOD' and I. A. E. ATKINSON' SUMMAR Y: New Zealand appears to be the only country where spineless, small-leaved divaricating plants make up nearly 10% of the woody flora. Climatic explanations have been advanced to &ccount for the origin of these divaricating plants. We suggest that the divergent and interl~ced branching, the woody exterior and the tough stems of these plants are adaptations evolved in response to browsing by moas. Together with a few species of much smaHer birds, moas were the only browsing vertebrates in New Zealand prior to the arrival of man. Thq divaricate habit is probably only one of several strategies evolved by plants in response to moa browsing. However, because fioas fed in a different way from mammals there is little to support the idea that introduced browsing mammals have merely replaced moas as aQ ecological factor in New Zealand. MORPHOLOGICAL FEATURES OF NEW ZEALAND difficult. The most helpful keys are those of Bulmer DIY ARICATING fLANTS (1958) and Taylor (1961), which deal specifioolly The term Hdivaricating", indicating branching at with these plants. New Zealand species found in this a wide angle, is used in New Zealand to describe the investigation to be capable of divaricating are listed many species of small-leaved woody shrubs that in Table 1. In cases where there was difficulty in have closely interlaced bra,nches. Some are the deciding whether a species should be included in juvenile stages of trees that lose the divaricate habit the table the criteria used for inclusion were (i) as they grow taUer.
    [Show full text]
  • Species-Specific Basic Stem-Wood Densities for Twelve Indigenous Forest and Shrubland Species of Known Age, New Zealand
    Marden et al. New Zealand Journal of Forestry Science (2021) 51:1 https://doi.org/10.33494/nzjfs512021x121x E-ISSN: 1179-5395 published on-line: 15/02/2021 Research Article Open Access New Zealand Journal of Forestry Science Species-specific basic stem-wood densities for twelve indigenous forest and shrubland species of known age, New Zealand Michael Marden1,*, Suzanne Lambie2 and Larry Burrows3 1 31 Haronga Road, Gisborne 4010, New Zealand 2 Manaaki Whenua – Landcare Research, Private Bag 3127, Hamilton 3240, New Zealand 3 Manaaki Whenua – Landcare Research, PO Box 69041, Lincoln 7640, New Zealand *Corresponding author: [email protected] (Received for publication 19 July 2019; accepted in revised form 26 January 2021) Abstract Background: Tree carbon estimates for New Zealand indigenous tree and shrub species are largely based on mean of sites throughout New Zealand. Yet stem-wood density values feed directly into New Zealand’s international and nationalbasic stem-wood greenhouse densities gas accounting. derived from We a limitedaugment number existing of publishedtrees, often basic of unspecified stem-wood age density and from data a limited with new number age- old, across 21 widely-distributed sites between latitudes 35° tospecific estimate values carbon for 12stocks. indigenous forest and shrubland species, including rarely obtained values for trees <6-years and 46° S, and explore relationships commonly used Methods: The volume of 478 whole stem-wood discs collected at breast height (BH) was determined by water displacement, oven dried, and weighed. Regression analyses were used to determine possible relationships between basic stem-wood density, and tree height, root collar diameter (RCD), and diameter at breast height (DBH).
    [Show full text]
  • Temporal Development and Regeneration Dynamics of Restored Urban Forests
    Temporal Development and Regeneration Dynamics of Restored Urban Forests By Katherine de Silva A thesis submitted to the Victoria University of Wellington in fulfilment of the requirements for the degree of Masters in Ecology & Biodiversity School of Biological Sciences Faculty of Sciences Victoria University of Wellington October 2019 Supervisors: Stephen Hartley. Director of the Centre of Biodiversity & Restoration Ecology, Victoria University of Wellington Kiri Joy Wallace. Postdoctoral Fellow, Environmental Research Institute, University of Waikato. Katherine de Silva: Temporal Development and Regeneration Dynamics of Restored Urban Forests, © October 2019. 2 ABSTRACT Urban forest restoration programmes are a key tool used to initiate, re-create or accelerate the succession of forest species; improving ecosystem services, function, resilience and biodiversity. Succession is a temporal shift in species dominance driven by abiotic and biotic influences, but over decadal timescales the trajectory and success of restoration plantings in degraded urban environments can be hindered. To facilitate the successful reconstruction of forest ecosystems from scratch, an understanding of the temporal patterns in planted forest development, dynamics of seedling regeneration and dominant drivers of seedling diversity is required. Using a chronosequence approach, permanent plots were established at 44 restored urban forests aged 5 to 59 years since initial plantings took place, across five New Zealand cities between Wellington and Invercargill. Vegetation surveys were undertaken and data on micro- climate were collected. This study examined the 1) temporal dynamics of restored urban forest development and seedling regeneration and 2) dominant drivers of seedling regeneration. Data were analysed using linear regression models, breakpoint analysis and mixed-effects modelling. Early forest development (<20 years) exhibited the most changes in canopy composition and structure, forest floor dynamics, seedling community and microclimate.
    [Show full text]
  • Plant Charts for Native to the West Booklet
    26 Pohutukawa • Oi exposed coastal ecosystem KEY ♥ Nurse plant ■ Main component ✤ rare ✖ toxic to toddlers coastal sites For restoration, in this habitat: ••• plant liberally •• plant generally • plant sparingly Recommended planting sites Back Boggy Escarp- Sharp Steep Valley Broad Gentle Alluvial Dunes Area ment Ridge Slope Bottom Ridge Slope Flat/Tce Medium trees Beilschmiedia tarairi taraire ✤ ■ •• Corynocarpus laevigatus karaka ✖■ •••• Kunzea ericoides kanuka ♥■ •• ••• ••• ••• ••• ••• ••• Metrosideros excelsa pohutukawa ♥■ ••••• • •• •• Small trees, large shrubs Coprosma lucida shining karamu ♥ ■ •• ••• ••• •• •• Coprosma macrocarpa coastal karamu ♥ ■ •• •• •• •••• Coprosma robusta karamu ♥ ■ •••••• Cordyline australis ti kouka, cabbage tree ♥ ■ • •• •• • •• •••• Dodonaea viscosa akeake ■ •••• Entelea arborescens whau ♥ ■ ••••• Geniostoma rupestre hangehange ♥■ •• • •• •• •• •• •• Leptospermum scoparium manuka ♥■ •• •• • ••• ••• ••• ••• ••• ••• Leucopogon fasciculatus mingimingi • •• ••• ••• • •• •• • Macropiper excelsum kawakawa ♥■ •••• •••• ••• Melicope ternata wharangi ■ •••••• Melicytus ramiflorus mahoe • ••• •• • •• ••• Myoporum laetum ngaio ✖ ■ •••••• Olearia furfuracea akepiro • ••• ••• •• •• Pittosporum crassifolium karo ■ •• •••• ••• Pittosporum ellipticum •• •• Pseudopanax lessonii houpara ■ ecosystem one •••••• Rhopalostylis sapida nikau ■ • •• • •• Sophora fulvida west coast kowhai ✖■ •• •• Shrubs and flax-like plants Coprosma crassifolia stiff-stemmed coprosma ♥■ •• ••••• Coprosma repens taupata ♥ ■ •• •••• ••
    [Show full text]
  • I UNIVERSIDADE ESTADUAL DE CAMPINAS INSTITUTO DE
    UNIVERSIDADE ESTADUAL DE CAMPINAS INSTITUTO DE BIOLOGIA DEPARTAMENTO DE BOTÂNICA ANDRÉA MACÊDO CORRÊA CITOTAXONOMIA DE REPRESENTANTES DA SUBFAMÍLIA RUBIOIDEAE (RUBIACEAE) NOS CERRADOS DO ESTADO DE SÃO PAULO Tese apresentada ao Instituto de Biologia para obtenção do Título de Doutor em Biologia Vegetal Orientadora: Profª. Drª. Eliana Regina Forni-Martins Campinas 2007 i ii Campinas, 02 de Março de 2007 BANCA EXAMINADORA Drª. Eliana Regina Forni-Martins – Orientadora Drª. Maria Angélica Maciel Martinho Ferreira Drª. Sigrid Luiza Jung Mendaçolli Drª. Neiva Isabel Pierozzi Dr. João Semir Drª. Luiza Sumiko Kinoshita - Suplente ______________________________________ Dr. Ricardo Lombelo - Suplente ______________________________________ Drª. Júlia Yamagishi Costa - Suplente ______________________________________ iii À minha família, de valor inestimável. iv AGRADECIMENTOS Este trabalho foi concluído graças ao apoio e dedicação de várias pessoas, que contribuíram direta ou indiretamente para sua realização. Agradeço então: A Deus; À minha família, Agostinho e Aracilda, meus pais, Araceli e Junior, meus irmãos, Otávio Augusto, meu sobrinho, pelo apoio, mesmo à distância; Ao meu marido Emerson, pelo apoio, companheirismo e auxílio nas coletas no campo; À Drª. Eliana, minha orientadora, que novamente confiou no meu trabalho, ensinando e ajudando em diversos momentos; À Universidade Estadual de Campinas, Instituto de Biologia, Departamento de Botânica, Laboratório de Biossistemática, pela infra-estrutura que possibilitou a realização desse trabalho; Ao curso de Pós-graduação em Biologia Vegetal; À FAPESP (Fundação de Apoio à Pesquisa do Estado de São Paulo), pela bolsa de doutorado concedida e os auxílios fornecidos a Drª. Eliana, possibilitando a realização dessa pesquisa; Ao CNPq (Conselho Nacional de Pesquisa e Desenvolvimento Tecnológico) pelo auxílio concedido a Drª.
    [Show full text]
  • Arachnid Ecology in New Zealand, Exploring
    1 Arachnid ecology in New Zealand, exploring 2 unknown and poorly understood factors. 3 James Crofts-Bennett. 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 “A thesis submitted in fulfilment of the degree of Master of Science [1] in Botany [2] at the 21 University of Otago, Dunedin, New Zealand” 22 2020 23 1 24 Index 25 26 Abstract………………………………………………………………………………………5. 27 Chapter 1. Introduction……………………………………………………………………...7. 28 1.1 The importance of spiders………………………………………………………...7. 29 1.2 The influence of habitat structural complexity on spider distribution and 30 abundance…………………………………………………………………………......8. 31 1.3 Invasive rodents in the context of New Zealand Araneae………………………...9. 32 1.4 Thesis structure and aims………………………………………………………..14. 33 Chapter 2. The effect of habitat structural complexity on spider abundance and diversity..15. 34 2.1 Introduction ……………………………………………………………………..15. 35 Figure 2.1: Seasonal deciduous vegetation cover…………………………...16. 36 Figure 2.2: Seasonal deciduous vegetation cover with mistletoe parasites…16. 37 2.2 Methods…………………………………………………………………………17. 38 Figure 2.3: Examples of foliage samples……………………………………18. 39 Table 2.1: Sampling locations, dates and host data…………………………19. 40 2.2.1 Statistical Analyses……………………………………………………………20. 41 2.3 Results…………………………………………………………………………...20. 42 Figure 2.4: Total invertebrates sampled in summer, plotted………………..22. 43 Figure 2.5: Total invertebrates sampled in winter, plotted………………….23. 44 Table 2.2: Paired t-tests of host plant invertebrate populations……………..25. 45 2.4 Discussion……………………………………………………………………….26. 46 Chapter 3. A novel non-kill Araneae trap: test with regards to vegetation type versus 47 location 48 effects………………………………………………………………………………………..28. 49 3.1 Introduction……………………………………………………………………...28.
    [Show full text]
  • Germination Behaviour of Seeds of the New Zealand Woody Species Alectryon Excelsus, Corynocarpus Laevigatus, and Kunzea Ericoides
    New Zealand Journal of Botany ISSN: 0028-825X (Print) 1175-8643 (Online) Journal homepage: http://www.tandfonline.com/loi/tnzb20 Germination behaviour of seeds of the New Zealand woody species Alectryon excelsus, Corynocarpus laevigatus, and Kunzea ericoides C. J. Burrows To cite this article: C. J. Burrows (1996) Germination behaviour of seeds of the New Zealand woody species Alectryon excelsus, Corynocarpus laevigatus, and Kunzea ericoides , New Zealand Journal of Botany, 34:4, 489-498, DOI: 10.1080/0028825X.1996.10410129 To link to this article: http://dx.doi.org/10.1080/0028825X.1996.10410129 Published online: 31 Jan 2012. Submit your article to this journal Article views: 161 View related articles Citing articles: 14 View citing articles Full Terms & Conditions of access and use can be found at http://www.tandfonline.com/action/journalInformation?journalCode=tnzb20 Download by: [125.239.173.16] Date: 29 August 2017, At: 22:53 New Zealand Journal of Botany, 1996, Vol. 34:489--498 489 0028-825X/96/3404-4)489 $2.50/0 9The Royal Society of New Zealand 1996 Germination behaviour of seeds of the New Zealand woody species Alectryon excelsus, Corynocarpus laevigatus, and Kunzea ericoides C. J. BURROWS INTRODUCTION Department of Plant and Microbial Sciences This is a further contribution to a series of papers University of Canterbury describing the germination behaviour of seeds of Private Bag 4800 woody plant species in New Zealand lowland for- Christchurch, New Zealand ests in conditions similar to those that the seeds could experience in nature (cf. Burrows 1995a, 1995b). The aim of the study was to examine the germina- Abstract Germination rates, percentage germina- tion rates, numbers of seeds which germinate, and tion success, and phenomena related to germination features of the germination delay systems for freshly delay were determined for seeds of Alectryon collected seeds from wild parents.
    [Show full text]
  • Patterns of Flammability Across the Vascular Plant Phylogeny, with Special Emphasis on the Genus Dracophyllum
    Lincoln University Digital Thesis Copyright Statement The digital copy of this thesis is protected by the Copyright Act 1994 (New Zealand). This thesis may be consulted by you, provided you comply with the provisions of the Act and the following conditions of use: you will use the copy only for the purposes of research or private study you will recognise the author's right to be identified as the author of the thesis and due acknowledgement will be made to the author where appropriate you will obtain the author's permission before publishing any material from the thesis. Patterns of flammability across the vascular plant phylogeny, with special emphasis on the genus Dracophyllum A thesis submitted in partial fulfilment of the requirements for the Degree of Doctor of philosophy at Lincoln University by Xinglei Cui Lincoln University 2020 Abstract of a thesis submitted in partial fulfilment of the requirements for the Degree of Doctor of philosophy. Abstract Patterns of flammability across the vascular plant phylogeny, with special emphasis on the genus Dracophyllum by Xinglei Cui Fire has been part of the environment for the entire history of terrestrial plants and is a common disturbance agent in many ecosystems across the world. Fire has a significant role in influencing the structure, pattern and function of many ecosystems. Plant flammability, which is the ability of a plant to burn and sustain a flame, is an important driver of fire in terrestrial ecosystems and thus has a fundamental role in ecosystem dynamics and species evolution. However, the factors that have influenced the evolution of flammability remain unclear.
    [Show full text]
  • LIZARD GARDENS ‒ a Planting Guide
    LIZARD GARDENS – A Planting Guide New Zealand’s skinks and geckos have experienced chronic decline in the face of introduced pests, namely rats, pet cats, mice, hedgehogs and mustelids (stoats, ferrets and weasels). These days most peoples’ experience of lizards is via the one their cat brought in. This will continue to be the norm, unless we do something about it! The three main things you can do to help skinks and geckos in your backyard are to provide food, shelter and undertake pest control. Food: berries and nectar from fruiting and flowering native plants, insects and moisture i.e. lots of mulch. Shelter: rock piles, rotting logs, driftwood, stacks of timber, retaining walls, don’t throw out your prunings, dump them in a pile out of the way, skinks will thank you for it. Pest control: get trapping! Trapping rats and mice is a start but hedgehogs are actually a real problem for lizards in urban settings. Consider getting a DOC200 to trap those spiny pests. You can bury them under your native plants to provide an excellent source of fertiliser. Bait is effective for rodents in particular, and means you don’t have to deal with dead bodies. Also, keep your cat inside at night and consider not replacing it when it dies. To help you get started, this planting guide has been developed by gardeners and conservationists from the Kāpiti Coast. We live in a harsh coastal sand environment battered by salt spray, high wind and regular droughts. The following plant list has been developed with that in mind.
    [Show full text]
  • Indigenous Plant Naming and Experimentation Reveal a Plant–Insect Relationship in New Zealand Forests
    Received: 23 February 2020 Revised: 10 August 2020 Accepted: 25 August 2020 DOI: 10.1111/csp2.282 CONTRIBUTED PAPER Indigenous plant naming and experimentation reveal a plant–insect relationship in New Zealand forests Priscilla M. Wehi1,2 | Gretchen Brownstein2 | Mary Morgan-Richards1 1School of Agriculture and Environment, Massey University, Palmerston North, Abstract New Zealand Drawing from both Indigenous and “Western” scientific knowledge offers the 2Manaaki Whenua Landcare Research, opportunity to better incorporate ecological systems knowledge into conserva- Dunedin, New Zealand tion science. Here, we demonstrate a “two-eyed” approach that weaves Indige- Correspondence nous ecological knowledge (IK) with experimental data to provide detailed and Priscilla M. Wehi, Manaaki Whenua comprehensive information about regional plant–insect interactions in Landcare Research, 764 Cumberland New Zealand forests. We first examined Maori names for a common forest Street, Dunedin 9053, New Zealand. Email: [email protected], tree, Carpodetus serratus, that suggest a close species interaction between an [email protected] herbivorous, hole-dwelling insect, and host trees. We detected consistent – Funding information regional variation in both Maori names for C. serratus and the plant insect Foundation for Research, Science and relationship that reflect Hemideina spp. abundances, mediated by the presence Technology; Royal Society of New Zealand of a wood-boring moth species. We found that in regions with moths C. serratus trees are home to more weta than adjacent forest species and that these weta readily ate C. serratus leaves, fruits and seeds. These findings con- firm that a joint IK—experimental approach can stimulate new hypotheses and reveal spatially important ecological patterns.
    [Show full text]